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Abstract: Red phosphorus (rP) is one of the most promising anode materials for lithium-ion batteries,
owing to its high theoretical capacity. However, its low electronic conductivity and large volume
expansion during cycling limit its practical applications, as it exhibits low electrochemical activity and
unstable cyclability. To address these problems, tellurium (Te)-rP-C composites, which have active
materials (Te, rP) that are uniformly distributed within the carbon matrix, were fabricated through a
simple high-energy ball milling method. Among the three electrodes, the Te-rP (1:2)-C electrode with
a 5% FEC additive delivers a high initial CE of 80% and a high reversible capacity of 734 mAh g−1

after 300 cycles at a current density of 100 mA g−1. Additionally, it exhibits a high-rate capacity of
580 mAh g−1 at a high current density of 10,000 mA g−1. Moreover, a comparison of the electrolytes
with and without the 5% FEC additive demonstrated improved cycling stability when the FEC
additive was used. Ex situ XRD analysis demonstrated the lithiation/delithiation mechanism of Te-rP
(1:2)-C after cycling based on the cyclic voltammetry results. Based on the electrochemical impedance
spectroscopy analysis results, a Te-rP-C composite with its notable electrochemical performance as an
anode can sufficiently contribute to the battery anode industry.

Keywords: tellurium; red phosphorus; carbon matrix; high-energy ball milling; high-rate capability;
Li-ion battery anodes

1. Introduction

Rechargeable lithium-ion batteries (LIBs) have been widely utilized as energy storage
systems for portable equipment such as laptops and cellphones, owing to their high operat-
ing voltage and low memory effects [1,2]. Currently, many electrode materials for cathodes
and anodes have been studied to achieve better LIB performance. In the case of cathode
materials, three main types of cathode materials with layered, spinel, and olivine structures
have been developed. For eV vehicle applications, high Ni-based cathodes or LiFePO4
cathodes have been rigorously evaluated [3–5]. Currently, the commercially available
anode material for LIBs is graphite, which has a low theoretical capacity of 372 mAh g−1.
To improve the limited capacity of anodes, Si-based anode materials, including SiOx [6,7],
Si alloys [8,9], and Si/C nanocomposites [10], have also been evaluated [11–13]. These
studies have attempted to make further improvements in the energy density, cyclability,
and rate capability.

Lithium-alloyed materials have been intensively studied as potential anodes for LIBs
because each atom can react electrochemically with various Li atoms. They typically have
high theoretical capacities, and common examples include Li4.4Si (4200 mAh g−1) [14–17],
Li3P (2596 mAh g−1) [18–20], Li4.4Sn (990 mAh g−1), and so on [21–23]. However, a major
issue related to Li-alloying materials is the extreme volume expansion that occurs after Li+

insertion/extraction. The volume expansion results in the cracking and crumbling of the
active materials, which leads to a rapid loss in capacity within a few cycles. One effective
method to minimize the volume change is to introduce alloying active materials into the
carbon matrix [24].
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Recently, tellurium (Te)-based composites have been reported as potential anode materi-
als for LIBs [25–31]. The electronic conductivity of tellurium is the highest (2.0 × 102 S m−1)
among nonmetallic elements, resulting in better electrochemical kinetics [32]. Tellurium
has a lower theoretical specific capacity of 420 mAh g−1 and electrochemically alloys with
Li to form Li2Te. Additionally, tellurium has a high theoretical volumetric capacity of
2621 mAh cm−3 owing to its high material density of 6.24 g cm−3. Despite the several
advantages of Te as a promising material, very few Te-based composites have been used as
anode materials in LIBs.

