Table 1.
Category | Model | Feature Representation | MAE | RMSE | PCC | Spearman | CI | R 2 |
---|---|---|---|---|---|---|---|---|
Machine learning models | RR | label encoding | 1.471 | 1.864 | 0.515 | 0.521 | 0.685 | 0.261 |
KNN | label encoding | 1.377 | 1.732 | 0.604 | 0.565 | 0.703 | 0.362 | |
DT | label encoding | 1.409 | 1.882 | 0.590 | 0.577 | 0.707 | 0.247 | |
SVR | label encoding | 1.749 | 2.150 | 0.156 | 0.231 | 0.527 | 0.017 | |
RF | label encoding | 1.221 | 1.527 | 0.726 | 0.713 | 0.760 | 0.504 | |
Sequence-based deep learning models | 1D-CNN | label encoding | 1.569 | 1.938 | 0.535 | 0.531 | 0.683 | 0.201 |
one-hot encoding | 1.159 | 1.473 | 0.752 | 0.741 | 0.776 | 0.539 | ||
RNN | label encoding | 1.815 | 2.227 | 0.175 | 0.329 | 0.611 | −0.054 | |
one-hot encoding | 1.669 | 2.045 | 0.459 | 0.460 | 0.657 | 0.111 | ||
Structure-based deep learning models | GraphSAGE | label encoding | 1.288 | 1.599 | 0.675 | 0.664 | 0.739 | 0.449 |
one-hot encoding | 1.127 | 1.417 | 0.758 | 0.745 | 0.778 | 0.573 |