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Abstract

Transfer learning for high-dimensional Gaussian graphical models (GGMs) is studied. The target 

GGM is estimated by incorporating the data from similar and related auxiliary studies, where the 

similarity between the target graph and each auxiliary graph is characterized by the sparsity of 

a divergence matrix. An estimation algorithm, Trans-CLIME, is proposed and shown to attain a 

faster convergence rate than the minimax rate in the single-task setting. Furthermore, we introduce 

a universal debiasing method that can be coupled with a range of initial graph estimators and 

can be analytically computed in one step. A debiased Trans-CLIME estimator is then constructed 

and is shown to be element-wise asymptotically normal. This fact is used to construct a multiple 

testing procedure for edge detection with false discovery rate control. The proposed estimation and 

multiple testing procedures demonstrate superior numerical performance in simulations and are 

applied to infer the gene networks in a target brain tissue by leveraging the gene expressions from 

multiple other brain tissues. A significant decrease in prediction errors and a significant increase in 

power for link detection are observed.
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1 Introduction

Gaussian graphical models (GGMs), which represent the dependence structure among a 

set of random variables, have been widely used to model the conditional dependence 
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relationships in many applications, including gene regulatory networks and brain 

connectivity maps (Drton and Maathuis, 2017; Varoquaux et al., 2010; Zhao et al., 2014; 

Glymour et al., 2019). In the classical setting with data from a single study, the estimation 

of high-dimensional GGMs has been well studied in a series of papers, including penalized 

likelihood methods (Yuan and Lin, 2007; Lam and Fan, 2009; Friedman et al., 2008; 

Rothman et al., 2008), convex optimization-based methods (Cai et al., 2011, 2016; Liu and 

Wang, 2017), and penalized ℓ1 log-determinant divergence (Ravikumar et al., 2011). Model 

selection has been considered in Ravikumar et al. (2008). The minimax optimal rates are 

studied in Cai et al. (2016). Ren et al. (2015) studies the estimation optimality and inference 

for individual entries. A survey of optimal estimation of the structured high-dimensional 

GGMs can be found in Cai et al. (2016). Liu (2013) considers the inference for GGMs based 

on a node-wise regression approach and introduces a multiple testing procedure for the 

partial correlations with the FDP and FDR control and Xia et al. (2015) studies simultaneous 

testing for the differential networks.

Methods for estimating a single GGM have also been extended to simultaneously estimating 

multiple graphs when data from multiple studies are available. For example, Guo et al. 

(2011), Chiquet et al. (2011), Danaher et al. (2014), and Cai et al. (2016) consider jointly 

estimating multiple GGMs by employing some penalties in order to induce common 

structures among different graphs. This problem falls in the category of multi-task learning 

(Lounici et al., 2009; Agarwal et al., 2012), whose goal is to jointly estimate several related 

graphs.

Due to high dimensionality and relatively small sample sizes in many modern applications, 

estimation of GGMs based on a single study often has large uncertainty and low power in 

link detection. However, the blessing is that samples from some different but related studies 

can be abundant. Particularly, for a given target study, there might be other studies where we 

expect some similar dependence structures among the same set of variables. One example 

is to infer the gene regulatory networks among a set of genes for a given issue. Although 

gene regulatory networks are expected to vary from tissue to tissue, certain shared regulatory 

structures are expected and have indeed been observed (Pierson et al., 2015; Fagny et al., 

2017). This paper introduces a transfer learning approach to improve the estimation and 

inference accuracy for the gene regulatory network in one target tissue by incorporating the 

data in other tissues.

Transfer learning techniques have been developed in a range of applications, including 

pattern recognition, natural language processing, and drug discovery (Pan and Yang, 2009; 

Turki et al., 2017; Bastani, 2021). Transfer learning has been studied in different settings 

with various similarity measures, but only a few of them offer statistical guarantees. Cai 

and Wei (2021) investigates nonparametric classification in transfer learning and proposes 

minimax and adaptive classifiers. In linear regression models, Li et al. (2021) considers the 

estimation of high-dimensional regression coefficient vectors when the difference between 

the auxiliary model and the target model is sufficiently sparse and proves the minimax 

optimal rate. Tripuraneni et al. (2021) proposes an algorithm that assumes all the auxiliary 

studies and the target study share a common, low-dimensional linear representation. Transfer 

learning in general functional classes has been studied in Tripuraneni et al. (2020) and 
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Hanneke and Kpotufe (2020). Loosely speaking, transfer learning aims to improve the 

learning accuracy for the target study by transferring information from multiple related 

studies. This is different from the multi-task learning outlined above, where the goal is to 

simultaneously estimate multiple graphs. In terms of theoretical results, the error criteria 

for these two learning frameworks are different and are incomparable in general. The 

convergence rate for estimating the target graph in transfer learning can be faster than the 

corresponding rate in multi-task learning.

1.1 Model set-up

Suppose that we observe independent and identically distributed (i.i.d.) samples xi ∈ ℝp

generated from N(μ,Σ), i = 1,…,n, and the parameter of interest is the precision matrix 

Ω = Σ−1. Indeed, Ω uniquely determines the conditional dependence structure and the 

corresponding graph. If the i-th and j-th variables are conditionally dependent in the target 

study, there is an undirected edge between the i-th and j-th nodes in the Gaussian graph and, 

equivalently, the (i, j)-th and (j, i)-th entries of Ω are nonzero. Our focus is on the estimation 

and inference for high-dimensional sparse Gaussian graphs where p can be much larger than 

n and Ω is sparse such that each column of Ω has at most s nonzero elements with s ≪ p.

In the transfer learning setting, besides the observations {x1,…,xn} from the target 

distribution N(μ,Σ), we also observe samples from K auxiliary studies. For k = 1,…,K, 

the observations xi
(k) ∈ ℝp are independently generated from N(μ(k),Σ(k)),i = 1,…,nk. Let Ω(k) 

= {Σ(k)}−1 be the precision matrix of the k-th study, k = 1,…,K. If some knowledge can 

be transferred to the target study, a certain level of similarity needs to be possessed by the 

auxiliary models and the target one.