Wang et al. were the first to prepare a tellurium/porous carbon (Te/C) composite
using a vacuum-liquid-infusion method [29]. The Te/C electrode delivered an initial re-
versible capacity of 300 mAh g−1 at a current rate of 50 mA g−1 between 0.8 and 2.5 V, and
still retained 87% of its initial capacity over 1000 cycles. Using a hydrothermal method,
Guo et al. developed a tellurium@microporous carbon composite (Te@MPC), which exhib-
ited a reversible capacity of 372 mAh g−1 over 280 cycles with a capacity retention of 90% at
42 mA g−1 between 1.0 and 2.7 V [25]. However, these energy densities are still insufficient
for practical use. The red phosphorus (rP) could be used as one of the most promising ma-
terials because of its high theoretical capacity of 2596 mAh g−1, which is seven times more
than that of commercial graphite. Furthermore, among its allotropes, rP is a chemically sta-
ble, cheap, easy-to-handle, and non-toxic material (red P, black P, and white P). Specifically,
crystalline rP has critical disadvantages, including its huge volume expansion (>490%) dur-
ing the Li+ insertion/extraction process, poor electronic conductivity (1.0 × 10−14 S cm−1),
sluggish electrochemical kinetics, and irreversible storage capacity [20,33–35]. These would
lead to poor electrochemical performance of the crystalline rP with the pulverization of the
electrodes, poor rate performance, and minimal reversible capacity. One of the most suc-
cessful methods for accommodating the volume variations during cycling is the application
of amorphous rP. Amorphous rP lacks a well-defined crystal structure, and has characteris-
tics including high surface area and fast electrochemical kinetics that can accommodate
the strain associated with lithiation/delithiation, leading to better cycling stability [36–39].
Therefore, it is necessary to develop suitable composite systems to understand the two
aspects of high-energy density and the mitigation of vulnerable volume changes during
cycling [40].

In this study, to address the problems encountered when Te or rP are used indepen-
dently, we fabricated a Te-rP-C nanocomposite using high-energy ball milling (HEBM),
in which carbon was utilized to minimize volume expansion and improve the electrical
conductivity of the composite system. The physical properties of the as-prepared Te-rP-C
nanocomposite were thoroughly characterized, and it exhibited outstanding cyclability
and high-rate capability as an LIB anode. Additionally, the lithiation/delithiation mecha-
nism of the Te-rP-C nanocomposite electrode was evaluated using ex situ X-ray diffraction
(XRD) based on cyclic voltammetry (CV) results. Owing to the simple and well-distributed
composite morphology of the Te-rP-C materials, the Te-rP (1:2)-C electrode exhibited stable
electrochemical performance, indicating its potential for use in next-generation LIB anodes.

2. Experiment
2.1. Synthesis of Te-rP-C Powder

The Te-rP-C powders were synthesized using tellurium (−200 mesh, 99.8%, Aldrich,
China), commercial red phosphorus (−100 mesh, red amorphous, 98.9%, Alfa Aesar, Ger-
many), and acetylene black (100% compressed, 99.9%, Alfa Aesar, United States) as the
raw materials. The atomic ratios of Te to phosphorus were 2:1, 1:1, and 1:2, respectively.
Subsequently, the Te-rP-C and acetylene black mixture at a ratio of 7:3 were mixed in a
well. The raw materials were placed in a zirconia bowl (80 cm3) with ZrO2 balls (0.5 and
0.25 inch diameters). HEBM (Pulverisette 5 Planetary Mill, Fritsch GmbH, Germany) was
performed at 300 rpm in an Ar atmosphere for 24 h.
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2.2. Materials Characterization

The crystal structures of the Te-rP (1:1), Te-rP (2:1)-C, Te-rP (1:1)-C, and Te-rP (1:2)-C
samples were determined using X-ray diffraction (XRD, Rigaku 2200, Japan) at an operating
scan rate of 2◦ min−1 over 20–50◦ as well as transmission electron microscopy (TEM, JEOL
JEM2100, Japan) with energy-dispersive X-ray spectroscopy (EDX, equipped with the
HRTEM). The structural changes during cycling were analyzed using ex situ XRD and
scanning electron microscopy (SEM, Hitachi S-4700, Japan).

