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Eukaryotic genomes from a global metagenomic data set 
illuminate trophic modes and biogeography of ocean plankton
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ABSTRACT Metagenomics is a powerful method for interpreting the ecological roles 
and physiological capabilities of mixed microbial communities. Yet, many tools for 
processing metagenomic data are neither designed to consider eukaryotes nor are they 
built for an increasing amount of sequence data. EukHeist is an automated pipeline 
to retrieve eukaryotic and prokaryotic metagenome-assembled genomes (MAGs) from 
large-scale metagenomic sequence data sets. We developed the EukHeist workflow to 
specifically process large amounts of both metagenomic and/or metatranscriptomic 
sequence data in an automated and reproducible fashion. Here, we applied EukHeist to 
the large-size fraction data (0.8–2,000 µm) from Tara Oceans to recover both eukaryotic 
and prokaryotic MAGs, which we refer to as TOPAZ (Tara Oceans Particle-Associated 
MAGs). The TOPAZ MAGs consisted of >900 environmentally relevant eukaryotic MAGs 
and >4,000 bacterial and archaeal MAGs. The bacterial and archaeal TOPAZ MAGs expand 
upon the phylogenetic diversity of likely particle- and host-associated taxa. We use these 
MAGs to demonstrate an approach to infer the putative trophic mode of the recovered 
eukaryotic MAGs. We also identify ecological cohorts of co-occurring MAGs, which 
are driven by specific environmental factors and putative host-microbe associations. 
These data together add to a number of growing resources of environmentally relevant 
eukaryotic genomic information. Complementary and expanded databases of MAGs, 
such as those provided through scalable pipelines like EukHeist, stand to advance our 
understanding of eukaryotic diversity through increased coverage of genomic represen­
tatives across the tree of life.

IMPORTANCE Single-celled eukaryotes play ecologically significant roles in the marine 
environment, yet fundamental questions about their biodiversity, ecological function, 
and interactions remain. Environmental sequencing enables researchers to document 
naturally occurring protistan communities, without culturing bias, yet metagenomic 
and metatranscriptomic sequencing approaches cannot separate individual species from 
communities. To more completely capture the genomic content of mixed protistan 
populations, we can create bins of sequences that represent the same organism 
(metagenome-assembled genomes [MAGs]). We developed the EukHeist pipeline, which 
automates the binning of population-level eukaryotic and prokaryotic genomes from 
metagenomic reads. We show exciting insight into what protistan communities are 
present and their trophic roles in the ocean. Scalable computational tools, like EukHe­
ist, may accelerate the identification of meaningful genetic signatures from large data 
sets and complement researchers’ efforts to leverage MAG databases for addressing 
ecological questions, resolving evolutionary relationships, and discovering potentially 
novel biodiversity.
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U nicellular microbial eukaryotes, or protists, play a critical part in many ecosystems 
found on the planet. In addition to their vast morphological and taxonomic 

diversity, protists exhibit a range of functional roles and trophic strategies (1). Protists are 
central to global biogeochemical cycles, mediating the pathways for the synthesis and 
processing of carbon and nutrients in the environment (2–4). Despite their importance 
across ecosystems and in the global carbon cycle, research on microbial eukaryotes 
typically lags behind that of bacteria and archaea (5, 6). Consequently, fundamental 
questions surrounding microbial eukaryotic ecological function in situ remain unre­
solved. Novel approaches that enable genome retrieval from meta’omic data provide 
a means of bridging that knowledge gap.

Assembled genetic fragments (derived from metagenomic reads) can be grouped 
together based on their abundances, co-occurrences, and tetranucleotide frequency 
to reconstruct likely genomic collections, often called bins (7–10). These bins can be 
further refined through a series of steps to ultimately represent metagenome-assembled 
genomes or MAGs (11–14). Binning metagenomic data into MAGs has revolutionized 
how researchers ask questions about microbial communities and enabled the identifica­
tion of novel bacterial and archaeal taxa and functional traits (15, 16), but only recently 
has the recovery of eukaryotic MAGs become more common (17–19). The reason for 
the differential recovery between prokaryotic and eukaryotic MAGs is arguably twofold: 
(i) eukaryotic genomic complexity (20) complicates both metagenome assembly and 
MAG retrieval, and (ii) there is a bias in currently available metagenomic computational 
tools toward the study of bacterial and archaeal members of the community. Contin­
ued computational efforts to expand and enhance the recovery of eukaryotic genomic 
information through reproducible workflows and pipelines will help us resolve questions 
surrounding the evolutionary relatedness and population genetics of the unculturable 
majority of eukaryotic microbes.