To motivate our proposed similarity measure, consider the relative entropy, or equivalently 

the Kullback-Leibler (KL) divergence, between the k-th auxiliary model and the target 

model. That is,

DKL NΣ(k) NΣ = 1
2Tr Δ(k) − 1

2log det Ip + Δ(k) for Δ(k) = ΩΣ(k) − Ip, (1)

where NΣ(k) and NΣ denote the normal distributions with mean zero and covariance matrix 

Σ(k) and Σ, respectively. The KL-divergence is parametrized by the matrix Δ(k) and we call 

Δ(k) the k-th divergence matrix. We characterize the difference between Ω and Ω(k) via

Dq Ω(k), Ω = max1 ≤ j ≤ p Δj, .
(k)

q + max1 ≤ j ≤ p Δ . , j
(k)

q (2)

for some fixed q ∈[0,1]. In words, Dq Ω, Ω(k)  is the maximum row-wise ℓq-sparsity 

of Δ(k) plus the maximum column-wise ℓq-sparsity of Δ(k). Both the row-wise and 

column-wise norms are taken into account because Δ(k) is non-symmetric. The quantity 

Dq Ω(k), Ω  measures the “relative distance” between Ω and Ω(k) in the sense that 

Dq Ω(k), Ω = Dq cΩ(k), cΩ  for any constant c > 0. Notice that the spectral norm of Δ(k) is 

upper bounded by D1 Ω(k), Ω , which further provides an upper bound on the KL-divergence.
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In this work, we develop estimation and inference procedures for GGMs under the similarity 

characterization (2) for any fixed q ∈[0,1]. We focus on the methods and theory when q = 1 

in the main paper and provide matching minimax upper and lower bounds for q ∈[0,1] in the 

Supplemental Materials.

1.2 Our contributions

A transfer learning algorithm, called Trans-CLIME, is proposed for estimating the target 

GGM. Inspired by the CLIME in the single-task setting (Cai et al., 2011), the proposed 

algorithm includes additional steps to incorporate auxiliary information. Furthermore, edge 

detection with uncertainty quantification is considered. We introduce a universal debiasing 

method that can be coupled with many initial graph estimators, including both the single-

task and the transfer learning estimators. The debiasing step can be analytically computed 

in one step. We demonstrate the asymptotic normality under certain conditions. Applying 

this procedure, we construct the confidence interval for an edge of interest and propose a 

multiple testing procedure for all the edges with false discovery rate (FDR) control.

Theoretically, we establish the minimax optimal rate of convergence for estimating the 

GGMs with transfer learning in the Frobenius norm by providing matching minimax 

upper and lower bounds. We also establish the optimal rate of convergence for estimating 

individual entries in the graph. These convergence rates are faster than the corresponding 

minimax rates in the classical single-task setting, where no auxiliary samples are available or 

used. Our proposed Trans-CLIME and debiased Trans-CLIME are shown to be rate optimal 

for different error criteria under proper conditions.

1.3 Organization and notation

The rest of this paper is organized as follows. In Section 2, we propose an algorithm for 

graph estimation with transfer learning given q = 1 in the similarity characterization. In 

Section 3, we study statistical inference for each edge of the graph. In Section 4, we consider 

multiple testing of all the edges in the graph with false discovery rate guarantee. In Section 

5, we establish the minimax lower bounds for any fixed q ∈[0,1]. In Section 6, we study 

the numerical performance of Trans-CLIME in comparison to some other relevant methods. 

We then present an application of the proposed methods to estimate gene regulatory graphs 

based on data from multiple brain tissues in Section 7. Section 8 concludes the paper. The 

proofs and other supporting information are given in the Supplementary Materials.

For a matrix A ∈ ℝp × p, let Aj denote the j-th column of A. For any fixed j ≤ p, we call ∥ Aj 

∥2 the column-wise ℓ2 -norm of A. Let ∥ A ∥∞,q = maxj≤q ∥ Aj ∥q for q > 0 and ∥ A ∥∞,∞ 

= maxi,j≤p | Ai,j |, and A
1

= ∑j = 1
p Aj 1. Let ∥ A∥2 denote the spectral norm of A and ∥ 

A ∥F denote the Frobenius norm of A. For a vector v ∈ ℝp, let ∥ v ∥0 denote the number 

of nonzero elements of v. For a symmetric matrix A, let Λmax (A) and Λmin (A) denote 

the largest and smallest eigenvalues of A, respectively. Let Φ(t) denote the standard normal 

probability function. Let zq denote the q-th quantile of standard normal distribution. We use 

c0,c1,… and C0,C1,… as generic constants which can be different at different places.
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2 GGM estimation with transfer learning

In this section, we study GGM estimation based on transfer learning. In Section 2.1, we 

introduce the rationale for the proposed algorithm. The proposal is introduced in Section 2.2 

and its theoretical properties are studied in Section 2.3.

2.1 Rationale and moment equations

Moment equations provide a powerful tool for deriving estimation methods in parametric 

models. By the definition of Ω, it is natural to consider the following moment equation:

ΣΩ − Ip = 0. (3)

The idea of CLIME (Cai et al., 2011) is to solve an empirical version of (3) and to encourage 

the sparsity of the estimator. In the context of transfer learning, we re-express the moment 

equation (3) to incorporate auxiliary information. Specifically, for k = 1,…,K,

Ip = Σ(k)Ω(k) = Σ(k)Ω − Δ(k) ⊤, (4)

where Δ(k) is the divergence matrix defined in (1). We see from (4) that Δ(k) corresponds 

to the bias in the moment equations when we try to identify Ω based on the k-th study. To 

simultaneously leverage all the auxiliary studies, we further define the weighted average of 

the covariance and divergence matrices

ΣK = ∑
k = 1

K
αkΣ(k) and ΔK = ∑

k = 1

K
αkΔ(k), (5)

where α = nk / N and N = ∑k = 1
K nk. For knowledge transfer, the moment equation 

considered for Ω is

ΣKΩ − ΔK ⊤ − Ip = 0, (6)

where ΣK is an average parameter over the K source studies and it incorporates the auxiliary 

information. The moment equation (6) motivates our procedure. First, we will estimate ΔK

based on the following moment equation:

ΣΔK − ΣK − Σ = 0. (7)

Once ΔK is identified, we can estimate our target Ω via (6).

In some practical scenarios, the similarity between Ω(k) and Ω can be weak, for some 1 

≤ k ≤ K, i.e. Dq Ω(k), Ω  can be large. In fact, the similarity is often unknown a priori in 

practice. In this case, information transfer may negatively affect the learning performance of 

the target problem, which is also known as the “negative transfer” (Hanneke and Kpotufe, 

2020). To address this issue, we will further perform an aggregation step. The aggregation 
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methods and theory have been extensively studied in the existing literature in regression 

problems, to name a few, Rigollet and Tsybakov (2011); Tsybakov (2014); Lecué and 

Rigollet (2014). This type of methods can guarantee that, loosely speaking, the aggregated 

estimator has prediction performance comparable to the best prediction performance which 

could be achieved by the initial estimators.