2.3. Electrochemical Measurements

To fabricate the electrodes as anodes, the as-prepared powders were cast with polyvinyli-
dene fluoride (PVDF, Aldrich, 12 wt.% in NMP) as a binder and Super P as a conducting
agent at a mass ratio of 70:15:15 onto a Cu substrate, followed by drying at 70 ◦C in a
vacuum oven. The dried electrode was punched into a 12 mm disk shape, and the loading
of the active material was about 0.85–1.00 mg cm−2. Then, the electrodes were assembled
into CR2032-type coin cells in a glovebox using a polyethylene separator and lithium foil as
the counter electrodes. A 1 M solution of LiPF6 (ethylene carbonate (EC): diethyl carbonate
(DEC) = 1:1, volume ratio) was used as the electrolyte (~120 µL), with and without an
additive (5 vol.% FEC). The discharge/charge tests were conducted in the voltage range
of 0.01–2.5 V (Li vs. Li+) at a current density of 0.1 A g−1 using the WBCS3000 battery
cycler (WonAtech, Seoul, Korea) at 25 ◦C. Electrochemical impedance spectroscopy (EIS)
and cyclic voltammetry (CV) measurements were performed using a ZIVE MP 1 system
(WonAtech, Seoul, Korea). The EIS tests were conducted after 100 cycles at 100 kHz and
100 mHz. CV was performed in the range of 0.001–2.5 V (Li vs. Li+) at a scanning rate
of 0.1 mV s−1.

3. Results and Discussion

Powder X-ray diffraction (XRD) was used to evaluate the phase structures of the
Te-rP-C composites. Figure 1 shows the XRD patterns of the Te-rP (1:1), Te-rP (2:1)-C, Te-rP
(1:1)-C, and Te-rP (1:2)-C composites. The XRD pattern of rP is also presented in Figure S1,
which indicates that rP is amorphous. All of the diffraction patterns of the prepared powder
corresponded to a hexagonal Te phase (PDF#36-1452). There were no other crystalline
phases because the rP and carbon were amorphous. Note that C and rP are amorphous.
Therefore, this seems to broaden the XRD peaks in the Te-rP-C composite materials [30].
Therefore, it can be inferred that the Te-rP-C composites consist of Te and rP distributed in
an amorphous carbon matrix.

Transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy
(EDX) was used to characterize the morphology of the obtained Te-rP-C material. Figure 2a
shows a low-magnification TEM image of the Te-rP (1:2)-C composite. The inset of Figure 2a
shows the selected-area electron diffraction pattern. Two ring patterns corresponding to
the (101) and (003) planes of the Te crystal structure were observed. To further evaluate the
specific morphology of Te-rP-C, an HRTEM image was obtained, as shown in Figure 2b. It
shows the crystalline nanoparticles (5–15 nm in diameter) embedded in the amorphous
carbon matrix, which show two d-spacings of 0.32 nm and 0.23 nm, corresponding to
the (101) and (102) planes for the tellurium phase, respectively. The elemental mapping
images shown in Figure 2c suggest a uniform distribution of Te and phosphorus in the
amorphous carbon matrix. Thus, as discussed earlier, it can be concluded that crystalline
Te and amorphous rP are well dispersed in the composite system. The TEM images of
the other Te-rP-C materials synthesized at various ratios, in addition to Te-rP (1:2)-C, are
summarized in Figure S2; the morphological characteristics are similar.
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Figure 3a shows the galvanostatic discharge and charge behaviors of the Te-rP (1:1),
Te-rP (2:1)-C, Te-rP (1:1)-C, and Te-rP (1:2)-C electrodes with 5% FEC at 100 mA g−1 in
the voltage ranges between 0.001 and 2.5 V (vs. Li/Li+). The galvanostatic discharge and
charge behaviors of the electrodes without FEC are summarized in Figure S3. All of the
electrodes exhibit a low Coulombic efficiency (CE) in the first cycle, which is attributed to
the formation of the SEI film and the reduction in electrolyte decomposition (e.g., EC, PC,
and FEC) on the electrode surface. However, as will be shown later, all of the electrodes
exhibited an increased CE of over 90% from the 3rd cycle, and demonstrated diminishing
irreversible reactions by the SEI film. The initial charge capacity and initial Coulombic
efficiency (ICE) of the Te-rP (1:1) electrode are 426 mAh g−1 and 47%, respectively. This
low ICE was due to the large number of side reactions on the surface of the electrode
resulting from the absence of carbon during cycling. The Te-rP (1:1)-C electrode has an
initial charge capacity of 462 mAh g−1 with an ICE of 63%; this ICE value is higher than
that of the Te-rP (1:1) electrode because the carbon matrix plays a role in alleviating the
volume change as well as reducing vigorous side reactions, establishing metastable SEI
layer formation. Meanwhile, the Te-rP (2:1)-C and Te-rP (1:2)-C electrodes exhibit initial
charge capacities of 447 and 929 mAh g−1, respectively, which correspond to ICEs of 72
and 80%, respectively. As expected, the Te-rP (1:2)-C electrode exhibits the highest initial
discharge capacity. The lower capacities of Te-rP (2:1)-C and Te-rP (1:1)-C are due to the
lower amounts of phosphorus in the two samples.

