Skip to main content
. 2023 Dec 8;28(24):8005. doi: 10.3390/molecules28248005

Table 1.

Performance of machine learning and deep learning models using only sequence knowledge compared to graph-based models fusing structure knowledge.

Category Model Feature Representation MAE RMSE PCC Spearman CI R 2
Machine learning models RR label encoding 1.471 1.864 0.515 0.521 0.685 0.261
KNN label encoding 1.377 1.732 0.604 0.565 0.703 0.362
DT label encoding 1.409 1.882 0.590 0.577 0.707 0.247
SVR label encoding 1.749 2.150 0.156 0.231 0.527 0.017
RF label encoding 1.221 1.527 0.726 0.713 0.760 0.504
Sequence-based deep learning models 1D-CNN label encoding 1.569 1.938 0.535 0.531 0.683 0.201
one-hot encoding 1.159 1.473 0.752 0.741 0.776 0.539
RNN label encoding 1.815 2.227 0.175 0.329 0.611 −0.054
one-hot encoding 1.669 2.045 0.459 0.460 0.657 0.111
Structure-based deep learning models GraphSAGE label encoding 1.288 1.599 0.675 0.664 0.739 0.449
one-hot encoding 1.127 1.417 0.758 0.745 0.778 0.573