2.2 Trans-CLIME algorithm

We introduce our proposed transfer learning algorithm, Trans-CLIME. We randomly split 

the data from the target study into two disjoint folds. Specifically, let ℐ be a random subset 

of {1,…,n} such that |ℐ| = cn for some constant 0 < c < 1. Let ℐc denote the complement of 

ℐ. Let x = 1
|ℐ| ∑i ∈ ℐxi, x = 1

ℐc ∑i ∈ ℐcxi,

Σ = 1
ℐ ∑

i ∈ ℐ
xixi

⊤ − xx⊤ and Σ = 1
ℐc ∑

i ∈ ℐc
xixi

⊤ − xx⊤ . (8)

We will use Σ for constructing estimators and will use Σ for aggregation. 

Let n = ℐc . Let xK = ∑k = 1
K ∑i = 1

nk xi
(k)/N denote the sample mean and 

ΣK = ∑k = 1
K ∑i = 1

nk xi
(k) xi

(k) ⊤/N − xK xK ⊤
 denote the sample covariance based on the 

auxiliary samples. To begin with, we compute the single-task CLIME Ω(CL)
 such that

Ω(CL) = arg minΩ ∈ ℝp × p Ω 1

subject to (Σ + |ℐ|−1Ip)Ω − Ip ∞, ∞ ≤ λCL,
(9)

Where Σ is defined in (8) and λCL > 0 is a tuning parameter. A diagonal matrix |ℐ|−1Ip is 

added to Σ for making the sample covariance matrix positive definite. This modification has 

been considered in a refined version of the CLIME (Cai et al., 2016).

Step 1.—We estimate ΔK based on the moment equation (7). Compute

ΔK = arg minΔ ∈ ℝp × p‖Δ‖1

subject to ‖Δ − {(Ω(CL))⊤ΣK − Ip}‖∞, ∞ ≤ λΔ.
(10)

The optimization (10) can be understood as an adaptive thresholding of an initial estimate 

ΔK,(Ω(CL))⊤ΣK − Ip. This initial estimate is inspired by the moment equation (7). We further 

explain that the CLIME estimator Ω(CL)
 is not necessarily symmetric and we use Ω(CL) ⊤

in step 1 to directly leverage the constraints in the CLIME optimization. The optimization 

in (10) is a more sophisticated version of hard thresholding and it is designed for the 

approximate sparse parameter ΔK. The estimate ΔK
 is row-wise and column-wise ℓ1-sparse 

and will be used in the next step.
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Step 2.—For ΔK
 defined in (10), compute

Θ = arg minΘ ∈ ℝp × p Θ 1

subject to | ΣK + N−1Ip Θ − ΔK + Ip
⊤

|∞, ∞ ≤ λΘ.
(11)

This step is a CLIME-type optimization based on the moment equation (6) and it outputs 

an estimator of the target graph Ω. When the similarities between auxiliary studies and the 

target study are sufficiently high, Θ is a desirable transfer learning estimator of Ω.

As we have discussed in Section 2.1, Θ may not be as good as the single-task estimator if the 

similarity is weak. Hence, we perform a model selection aggregation in Step 3 based on the 

single-task CLIME estimator and Θ to produce a final graph estimator. Loosely speaking, we 

compute a weight vector v j motivated by the moment equation

Σ Ωj
(CL), Θj vj − ej ≈ 0.

Notice that the sample splitting step guarantees that both Θ and Ω(CL)
 are independent of the 

samples used for aggregation,Σ.

Step 3.—For j = 1,…, p, compute

W (j) =
Ωj

(CL) ⊤ΣΩj
(CL) Ωj

(CL) ⊤ΣΘj

Ωj
(CL) ⊤ΣΘj Θj

⊤ΣΘj

and

vj = arg minv ∈ (0, 1)⊤, (1, 0)⊤ v⊤W (j)v − 2v⊤(Ωj, j
(CL), Θj, j)

where Ω(CL)
 is defined in (9) and Θ is defined in (11). For j = 1,…, p, let

Ωj = (Ωj
(CL), Θj)v j . (12)

We summarize the formal algorithm as follows.

Algorithm 1: Trans-CLIME algorithm—Input : Target data (after a random sample 

splitting) Σ, Σ  and auxiliary samples ΣK.

Output: Ω.

Step 1. Compute ΔK
 via (10).
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Step 2. Compute Θ via (11).

Step 3. Aggregation for positive transfer: For j = 1,…, p, compute Ωj via (12).

Computationally, all the optimizations in these three steps can be separated into p 

independent optimizations, analogous to the original CLIME algorithm. This makes the 

computation scalable. While Ω is not symmetric in general, one can use Ω + Ω⊤ /2 as a 

symmetric estimate for Ω. It is not hard to show that Ω + Ω⊤ /2 has the same convergence 

rate as Ω in Frobenius norm.

2.3 Convergence rate of Trans-CLIME

In this subsection, we provide theoretical guarantees for the Trans-CLIME algorithm. We 

assume the following condition in our theoretical analysis.

Condition 2.1 (Gaussian graphs).—For i = 1,…, n, xi ∈ ℝp are i.i.d. distributed as 

N(μ,Σ). For each 1 ≤ k ≤ K, xi
(k) are i.i.d. distributed as N(μ(k),Σ(k)) for i = 1,…,nk. It holds 

that 1/C ≤ Λmin (Σ) ≤ Λmax (Σ) ≤ C and 1/C ≤ min1≤k≤K Λmin (Σ(k)) ≤ max1≤k≤K Λmax (Σ(k)) 

≤ C for some constant C > 0.

The Gaussian assumption facilitates the justification of the restricted eigenvalue conditions 

of the empirical covariance matrices. The Gaussian distribution of the target data also 

simplifies the limiting distribution of our proposed estimator for inference.

The parameter space we consider is

Gq(s, ℎ) = Ω, Ω(1), …, Ω(K) :max1 ≤ j ≤ p Ωj 0 ≤ s, max1 ≤ k ≤ KDq Ω, Ω(k) ≤ ℎ . (13)

We mention that the parameter space for GGMs in the single-task setting (Ren et al., 

2015) can be written as Gq(s, ∞) under Condition 2.1 for any q ∈[0,1]. This is because 

Gq(s, ∞) allows the auxiliary studies to be arbitrarily far away from the target study and the 

worst-case scenario is equivalent to the setting where only the target data is available.

In the following, we demonstrate the convergence rate of Trans-CLIME under Condition 

2.1. Let δℎ, Ω = Ω ∞, 1 + ℎ ℎ logp/n ∧ ℎ2 and δℎ = ℎ logp/n ∧ ℎ2. We see that δh,Ω ≳ δh as 

∥Ω∥∞,1 ≥ c > 0. If max{∥Ω∥∞,1, h} is finite, then δh,Ω ≍ δh.