To understand the lithiation/delithiation mechanism, CV curves of the initial three
scans were analyzed with a scan rate of 0.1 mV s−1 within 0.001–2.5 V. Figure 3b shows
the CV curves of the Te-rP (1:2)-C electrode, and Figure S4 presents the CV profiles of the
Te-rP (2:1)-C, Te-rP (1:1)-C, and Te-rP (1:1) electrodes. As shown in Figure 3b, a broad peak
at 0.7 V was observed during the first discharge scan, which corresponds to the reduc-
tion/decomposition of the electrolytes to form SEI films on the surface of the electrodes.
A peak was also observed between 1.50 V and 1.75 V in the discharge scan, which can be
attributed to the reaction of lithium ions and tellurium. When the potential was further
scanned from 1.0 to 0.5 V, a peak near 0.75 V appeared, corresponding to the reaction
between lithium ions and phosphorus. It is noted that the as-prepared electrodes showed
different initial voltage profiles based on the ratio of Te and rP. The Te-rP (1:1) electrode
reveals a very blurry initial voltage profile due to the unstable electrochemical reaction.
The Te-rP (1:1)-C electrode shows a distinct two-step electrochemical reaction with similar
current intensity; the redox reaction occurring at 1.5/1.75 V corresponds to the reaction be-
tween Li ions and Te, while the redox reaction occurring at 0.5/1.0 V represents the reaction
between Li ions and rP. The Te-rP (2:1)-C electrode exhibits a larger current intensity at the
redox reaction occurring at 1.5/2.0 V, while the Te-rP (1:2)-C electrode shows larger current
intensity at the redox reaction occurring at 0.5/1.0 V. This could be due to the different
amounts of Te and rP in the composites. In the subsequent charge scan, two overlapped
anodic peaks are centered at 1.2 V and 1.8 V, which should correspond to lithium ion
extraction from the charged phases. The overlapping CV curves in the subsequent cycles
indicate the superior electrochemical performance of the Te-rP (1:2)-C electrode.

To further confirm the lithiation/delithiation mechanism of Te-rP (1:2)-C, ex situ XRD
(Figure 3d) analysis was conducted at different cycling states based on the CV (Figure 3b),
and Figure 3c shows the corresponding voltage profile. When the electrode was discharged
to 1.0 V (Figure 3d(ii)), the Te hexagonal phase was completely transformed into the
Li2Te cubic phase (PDF#23-0370). When further discharged to 0.001 V (Figure 3d(ii,iii)),
there seemed to be no additional phase change, which could be due to the formation of
amorphous Li3P phases during discharge. Moreover, when the electrode was charged
to 1.5 V, the ex situ XRD patterns remained, which could be due to the formation of
amorphous rP [41]. When fully charged to 2.5 V (Figure 3d(v)), all of the XRD peaks
aligned with those of the Te phases. Therefore, the ex situ XRD results confirmed the
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reversible lithiation/delithiation of the Te-rP (1:2)-C electrode. Based on the CV and ex situ
XRD analyses, the electrochemical reaction mechanisms can be summarized as follows:

Te + 2Li+ + 2e− −→ Li2Te (Discharge at 1.0 V) (1)