Here, we developed and applied EukHeist, a scalable and reproducible pipeline 
to facilitate the reconstruction, taxonomic assignment, and annotation of prokaryotic 
and eukaryotic MAGs from mixed community metagenomes. The EukHeist pipeline 
incorporates metagenome reads to first generate all environmentally relevant MAGs and 
then sort putative eukaryotic MAGs from bacteria and archaea; the easily customizable 
workflow can also include metatranscriptome reads to investigate transcriptionally active 
portions of MAGs. To demonstrate the scalability and utility of EukHeist across a large 
data set, we applied it to the Tara Oceans expedition protist-size fractions’ samples (21), 
which encompasses more than 20 TB of raw sequence data. Our multi-domain approach 
for MAG retrieval of mixed microbial communities recovered over 4,000 prokaryotic 
MAGs and 900 eukaryotic MAGs. We explore how genome length, in situ microbial 
diversity, ocean region, and depth influence the resolution of MAGs and use highly 
complete eukaryotic MAGs to better understand microbial eukaryotic trophic modes 
and how environmental factors influence the co-occurrence of marine eukaryotes and 
prokaryotes. The application of EukHeist and our results highlight the value of using 
large, untargeted approaches in exploring environmentally relevant genomic signatures 
in nature.

RESULTS AND DISCUSSION

The EukHeist metagenomic pipeline was designed to automate the recovery and 
classification of eukaryotic and prokaryotic MAGs from large-scale environmental 
metagenomic data sets. EukHeist was applied to the metagenomic data from the 
large-size fraction metagenomic samples (0.8–2,000 µm) from Tara Oceans (21), which 
is dominated by eukaryotic organisms. We generated 94 co-assembled metagenomes 
based on the ocean region (OR), size fraction (SF), and depth (D) of the samples (Fig. 
S1), which totaled 180 Gbp in length (Table S1). A total of 988 eukaryotic MAGs and 
4,022 prokaryotic MAGs were recovered; these MAGs have been made available under 
the name Tara Oceans Particle-Associated MAGs, or TOPAZ (Tables S2 and S3, available 
through open science framework at https://osf.io/gm564/). The TOPAZ MAGs expand the 
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current repertoire of publicly available eukaryotic genomic references for the marine 
environment and complement other efforts to recover eukaryotic MAGs from the same 
large size-fraction data set (17). Here, we highlight how a reproducible and automated 
approach might be used to readily analyze global-scale metagenomic data sets and 
explore questions related to the functional potential and biogeographical distribution of 
eukaryotic marine communities.

Eukaryotic genome recovery from Tara Oceans metagenomes spans major 
eukaryotic supergroups

The EukHeist classification pipeline identified 988 putative eukaryotic MAGs following 
the refinement of recovered metagenomic bins based on length (>2.5 Mbp) and 
proportion of base pairs predicted to be eukaryotic in origin by EukRep (22) (Fig. S4). 
Protein coding regions in the eukaryotic MAGs were predicted using the EukMetaSanity 
pipeline (23), and the likely taxonomic assignment of each bin was made with MMSeqs 
(24) and EUKulele (25) (Table S2). Of the 988 eukaryotic MAGs recovered, 713 MAGs were 
estimated to be more than 10% complete based on the presence of core eukaryotic 
genes from the eukaryotic Benchmarking Universal Single-Copy Orthologs (BUSCO ) 
gene set(26). For the purposes of our subsequent analyses, we only consider the highly 
complete eukaryotic TOPAZ MAGs, or those that were greater than 30% complete based 
on BUSCO ortholog presence (n = 485) (Fig. 1).