Theorem 2.1 (Convergence rate of Trans-CLIME).—Assume Condition 2.1. Let the 

Trans-CLIME estimator Ω be computed with

λΔ = c1 Ω ∞, 1 + ℎ logp
n and λΘ = c1

logp
N ,

where c1 is a large enough constant. If p ≥ c2N for some positive constant c2 and s log p / N 
+ δh,Ω ˄ s log p / n = o(1), then for any true models in G1(s, ℎ), we have
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E 1
p‖Ω − Ω‖F

2 ∨ ‖Ωj − Ωj‖2
2 ≤ C slogp

N + n + δℎ, Ω ∧ slogp
n + 1

n (14)

for any fixed 1 ≤ j ≤ p and some positive constant C.

Theorem 2.1 demonstrates that under a proper choice of the tuning parameters, the upper 

bounds can be obtained in Frobenius norm and in column-wise ℓ2 -norm. We first illustrate 

the convergence rate of Ω in column-wise ℓ2 -norm. As all the Ω(k), k = 1,…, K, share the 

column-wise s-sparse matrix Ω, the term s log p / (N + n) comes from estimating Ω based 

on N + n independent samples. The term δh,Ω comes from the errors of estimating ΔK in 

row-wise ℓ2 -norm. It goes to zero as the target sample size n goes to infinity. The term 

δh,Ω is determined by the target sample size because the divergence matrix is defined and 

can only be identified based on the target samples. Nevertheless, δh,Ω can still be a fast rate 

when the similarity among these studies is high, i.e., h is small. The minimal term δh,Ω ˄ s 
log p / n is a consequence of the aggregation performed in Step 3, where s log p / n is the 

single-task convergence rate under the same distance measure. However, there is a mild cost 

of aggregation, which is of order n−1 shown in the last term in (14), and it is negligible in 

most parameter spaces of interest.

To understand the gain of transfer learning, we compare the current results with the 

convergence rate of CLIME in the single-task setting.

Remark 2.1 (Convergence rate of single-task CLIME).—Assume Condition 2.1, 

s2 log p = o(n) and p ≥ c1n for some positive constant c1. For the CLIME estimator Ω(CL)

defined in (9) with λCL = c2 logp/n with large enough constant c2, then for any true models in 

G1(s, ∞),

E 1
p‖Ω(CL) − Ω‖F

2
∨ ‖Ωj

(CL) − Ωj‖2
2 ≤ Cslogp

n

for any fixed 1 ≤ j ≤ p and some positive constant C.

We see that the convergence rate of Trans-CLIME is no worse than CLIME in Frobenius 

norm for any s ≥ 1, which is a consequence of aggregation. Furthermore, Trans-CLIME has 

faster convergence rate when N ≫ n and δℎ, Ω ≪ s logp/n. That is, if the total auxiliary sample 

size is dominant and the similarity is sufficiently strong (h is sufficiently small), then the 

learning performance can be significantly improved using Trans-CLIME. This demonstrates 

the gain of transfer learning in estimating the graphical models.

Remark 2.2 (Faster convergence rate in a restricted regime).—Assume Condition 

2.1. Let the Trans-CLIME estimator Ω be computed with

λΔ = c1
logp

n and λΘ = c1
logp
N ,
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where c1 is a large enough constant. If p ≥ c2N and s2 log p ≤ c3n for some positive 

constants c2 and c3, then for any true models in G1(s, ℎ), we have

E 1
p‖Ω − Ω‖F

2 ∨ ‖Ωj − Ωj‖2
2 ≤ C slogp

N + n + δℎ ∧ slogp
n + 1

n (15)

for any fixed 1 ≤ j ≤ p and some positive constant C.

In Remark 2.2, we prove another convergence rate of Trans-CLIME when s2 log p ≲ n. Its 

difference from (14) is that δh,Ω is replaced by δh in (15). Hence, the convergence rate in 

(15) is sharper than the rate in (14) when max{∥Ω∥∞,1, h} grows to infinity and is of the 

same order of the rate in (14) when max{∥Ω∥∞,1, h} is finite. However, the condition on s in 

Remark 2.2 is stronger than the one assumed in Theorem 2.1 and it is indeed the same as the 

requirement in the single-task problems (Cai et al., 2016; Liu and Wang, 2017). In fact, we 

will show in Section 5.1 that the minimax lower bound in Frobenius norm is s log p / (N + 

n) + δh ˄ (s log p / n) for the current parameter space. The convergence rate of Trans-CLIME 

in (15) has one more term 1 / n, which is the cost when the relative magnitude of h and 

s is unknown a priori. In most nontrivial parameter spaces, Trans-CLIME enjoys minimax 

optimality when s2 log p ≤ c0n or when max{∥Ω∥∞,1, h} is finite.

3 Entry-wise inference

We propose in this section a debiasing procedure for inference of individual entries in the 

graph. The main features of our proposal are its flexibility to couple with a broad range 

of initial graph estimators and its computational efficiency. We first introduce a universal 

debiasing method and study its theoretical guarantees in Section 3.1. We will then use it for 

the construction of confidence intervals in the transfer learning setting in Section 3.2.

3.1 A universal debiasing method

Our procedure on inference for Ωi,j is inspired by the idea of debiasing quadratic forms. We 

begin by expressing Ωi,j as a quadratic form:

Ωi, j = Ωi
⊤ΣΩj = Ωi

⊤E Σn Ωj, (16)

where Σn denotes the sample covariance matrix based on the target data. In many occasions, 

Σn can be computed based on all the target data. Sometimes for a sharp theoretical analysis, 

sample splitting is performed and Σn can be computed based on a constant proportion of the 

target data. We call the samples involved in Σn the debiasing samples. Equation (16) holds 

for any inverse covariance matrix Ω not restricting to Gaussian random graphs.