(amorphous) P + 3Li+ + 3e− −→ Li3P (Discharge at 0.001 V) (2)

(amorphous) Li3P −→ P + 3Li+ + 3e− (Charge at 1.5 V) (3)

Li2Te −→ Te + 2Li+ + 2e− (Charge at 2.5 V) (4)
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The as-prepared Te-rP-C electrodes were used for the LIB anodes, as shown in Figure 4.
Figure 4a shows the cycling performance of Te-rP (1:1), Te-rP (2:1)-C, Te-rP (1:1)-C, and Te-
rP (1:2)-C with a 5% FEC additive in the electrolyte. In the case of Coulombic efficiency (CE)
of the electrodes, the initial Coulombic efficiencies (ICE) are 47%, 72%, 63%, and 80% for
Te-rP (1:1), Te-rP (2:1)-C, Te-rP (1:1)-C, and Te-rP (1:2)-C, respectively (Figure 4a). The Te-rP
(1:1) electrode without C reveals a very low and fluctuating CE, which could be caused
by unstable electrochemical reactions. On the other hand, the Te-rP-C electrodes show a
very stable CE; the CE rapidly reaches approximately 98% and approaches 100% during
the prolonged cycles. For the Te-rP (1:1) electrode, the capacity decreased significantly
within 50 cycles because severe volume changes occurred during the lithiation/delithiation
process. To alleviate the volume expansion, a carbon matrix should be introduced into the
alloy systems [24,42–44]. The capacity retention of the Te-rP (1:1)-C electrode was signifi-
cantly better than that of the Te-rP (1:1) electrode. The Te-rP (1:1)-C electrode delivered a
charge capacity of 344 mAh g−1 at 300 cycles and 68% of the charge capacity with stable
cycling. Furthermore, when the molar ratios of tellurium to phosphorus were 2:1 and
1:2, the charge capacities of the Te-rP (2:1)-C and Te-rP (1:2)-C composite electrodes also
exhibited very stable cyclability with capacities of 460 mAh g−1 at 96% and 734 mAh g−1

at 79% of the capacity retention after 300 cycles, respectively. It is noted that at the 200th
cycle, the reversible capacity of the Te-rP (1:2)-C composite electrode is 720 mAh g−1,
and that at the 300th cycle is 739 mAh g−1. It shows somewhat enhanced capacity value.
This may be due to the formation of the additional electrochemical reactions caused by
polymeric gel-like film (electrochemical decomposition of electrolyte) on the surface of the
electrode materials [45]. As mentioned earlier, the theoretical capacity of phosphorus was
2596 mAh g−1, assuming the formation of the Li3P phase. Therefore, for the Te-rP (1:2)-C
electrode, a large amount of phosphorus led to an increase in capacity.
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Furthermore, the enhancement of the cycling properties could be due to the well-
dispersed active Te nanoparticles with high electronic conductivity, as well as the rP and
coverage of the highly conductive carbon matrix. The existence of the carbon matrix
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mitigated the large volume expansion, leading to better cyclability (refer to the results for
the Te-rP (1:1) and Te-rP-C (1:1) electrodes). The incorporation of an appropriate amount of
the FEC additive also served as a positive factor to form a stable SEI layer. Based on these
positive characteristics, the Te-rP-C electrodes exhibited significantly improved cycling
performance. However, the capacity retention of the electrodes without the FEC additive
was inferior to that of the electrodes with the FEC additive, as shown in Figure S5a. The
Te-rP (1:1) electrode exhibited very poor cycling properties. The Te-rP (1:1)-C electrode
demonstrated a significant decrease in capacity when FEC was not added, providing a
charge capacity of 346 mAh g−1 at 80 cycles with 66%. The Te-rP (2:1)-C and Te-rP (1:2)-C
electrodes at 300 cycles were 360 mAh g−1 and 539 mAh g−1, respectively, corresponding
to capacity retentions of 77% and 67%. This characteristic may arise from the synergistic
effect generated from the optimal ratio of Te and rP in the conductive matrix. To confirm
this phenomenon, further research will be performed, including further changing the ratio
between active materials and applying appropriate simulations to check the interactions
between the materials. These values are lower than those of the Te-rP (1:2)-C and Te-rP
(2:1)-C electrodes with the FEC additive because they help to form thin and stable SEI films
and reduce the amount of electrolyte decomposition. Therefore, it can be concluded that
the FEC additive significantly affects the electrochemical properties.