Eukaryotic genomes are known to be both larger and have higher proportions of 
non-coding DNA than bacterial genomes (20). On average, across sequenced eukaryotic 
genomes, 33.1% of genomic content codes for genes (2.6%–59.8% for the first and third 
quartiles), while bacterial genomes have a higher proportion of coding regions (86.9%; 
83.9%–89.3%) (27). The highly complete TOPAZ eukaryotic MAGs have an average 
of 73.7% ± 14.3% gene coding regions (Fig. S9). This trend of a higher proportion 
of coding regions was consistent across eukaryotic groups, where Haptophyta and 
Ochrophyta TOPAZ MAGs had an average coding region of 80.3% ± 4.9% and 78.1% 
± 6.3%, respectively. Genomes from cultured Haptophyta (Emiliania huxleyi CCMP1516 
with 31 Mb or 21.9% [28]) and Ochrophyta (Phaeodactylum tricornutum with 15.4 Mb 
or 57.3% [29]) had significantly lower proportions of protein-coding regions within their 
genomes compared to TOPAZ MAGs. The lowest percentages of gene coding were within 
Metazoan and Fungal TOPAZ MAGs, with 52.6% ± 9.8% and 58.8% ± 6.7%, respectively. 
As a point of comparison, the human genome is estimated to have ≈34 Mb or 1.2% 
of the genome coding for proteins (30). Globally, the higher gene coding percentages 
for the recovered eukaryotic TOPAZ MAGs likely reflect biases caused by the use of 
tetranucleotide frequencies in the initial binning (9) as well as challenges inherent in the 
assembly of non-coding and repeat-rich regions of eukaryotic genomes.

In order to evaluate the taxonomic breadth represented in the TOPAZ MAGs, 
estimated taxonomy of each MAG based on protein-consensus annotation was used 
for phylogenetic placement of TOPAZ MAGs (Fig. 1). The recovered MAGs spanned eight 
major eukaryotic supergroups: Archaeplastida (Chlorophyta), Opisthokonta (Metazoa, 
Choanoflagellata, and Fungi), Amoebozoa, Apusozoa, Haptista (Haptophyta), Cryptista 
(Cryptophyta), and lineages collectively referred to as the SAR supergroup (Strameno­
piles, Alveolata, and Rhizaria) (31), similar to other eukaryotic MAG recovery efforts from 
the Tara Oceans data set (Fig. S14) (17). Eukaryotic MAGs were retrieved from all ocean 
regions surveyed, with the largest number of highly complete TOPAZ MAGs recovered 
from the South Pacific Ocean Region (n = 143) and the fewest recovered from the 
Southern Ocean (SO) (n = 11) and Red Sea (RS) (n = 12) (Fig. S8). These regional trends in 
MAG recovery and taxonomy aligned with the overall sequencing depth at each of these 
locations (Table S1), with fewer, less diverse MAGs recovered from the SO and RS (Fig. S5 
and S8).

The largest number of highly complete MAGs was recovered from the smallest size 
fraction (0.8–5 µm) (n = 311) (Fig. 1; Fig. S5) and yielded the highest taxonomic diversity, 
including MAGs from all the major supergroups listed above (Fig. S5). The groups that 
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FIG 1 TOPAZ eukaryotic MAGs span the eukaryotic tree of life. The maximum likelihood tree was inferred from a concatenated protein alignment of 49 proteins 

from the eukaryotic BUSCO gene set (eukaryota_odb10) that were found to be commonly present across at least 75% of the 485 TOPAZ eukaryotic MAGs that