Leveraging (16), we are able to use the idea of debiasing quadratic forms (Cai and Guo, 

2020) to make inference for Ωi,j. Specifically, Ωi,j takes the same format as the co-heritability 

if we view Ωi and Ωj as the regression coefficient vectors for two different outcomes and 

view X as the measurements of genetic variants. Motivated by this observation, we arrive 

at the following debiased estimator of Ωi,j. Let Ω(init)
 be any initial estimator of Ω. The 

corresponding debiased estimator is
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Ω∘ i, j
(db)

= (Ωi
(init))⊤ΣnΩj

(init) + (Ωi
(init))⊤(ej − ΣnΩj

(init)) + (Ωj
(init))⊤(ei − ΣnΩi

(init))

= Ωj, i
(init) + Ωi, j

(init) − (Ωj
(init))⊤ΣnΩi

(init) .
(17)

We mention that Ω(init)
 is not necessarily symmetric and hence we distinguish Ωi, j

(init)
 and 

Ωi, j
(init)

. It is easy to see that the above debiasing procedure can be coupled with any Ω(init)

which has a sufficiently fast convergence rate in column-wise ℓ2-norm. Hence, the candidate 

estimators for debiasing include, say, graphical Lasso (Friedman et al., 2008), CLIME (Cai 

et al., 2011), multi-task graph estimators (Guo et al., 2011; Danaher et al., 2014; Cai et al., 

2016), and our proposed Trans-CLIME. In comparison to Liu (2013) and Ren et al. (2015), 

where the debiased estimators are constructed using ℓ1 -penalized node-wise regression, our 

proposal in (17) is more flexible in incorporating various types of initial estimators under 

different structural assumptions. To the best of our knowledge, Ω∘ (db)
 is the first universal 

debiasing method for graph estimators.

Besides the general applicability, our debiased estimator for the whole graph can be 

analytically computed in one step given the initial graph estimator Ω(init)
. Specifically, the 

debaised estimator in (17) can be re-expressed as

Ω° (db) = Ω(init) + (Ω(init))
⊤

− (Ω(init))
⊤

ΣnΩ(init) .

To demonstrate the power of this universal debiasing method, we first prove the asymptotic 

normality for the debiased single-task CLIME estimator, which is

Ωi, j
(db − CL) = Ωj, i

(CL) + Ωi, j
(CL) − (Ωj

(CL))⊤ΣΩi
(CL),

where Σ is defined in (8).

Proposition 3.1 (Asymptotic normality for debiased CLIME).—Assume Condition 

2.1 and slogp ≪ n. For any fixed i ≠ j,

n Ωi, j
(db − CL) − Ωi, j

V i, j

D N(0, 1)

for V i, j = Ωi, iΩj, j + Ωi, j
2 .

The asymptotic normality of Ωi, j
(db − CL)

 requires that slogp ≪ n. The condition and the 

asymptotic distribution in Proposition 3.1 recover the results in Ren et al. (2015) and Ωi, j
(db − CL)

is indeed minimax optimal in Gq(s, ∞) for estimating Ωi,j. This demonstrates the optimality of 

this universal debiasing method.
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3.2 Entry-wise confidence intervals based on transfer learning

Applying the universal debiasing scheme to the Trans-CLIME estimator Ω, we arrive at the 

following debiased Trans-CLIME estimator for Ωi,j

Ωi, j
(db) = Ωj, i + Ωi, j − Ωj

⊤ΣΩi . (18)

In (18), we only use a proportion of target data, i.e., those involved in Σ, as debiasing 

samples, while the realization of Ω involves both target and auxiliary samples. This is 

because first, only the target data are known to be unbiased; second, the samples involved 

in Σ has mild dependence on Ω which is induced by the aggregation step and it allows 

us to prove the desirable convergence rate. Ideally, one can use some debiasing samples 

independent of Ω, which can be achieved through another sample splitting. In practice, 

sample splitting always leads to sub-optimal empirical performance and hence we analyze 

(18) and take care of the dependence through careful analysis.

Theorem 3.1 (Asymptotic normality for debiased Trans-CLIME).—Assume 

Condition 2.1 and the sample size condition stated in (20). For any true models in G1(s,h) 

and any fixed 1 ≤ i, j ≤ p the debiased Trans-CLIME satisfies

n Ωi, j
(db) − Ωi, j

V i, j

D N(0, 1) . (19)

In Theorem 3.1, we establish the asymptotic normality of Ωi, j
(db)

. We now discuss the 

improvement in the convergence rates with transfer learning. For the asymptotic normality to 

hold, one requires the sparsity condition that

slogp = o(N/ n)and δℎ, Ω = o n−1/2 if δℎ, Ω ≤ slogp/n
slogp = o( n) otherwise.

(20)

In comparison, the sparsity condition given by the minimax rate in single-task setting is 

slogp = o( n) (Proposition 3.1). We see that the sparsity condition in (20) is weaker when 

δh,Ω ≪ s log p / n and N ≫ n. Specifically, if the similarity is sufficiently high, i.e., δh,Ω ≤ s 
log p / n, then transfer learning relaxes the sparsity condition for asymptotic normality from 

slogp ≪ n to slogp ≪ N/ n. This relaxation is significant as the regime slogp ≪ n is known 

as the “ultra-sparse” regime and is very restrictive when n is small. When N ≫ n, which 

is not hard to satisfy in many applications, the condition on s is largely relaxed for valid 

inference. Another way of interpreting (20) is that inference based on Trans-CLIME requires 

weaker sparsity conditions as long as Ω has a smaller estimation error than the single-task 

CLIME. The minimax optimality of debiased Trans-CLIME is studied in Section 5.2.

Next, we introduce an estimator for the variance of Ωi, j
(db)

, which is
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V i, j = Ωi, iΩj, j + Ωi, jΩj, i . (21)

The variance estimator V i, j is based on the limiting distribution of Ωi, j
(db)

 given that the 

observations are Gaussian distributed.

Lemma 3.1 (Consistency of variance estimator).—Under the conditions of Theorem 

3.1, the variance estimator defined in (21) satisfies

V i, j − V i, j = oP(1)

and hence

n Ωi, j
(db) − Ωi, j

V i, j

D N(0, 1) . (22)

Based on Lemma 3.1, a 100 × (1 − α)% two-sided confidence interval for Ωi,j is 

Ωi, j
(db) ± z1 − α/2 V i, j/n 1/2.

We examine the empirical performance of this inference method in Section 6.

4 Edge detection with FDR control

An important task regarding the graphical models is edge detection with uncertainty 

quantification. That is, we consider testing (H0)i,j :Ωi,j = 0 1 ≤ i < j ≤ p. This is a 

multiple testing problem with m = p(p−1)/2 hypotheses to test in total. For the uncertainty 

quantification, we consider the false discovery proportion (FDP) and false discovery rate 

(FDR). Let ℛ denote the set of rejected null hypotheses. The FDP and FDR are defined as, 

respectively,

FDP(ℛ) =
∑(i, j) ∈ ℛ1 (i, j) ∈ ℋ0

ℛ ∨ 1 and FDR(ℛ) = E[FDP(ℛ)],

where ℋ0 is the set of true nulls. Many algorithms have been proposed and studied for 

FDR and FDP control in various settings. Especially, Liu (2013) proposes an FDR control 

algorithm for GGMs that can be easily combined with our proposed debiased estimator. The 

procedure is presented as Algorithm 2.