Moreover, to evaluate the fast recharging property, the rate capability and capacity
retention of the as-obtained electrodes with the FEC additive were tested, as shown in
Figure 4b,c. The test was conducted at 0.001–2.5 V (vs. Li/Li+) at various current densities.
The Te-rP (1:1) electrode presented inferior rate capability and a low charge capacity
of 15 mAh g−1 at 3000 mA g−1, corresponding to a very poor capacity retention of 5%
when normalized by the capacities at 100 mA g−1. However, the presence of a carbon
matrix leads to better rate capability. For instance, the Te-rP (1:1)-C and Te-rP (2:1)-C
electrodes demonstrated better rate performances than the Te-rP (1:1) without a carbon
matrix (Figure 4c,d). The rate performance of the Te-rP (1:2)-C electrode was the best.
The Te-rP (1:2)-C electrode exhibited charge capacities of 698, 675, 647, and 623 mAh g−1

at current densities of 500, 1000, 3000, and 5000 mA g−1, respectively, corresponding to
capacity retentions of 95, 92, 88, and 85%, respectively. At a very high current density
of 10,000 mA g−1, the Te-rP (1:2)-C electrode showed an outstanding capacity retention
of 81%. These notable differences in the rate properties could be due to the optimized
Te-rP-based composite electrodes, where the formation of well-dispersed Te with rP at
an optimum ratio in the conductive carbon matrix could lead to a synergistic effect for
achieving high-performance Li-ion cells. The electrodes with the FEC additive exhibited
better performance than the electrodes without FEC. For instance, in the case of Te-rP (1:1)-
C (Figure S5), the capacity retention of the electrode without FEC was 4% at 10,000 mA g−1,
whereas that of the electrode with FEC was 38% at 10,000 mA g−1. These superior rate
capabilities can also be attributed to the formation of thin and stable SEI films, which reduce
the number of Li+ diffusion paths.

After cycling, checking the morphology of the as-prepared electrodes via ex situ SEM
analysis is essential. After 100 cycles, the cells were opened in an Ar-filled glove box, rinsed
with diethylene carbonate, dried, and their morphologies were observed (Figure 5). In
the case of the Te-rP (1:1) electrode without the FEC, numerous prominent cracks were
observed (Figure 5a), whereas the Te-rP (1:1) electrode with FEC did not exhibit many
cracks; however, particle agglomeration was observed (Figure 5b). In contrast, the other
electrodes forming a carbon matrix exhibited narrower and fewer cracks, demonstrating
the inhibition of volume expansion during cycling. Notably, the Te-rP (1:2)-C and Te-rP
(2:1)-C electrodes without the FEC additive did not exhibit many cracks, leading to better
electrochemical properties than those of the Te-rP (1:1) and Te-rP (1:1)-C electrodes without
FEC. Nevertheless, their reversible capacities were lower than those of the Te-rP (1:2)-C and
Te-rP (2:1)-C electrodes containing FEC, which formed thin and stable SEI layers. In the
SEM images of the Te-rP (1:2)-C and Te-rP (2:1)-C electrodes with and without the FEC, the
electrodes without the FEC did not exhibit the morphology consisting of each nanoparticle,
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but revealed blurred and thick SEI layer formation. The results obtained from the SEM
analysis were consistent with the overall electrochemical performance of the cells.
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Figure 5. SEM images of electrodes: (a) Te-rP, (b) Te-rP with 5% FEC, (c) Te-rP (2:1)-C, (d) Te-rP
(2:1)-C with 5% FEC, (e) Te-rP (1:1)-C, (f) Te-rP (1:1)-C with 5% FEC, (g) Te-rP (1:2)-C, and (h) Te-rP
(1:2)-C with 5% FEC after 100 cycles.