Algorithm 2: Edge detection with FDR control at level α

Input : Ωi, j
(db)

i < j
, V i, j i < j and FDR level α

Output: A set of selected edges ℛ
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Step 1. For 1 ≤ i < j ≤ p, let z i, j = V i, j
−1/2 nΩi, j

(db)
, where Ωi, j

(db)
 and V i, j are defined in (18) and (21), 

respectively.

Step 2.

t = inf t ∈ [0, 2logm − 2log logm]: 2m(1 − Φ(t))
max {∑1 ≤ i < j ≤ p1 z i, j ≥ t , 1} ≤ α . (23)

If (23) does not exist, we set t = 2logm.

Step 3. The rejected hypotheses are

ℛ = (i, j): zi, j ≥ t , 1 ≤ i < j ≤ p .

Let m0 = ℋ0  denote the cardinality of ℋ0 and m = (p2 − p) / 2 denote the total number of 

hypotheses to test. Define a subset of random variables “highly” correlated with the i-th 

variable Ci(γ) = j:1 ≤ j ≤ p, j ≠ i, Ωi, j ≥ (logp)−2 − γ .

Theorem 4.1 (FDR control).

Let p ≤ nr for some r > 0 and m0 ≥ cp2 for some c > 0. Assume that Condition 2.1 holds and 

the true model is in G1 (s, h). Suppose that

s(logp)3/2 ≪ N/ n, δℎ, Ω ∧ slogp/n ≪ (nlogp)−1/2,

and max1 ≤ i ≤ p Ci(γ) = O pρ  for some ρ < 1 / 2 and γ > 0. We have lim
(n, p) ∞

FDR(ℛ)
αm0/m = 1 and 

FDP(ℛ)
αm0/m 1 in probability as (n, p) → ∞.

Theorem 4.1 implies that Algorithm 2 can asymptotically control FDR and FDP at nominal 

level under certain conditions. The sample size condition in Theorem 4.1 guarantees that 

the remaining bias of Ωi, j
(db)

 is uniformly oP ((nlog p)−1/2). The condition on the cardinality 

of Ci(γ) guarantees that the z-statistics have mild correlations such that the FDR control is 

asymptotically valid.

5 Minimax optimal rates for q ∈[0,1]

In this section, we establish the minimax lower bounds for estimation and inference of 

GGMs in the parameter space Gq(s, ℎ) for any fixed q ∈[0,1]. We provide matching minimax 

upper bounds in the supplements (Section C.3 and Section C.4).

5.1 Optimal rates under Frobenius norm

Theorem 5.1 (Minimax lower bounds under Frobenius norm).—Assume 

Condition 2.1 and 3 < s log p < c1N for some small constant c1. (i) For q = 0, if h log 

p ≤ c2n for some small enough constant c2, then for some positive constant C1,

Li et al. Page 14

J Am Stat Assoc. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inf
Ω

sup
G0(s, ℎ)

E 1
p‖Ω − Ω‖F

2 ≥ C1
slogp
N + n + (ℎ ∧ s) logp

n .

(ii) For any fixed q ∈(0,1], if hq(log p / n)1−q/2 ≤ c3 for some small enough constant c3, then 

there are some positive constants C2 such that

inf
Ω

sup
Gq(s, ℎ)

E 1
p‖Ω − Ω‖F

2 ≥ C2
slogp
N + n + ℎq logp

n
1 − q/2

∧ ℎ2 ∧ slogp
n .

Theorem 5.1 establishes the minimax optimal rates under Frobenius norm. These lower 

bounds generalize the existing lower bound in Gq(s, ∞) (Cai et al., 2016) to allow for 

arbitrarily small h. According to the discussion at the end of Section 2, the Trans-CLIME 

is minimax optimal with respect to Frobenius norm in most parameter spaces of interest 

when s2 log p ≤ c0n or when max{∥Ω∥∞,1, h} is finite. In fact, the only difference of the 

rate in (15) and the minimax lower bound is the cost of aggregation, which is of order 1 / 

n. We mention that the estimator which achieves the minimax upper bounds depends on the 

relative magnitude of h and s and hence is not adaptive. In comparison, the Trans-CLIME 

estimator does not depends on the unknown parameters and only has a small inflation term.

5.2 Optimal rates for estimating Ωi,j

Theorem 5.2 (Minimax lower bounds for estimating [INEQ-START). Ωi,j] Assume 

Condition 2.1 and 3 < s < c1 min{pv, N / log p} for some small constant c1 > 0 and v 
< 1/ 2. (i) For q = 0, if 1 ≤ h log p ≤ c2n for some small enough constant c2, then for some 

constant C1 > 0,

inf
Ω

sup
G0(s, ℎ)

ℙ Ωi, j − Ωi, j ≥ C1 n−1/2 + slogp
N + n + (ℎ ∧ s) logp

n > 1/4.

(ii) For any fixed q ∈(0,1], if hq (log p / n)1−q/2 <c3 for some small enough constant c3, then

inf
Ω

sup
Gq(s, ℎ)

ℙ Ωi, j − Ωi, j ≥ C3 Rq + slogp
N + n + ℎq logp

n
1 − q/2

∧ ℎ2 ∧ slogp
n > 1/4,

where C3 is a positive constant and Rq = (N + n)−1/2 + n−1/2 ⋀ h.

Theorem 5.2 establishes the minimax lower bound for estimating each entry in the graph. 

These lower bounds are related to the sparsity conditions in Theorem 3.1. They generalize 

the existing lower bound in Gq(s, ∞) (Ren et al., 2015) to allow for finite h. When q = 0, the 

parametric rate is n−1/2, which is the same as in the single-task setting. When q ∈(0,1], the 

parametric rate is Rq and the rest terms are the remaining bias. We now illustrate this bound 

in detail with q = 1.

For q = 1, the minimax optimal rate can be achieved by Ωi, j
(db)

 when max{h,∥Ω∥∞,1} ≤ C and 

h ≳ n−1/2. See (15) in the supplements for more details. When h ≪ n−1/2, a minimax optimal 
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estimator is debiased (single-task) CLIME using X and X(k),1 ≤ k ≤ K, as debiasing samples. 

In the scenario h ≪ n−1/2, the auxiliary studies are very similar to the target study and using 

N + n debiasing samples can have faster parametric rate, (n + N)−1/2, with bias no larger 

than h. However, the central limit theory may not hold for the rate optimal estimator when 

h ≪ n−1/2. This is because the parametric rate is dominated by the bias h when (n + N)−1/2 

≲ h ≲ n−1/2. In contrast, Ωi, j
(db)

 has parametric rate n−1/2 and its asymptotic normality holds for 

arbitrarily small h under the conditions of Theorem 3.1. Hence, Ωi, j
(db)

 is a proper choice for 

statistical inference.