The superior cycling and rate performances were further characterized using elec-
trochemical impedance spectroscopy (EIS). The cells used for EIS analysis were run for
50 cycles at a current density of 500 mA g−1. The tests were conducted in a fully charged
state (2.5 V (vs. Li/Li+)). As shown in Figure 6a, the Nyquist plots consist of a semicircle
and a linear slope. The semicircle in the high–medium-frequency region corresponds to the
SEI and charge transfer resistance, whereas the linear slope in the low-frequency region is
related to the bulk resistivity [46,47]. The equivalent circuit included Rs, RSEI, Rct, and W,
which correspond to the surface resistance, SEI resistance, charge-transfer resistance, and
Warburg element, respectively. Two constant-phase elements, denoted as CPE1 and CPE2,
are used for capacitance contributions arising from the solid electrolyte interphase (SEI)
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layers and the active material, respectively [48]. Table S1 summarizes the obtained values of
Rs, RSEI, and Rct with refinement by applying a low-frequency constraint [49]. According to
Vo et al., the y-intercept in the (Z′ + Z′′) versus the wα−1 plot is the sum of Rs, Rct, and RSEI
(w and α are the frequency and fractal dimension of CPE2, respectively). Figure 6b shows a
value of 114.96 Ω for the sum of Rs + RSEI + Rct for the Te-rP (2:1)-C composite electrode.
The RSEI of the Te-rP (2:1)-C electrode refined using CNLS is 83.28 Ω. Likewise, the sum of
Rs + RSEI + Rct for the Te-rP (1:1)-C composite electrode is 160.40 Ω, and the RSEI value is
86.29 Ω. The sum of Rs + RSEI + Rct for the Te-rP (1:2)-C composite electrode is 100.53 Ω,
and the RSEI value is 82.37 Ω. In summary, at high–medium frequencies, the semicircle
diameter of the Te-rP (1:2)-C electrode is the smallest, even though the difference in the
values is not significant, indicating that the Te-rP (1:2)-C electrode has a more stable SEI
film and lower charge-transfer resistance than the Te-rP (2:1)-C and Te-rP (1:1)-C electrodes.
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circuit models. (ZReal + ZImag) plots with respect to wα−1 of various electrodes after 50th cycle:
(b) Te-rP (2:1)-C, (c) Te-rP (1:1)-C, and (d) Te-rP (1:2)-C. (e) Linear fitting plot of w−1/2 versus Z’ plot.
(f) Calculated Li-ion diffusion coefficients for electrodes with the 5% FEC additive.
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Regarding Li-ion dynamics, the Li-ion diffusion coefficient can be calculated as follows:

Z′ = Rs + RSEI + Rct + σw−1/2 (5)

where Z′ is the real part in the resistance, w is the frequency, and σ is the Warburg factor.
To estimate σ, one can perform linear regression on the w−1/2 versus Z plot, utilizing the
Z′ and w values obtained from the Nyquist plot’s Warburg impedance region. Then, σ
is approximated as the gradient of the linear fit [50]. The as-approximated σ values of
the Te-rP (2:1)-C, Te-rP (1:1)-C, and Te-rP (1:2)-C electrodes are 12.28, 21.98, and 16.78,
respectively (Figure 6e). Using these σ values, the diffusion coefficients of the different
electrodes were calculated as follows [51]

DLi+ =
R2T2

2A2n4F4C2σ2
(6)

In this context, A corresponds to the contact area, equivalent to the electrode surface
area. F represents the Faraday constant, C signifies the concentration of Li-ions in the
electrolyte, and n is a dimensionless parameter (n = 1). Additionally, T stands for absolute
temperature, R denotes the gas constant, and DLi

+ represents the Li-ion diffusion coefficient.
Figure 6f shows the DLi

+ values for the Te-rP (2:1)-C, Te-rP (1:1)-C, and Te-rP (1:2)-C
electrodes. The DLi

+ value of the Te-rP (1:2)-C anode was calculated as 9.85× 10−11 cm2 s−1,
which was lower than that of the Te-rP (2:1)-C (1.84 × 10−10 cm2 s−1) and higher than that
of the Te-rP (1:1)-C (5.74 × 10−11 cm2 s−1). Based on the resistance and diffusivity results,
the Te-rP (1:2)-C electrode demonstrates low resistance and moderate Li-ion diffusivity
when compared to the other two electrodes. Even though the Te-rP (1:2)-C electrode does
not exhibit the highest Li diffusivity, which may be due to the larger amount of rP in
the composite, the Te-rP (1:2)-C electrode exhibits the highest capacity values with stable
cyclability. This could be due to the synergistic effect resulting from the formation of
well-dispersed Te and rP at the optimum ratio in the conductive carbon matrix. Finally,
similar studies reported previously were compared to our Te-rP-C composite electrodes.
The results indicate that the as-developed Te-rP-C composite electrodes, specifically the
Te-rP (1:2)-C electrode, represent reasonable electrochemical performance, as shown in
Table S2. Therefore, it is inferred that the as-prepared Te-rP (1:2)-C could be a viable anode
material for high-performance Li-ion batteries.

4. Conclusions

Te-rP-C composites were fabricated using HEBM, from which active materials (Te,
rP) uniformly distributed within the carbon matrix were obtained. Te, rP, and carbon
were used to enhance the electrical conductivity, increase the capacity, and buffer the
large volume expansion during cycling. Ex situ XRD analysis was conducted to evaluate
the lithiation/delithiation mechanisms of the Te-rP (1:2)-C electrode upon cycling based
on the CV results, where a crystalline Li2Te phase was detected. For the electrochemical
characteristics, the Te-rP (2:1)-C and Te-rP (1:2)-C electrodes with 5% FEC additive delivered
a high initial CE of 72 and 80% and reversible capacities of 460 and 734 mAh g−1 at a current
density of 100 mA g−1, respectively. They also exhibited high-rate capacities of 208 and
580 mA h g−1, respectively, at a high current density of 10,000 mA g−1. The composite
electrodes with the FEC exhibited better electrochemical performance than those without
the FEC additive. Based on various in-depth analyses, these outstanding performances
could be due to the optimized Te-rP-based composite electrodes, where the formation of
well-dispersed Te with rP in an optimum ratio in the conductive carbon matrix led to a
synergistic effect for achieving high-performance Li-ion cells. However, it is also necessary
to achieve stable full cells with high energy densities. In this regard, a potential study to
develop a high-energy-density full cell can be conducted by applying the optimized Te-rP-C
electrode and modulating parameters including the N/P ratio and cut-off voltages, and
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by fabricating novel architectures [52]. Overall, it is expected that the Te-rP-C composite
anodes with their excellent performance will contribute significantly to the battery industry.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi14122156/s1, Figure S1: XRD pattern of rP.; Figure S2: TEM
images; insets show the SAED pattern, HRTEM image, and elemental mapping images of (a) Te-rP
(1:2)-C, (b) Te-rP (1:1)-C, and (c) Te-rP (1:1) composite.; Figure S3: Initial voltage profiles of the
Te-rP (1:1)-C, Te-rP (2:1)-C, Te-rP (1:1)-C, and Te-rP (1:2)-C at 100 mA g−1 without the FEC additive.;
Figure S4: Cyclic voltammetry of (a) Te-rP (2:1)-C, (b) Te-rP (1:1)-C, and (c) Te-rP (1:1) electrodes
at 0.1 mV s−1.; Figure S5: (a) Cycling performance of the Te-rP (1:1)-C, Te-rP (2:1)-C, Te-rP (1:1)-C,
and Te-rP (1:2)-C without the 5% FEC additive. (b) Rate cyclability and (c) normalized capacity
retention values (percent) of as-prepared electrodes without FEC additive.; Table S1: EIS data of the
Te-rP (2:1)-C, Te-rP (1:1)-C, and Te-rP (1:2)-C electrodes.; Table S2: Comparison of the electrochemical
properties of Te, rP-related composite anodes [30,53–58].
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