6 Numerical experiments

We evaluate the numerical performance of our proposal and other comparable methods. We 

set n = 150, p = 200, K = 5, and nk = 300 for k = 1,…,K. We consider three types of target 

graph Ω.

i. Banded matrix with bandwidth 8. For 1 ≤ i, j ≤ p, Ωi,j = 2 × 0.6|i−j|1 (|i−j|≤ 7).

ii. Block diagonal matrix with block size 4, where each block is Toeplitz 

(1.2,0.9,0.6,0.3).

iii. Define Ω∘ i, j = 1(i = j) + ui, j/ |i − j | + 1, where μi,j are independently generated 

from a uniform distribution with range [0, 0.8]. We threshold Ω° + Ω° ⊤ /2 such 

that only the first s largest values in each column and each row of Ω° + Ω° ⊤ /2 are 

kept. A diagonal matrix is added to guarantee that the minimum eigenvalue of 

the target graph is at least 0.1.

To accommodate the practical setting that some auxiliary studies can be very far from the 

target study, we define a set A ⊆ 1, …, K  to be the set of informative studies. Specifically, 

for each setting in (i) or (ii), we generate Δ(k) in two ways. For k ∈ A, Δi, j
(k) is zero 

with probability 0.9 and is nonzero with probability 0.1. If an entry is nonzero, it is 

randomly generated from U[−r / p, r / p] for r ∈{10,20,30}. For Ω(k), k ∉ A, we generate 

Δi, j
(k) = 0.51(i = j) + ξi, j, where ξi,j is zero with probability 0.7 and is 0.4 with probability 0.3. 

In fact, D1 Ω(k), Ω ≈ 15 for k ∈ A and D1 Ω(k), Ω ≈ 80 for k ∉ A and hence the studies not in 

A are relatively far away from the target Ω. For k = 1,…,K, we symmetrize Ω(k) and if Ω(k) is 

not positive definite, we redefine Ω(k) to be its positive definite projection.

We compare four methods in each experiment. The first one is the proposed Trans-CLIME. 

The second one is the single-task CLIME that only uses the data from the target study. 

The third one applies Trans-CLIME to the target study and informative auxiliary studies, 

denoted by “oracle Trans-CLIME”. Here “oracle” indicates that it leverages the knowledge 

of oracle A. The fourth one is multi-task graphical lasso (Guo et al., 2011), shorthanded 

as “MT-Glasso”. For the choice of tuning parameters, we consider λCL = 2cn logp/n for 

CLIME. We pick cn to minimize the prediction error defined in (24) based on five fold 

cross-validation. For the Trans-CLIME, we set λΔ = 2 Ω(CL)
1 logp/n and λΘ = 2cn logp/N

where cn is the same as in the CLIME optimization. For the oracle Trans-CLIME, the 
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tuning parameters are set in the same way as in Trans-CLIME except that N is replaced 

by ∑k ∈ Ank. For Trans-CLIME-based methods, we split the target data into two folds such 

that Ω(CL)
 and Θ are computed based on 4n / 5 samples and the aggregation step (Step 

3) is based on the rest n / 5 samples. For the debiased Trans-CLIME, we use all the 

target data as debiasing samples as it has a better empirical performance. For “MT-Glasso”, 

we implement and choose the tuning parameter based on Bayesian information criterion 

according to Section 2.3 and Section 2.4 of Guo et al. (2011). The R code for the four 

methods is available at https://github.com/saili0103/TransCLIME.

6.1 Estimation and prediction results

We evaluate the estimation performance in Frobenius norm and prediction performance 

based on the negative log-likelihood. Specifically, we generate xi
(test) N(0, Σ) for i = 1,…,ntest 

= 100 and xi
(test) are independent of the samples for estimation. We evaluate the out-of-sample 

prediction error of an arbitrary graph estimator Ω(init)
 in the following way. We symmetrize 

Ω(init)
 and compute the positive definite projection of the symmetrized Ω(init)

, denoted by 

Ω+
(init)

. The prediction error of Ω(init)
 is evaluated via

Q(Ω(init)) = 1
p

1
2ntest

∑
i = 1

ntest

Tr(xi
(test)(xi

(test))⊤Ω+
(init)) − 1

2logdet(Ω+
(init)) . (24)

In Figure 1, we report the estimation and prediction performance in setting (i). As 

the number of informative auxiliary studies increases, the estimation errors of two Trans-

CLIME-based methods decrease. As r increases, the estimation errors of two Trans-CLIME-

based methods increase. The oracle Trans-CLIME has a faster convergence rate than 

the Trans-CLIME. This is because K − |A| non-informative studies are used in the Trans-

CLIME, which affects the convergence rates. Nevertheless, we see that the Trans-CLIME 

algorithm is robust to the non-informative auxiliary studies as its performance is always not 

much worse than the single-task CLIME. The estimation and prediction results for settings 

(ii) and (iii) are reported in the supplements (Section E.2). We have observed similar patterns 

in those settings.

6.2 Sample complexity

We further evaluate the dependence of the estimation errors in Frobenius norm on the target 

sample size n, the total auxiliary sample size N, and the sparsity s. We consider the random 

graph (iii) that has more flexibility in varying s and present the results in Figure 2. We 

see that the estimation errors of single-task CLIME decrease fast as the target sample size 

increases. The errors of oracle Trans-CLIME, and Trans-CLIME also decrease as the target 

sample size increases but not in a large amount. In other words, the improvement of transfer 

learning becomes smaller as n increases when auxiliary samples are informative. This aligns 

with our theoretical results as we demonstrate the significant gain of transfer learning when 

N ≫ n. As the total auxiliary sample size N increases, errors of the oracle Trans-CLIME 

and Trans-CLIME decrease linearly but the errors of CLIME do not change (middle plot 

of Figure 2). This agrees with our theoretical findings in Theorem 2.1 and Remark 2.1. 

Li et al. Page 17

J Am Stat Assoc. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/saili0103/TransCLIME


Finally, all the methods have estimation errors increase with the sparsity parameter s with an 

approximately linear trend.

6.3 FDR control

We then consider FDR control at level α = 0.1 based on the debiasing method introduced 

in Section 3. From Figure 3, we see that all three debiased estimators have empirical FDR 

no larger than the nominal level in setting (i). In terms of power, the Trans-CLIME and 

oracle Trans-CLIME have higher power when A is nonempty. We observe the robustness 

of Trans-CLIME in the sense that the FDR is under control even if non-informative studies 

are included. The multiple testing results for settings (ii) and (iii) are reported in the 

supplements (Section D.2). We observe that the power curves in setting (ii) are the highest in 

comparison to the other two settings. This is because the nonzero entries in the target graph 

have the largest magnitude in setting (ii).

7 Gene network estimation in multiple tissues

In this section, we apply our proposed algorithms to detect gene networks in different 

tissues using the Genotype-Tissue Expression (GTEx) data (https://gtexportal.org/). 

Overall, the data sets measure gene expression levels in 49 tissues from 838 

human donors, comprising a total of 1,207,976 observations of 38,187 genes. We 

focus on genes related to central nervous system neuron differentiation, annotated 

as GO:0021953. This gene set includes a total of 184 genes. A complete 

list of the genes can be found at https://www.gsea-msigdb.org/gsea/msigdb/cards/

GO_CENTRAL_NERVOUS_SYSTEM_NEURON_DIFFERENTIATION.

Our goal is to estimate and detect the gene network in a target brain tissue. Since we use 

20% of the samples to compute test errors, the sample size for the target tissue should not 

be too small. We therefore consider each brain tissue with at least 100 samples as the target 

in each experiment. We use the data from multiple other brain tissues as auxiliary samples 

with K = 12. We remove the genes that have missing values in these 13 tissues, resulting in a 

total of 141 genes for the graph construction. The average sample size in each tissue is 115. 

A complete list of tissues and their sample sizes are given in the Supplementary Materials.

We apply CLIME and Trans-CLIME to estimate the graph among these 141 genes in 

multiple target brain tissues. We first compare the prediction performance of CLIME and 

Trans-CLIME, where we randomly split the samples of the target tissue into five folds. We 

fit the model with four folds of the samples and compute the prediction error with the rest 

of the samples. We report the mean of the prediction errors, each based on a different fold 

of the samples. The prediction errors are measured by the negative log-likelihood defined in 

(24).

The prediction results are reported in the left panel of Figure 4. We see that the prediction 

errors based on Trans-CLIME are significantly lower than those based on CLIME in many 

cases, indicating that the brain tissues in GTEx possess relatively high similarities in gene 

associations. On the other hand, these brain tissues are also heterogeneous in the sense that 

the improvements with transfer learning are significant in some tissues (e.g., A.C. cortex 
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and F. cortex) and they are relatively mild in others (e.g., C. hemisphere and Cerebellum). 

We then apply Algorithm 2 with α = 0.1 to identify the connections among these genes. 

The proportion of detected edges are reported in the right panel of Figure 4. We see that 

the proportion of detected edges are relatively low, implying that the networks are sparse. 

The Trans-CLIME has more discoveries than CLIME in almost all the tissues in detecting 

the gene-gene links, agreeing with our simulation results. In Figure 5, we evaluate the 

similarities among the tissues based on the constructed graphs. Specifically, we examine the 

degrees of nodes in A.C. cortex in comparison to the degrees of nodes in the other nine 

tissues, all estimated using Trans-CLIME. We see that the degree distribution in A.C. cortex 

is relatively similar to the degree distributions in Cortex and F. cortex.

In the Supplementary Material (Section E.1), we report the hubs detected by these two 

methods in different tissues and observe that many hubs appear more than once in different 

tissues based on the results of debiased Trans-CLIME, further demonstrating a certain level 

of similarity in gene regulatory networks among different brain tissues. For example, for 

A.C Cortex with Trans-CLIME, we are able to identify the hub genes SOX1, SHANK3, 

ATF5, and SEMA3A. These genes are either the known transcriptional factors (SOX1, 

ATF5) and have been shown to be related to neurological diseases, including the leading 

autism gene SHANK3 (Lutz et al., 2020) and gene-related to motor neurons in ALS patients 

(Sema3A) (Birger et al., 2018). In comparison, the graphs estimated using CLIME in single 

tissue are too sparse and do not reveal any of these hub genes.

8 Discussion

In this paper, we have studied the estimation and inference of Gaussian graphical models 

with transfer learning. Our proposed algorithm Trans-CLIME admits a faster convergence 

rate than the minimax rate in the single-task setting under mild conditions. The Trans-

CLIME estimator can be further debiased for statistical inference.

We have seen in the numerical experiments that including some non-informative auxiliary 

studies can weaken the improvement of transfer learning. While our proposal is guaranteed 

to be no worse than the single-task minimax estimator, it may not be the most efficient 

way to use the auxiliary studies. A practical challenge in transfer learning is to find the 

best set of auxiliary studies such that the algorithm can gain the most from the auxiliary 

tasks. In the high-dimensional regression problem, Li et al. (2021) proposes to first rank 

all the auxiliary studies according to their similarities to the target and then perform a 

model selection aggregation. They prove that the aggregated estimator can be adapted 

to the informative set under certain conditions. In a more recent paper, Hanneke and 

Kpotufe (2020) proves that, loosely speaking, if the ranks of the auxiliary studies can 

be recovered, then performing empirical risk minimization in a cross-fitting manner can 

achieve adaptation to the informative set to some extent in some functional classes. For 

the high-dimensional GMMs, heuristic rank estimators can also be derived using their 

connections to linear models, based on which one can perform aggregation towards an 

adaptive estimator. However, theoretical analysis for such rank estimators may require 

strong conditions, especially in the high-dimensional setting. Hence, finding the best subset 

of auxiliary studies is an important topic for future research.
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Fig. 1. 
Estimation errors in Frobenius norm (first row) and negative log-likelihood (second row) for 

banded Ω (i) as a function of the number of informative studies (out of a total of K = 5 

studies) for different values of r.
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Fig. 2. 
Estimation errors in Frobenius norm for random Ω (iii) with varying target sample size n 
(left), total auxiliary sample size N (middle), and the sparsity s (right). The default setting 

is p = 200, n = 150, N = 1500, s = 20, r = 20, and A = 1, …, K . In each plot, all the 

parameters are fixed at default values except the parameter indexed by the x-axis.
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Fig. 3. 
The FDR and power at nominal level 0.1 as a function of the number of informative studies 

(out of K = 5) and r for banded Ω (i). The methods in comparison are debiased as in Section 

3.

Li et al. Page 24

J Am Stat Assoc. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The left panel presents the prediction errors of Trans-CLIME relative to the prediction errors 

of CLIME for ten different target tissues. The right panel presents the number of detected 

edges divided by p(1 − p) using CLIME and Trans-CLIME with FDR=0.1. The full names 

of the target tissues are given in the supplementary files.
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Fig. 5. 
Comparison of the node degree distribution based on the graph estimated by Trans-CLIME 

for each of the tissue at FDR level of 10%. The x-axis represents the degrees of the nodes 

in A. C. cortex and the y-axis represents the degrees of the nodes in nine other tissues. The 

dashed line is diagonal.
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