(Continued on next page)
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made up the largest proportion of small-size fraction MAGs were Chlorophyta (n = 133), 
Ochrophyta (n = 33), or taxa associated with the SAR group (Stramenopiles, Alveolata, 
and Rhizaria; n = 56). Chlorophyta MAGs were smaller and had fewer predicted proteins 
relative to other eukaryotic MAGs, despite demonstrating comparable completeness 
metrics; the average Chlorophyta MAG size was 13.9 Mbp with 7,525 predicted proteins 
(Fig. S6 and S9). By contrast, Cryptophyta and Haptophyta had the largest average 
MAG size with 50.8 and 44.4 Mbp with an average of 23,500 and 24,400 predicted 
proteins, respectively (Fig. S9). Fewer eukaryotic MAGs were recovered from the other 
size fractions 5–20 µm (n = 20), 20–180 µm (n = 87), and 180–2,000 µm (n = 39) (Fig. 
S5); instead, these larger size fractions recovered a higher total number of metazoan 
MAGs. Metazoan MAGs had the lowest average completeness (50% ± 13%) (Fig. S7 
and S9), where the average size of recovered metazoan MAGs was 43.2 Mb (6.5–177 
Mbp), encompassing an average of 14,600 proteins (Fig. S9). Of the 123 metazoan MAGs, 
76 likely belong to the Hexanauplia (Copepoda) class; copepod genomes have been 
estimated to be up to 2.5 Gb with high variation (10-fold difference) across sequenced 
members (32). The taxonomic composition of EukHeist-recovered TOPAZ MAGs aligned 
with what might be expected based on the size fraction and depth from which they were 
isolated.

MAGs were also retrieved from all discrete sampling depths: surface, SRF (n = 315), 
deep chlorophyll max, DCM (n = 133), mesopelagic, MES (n = 13), as well as samples 
with no discrete depth, MIX (n = 21) and the filtered seawater controls, FSW (n = 
3). Notably, the filtered seawater included one Chlorophyta MAG (TOPAZ_IOF1_E003), 
which was estimated to be 100% complete with no contamination (Table S2). These 
results suggest that variables such as in situ diversity, cell size (and genomic size), and 
sampling protocols influence our ability to obtain high-quality and highly complete 
eukaryotic MAGs.

The composition of TOPAZ MAGs from basin-scale mesopelagic co-assemblies 
recovered a higher percentage of fungi relative to other depths. This is similar to other 
mesopelagic and bathypelagic molecular surveys, where the biomass of fungi is thought 
to outweigh other eukaryotes (33–35). Furthermore, fungal MAGs had the highest overall 
average completeness (87% ± 15%) (Fig. S7 and S9). A total of 16 highly complete fungal 
MAGs were also recovered; of those, 11 originated from the mesopelagic (Fig. 1; Fig. 
S8). Putative fungal TOPAZ MAGs were recovered from the phyla Ascomycota (n = 10) 
and Basidiomycota (n = 1) and ranged in size from 12.5 to 47.8 Mb (Fig. S9), which are 
within the range of known average genome sizes for these groups, 36.9 and 46.5 Mb, 
respectively (36).

The metagenomic read recruitment to the eukaryotic TOPAZ MAGs paralleled MAG 
recovery, where metazoan MAGs dominated the larger size fractions (20–180 µm and 
180–2,000 µm) across both the surface and DCM for all stations, and Chlorophyta MAGs 
were dominant across most of the small size fraction stations (0.8–5 µm) (Fig. S11). A 
notable exception were the stations from the Southern Ocean, where Haptophyta and 
Ochrophyta were the most abundant taxa across all size fractions. Given the proponder­
ance of bloom-forming Phaeocystsis antarctica and chain-forming diatom taxa (37), the 
broad distribution of MAGs across all size fractions is unsurprising. With respect to depth, 
the average recruitment of reads from the mesopelagic was far lower than the photic 
zone (surface and DCM); the average CPM across mesopelagic samples was 24,500 ± 

FIG 1 (Continued)

were estimated to be 30% complete based on BUSCO ortholog presence (highly complete). The MAG names were omitted but the interactive version of the 

tree containing the MAG names can be accessed through iTOL (https://itol.embl.de/shared/halexand). Branches (nodes) are colored based on consensus protein 

annotation estimated by EUKulele and MM-Seqs. The OR, D, and SF of the co-assembly that a MAG was isolated from are color coded as colored bars. The 

completeness (comp), or percentage of the 255 eukaryotic BUSCOs present in a MAG, and contamination (cont), or over-representation (more than one copy) of 

eukaryotic BUSCOs in a MAG, are depicted as a heatmap. Predicted heterotrophy index (H-index), which ranges from phototroph-like (-300) to heterotroph-like 

(300) is shown as a heatmap. The predicted trophic mode (T-pred) based on the trophy random forest classifier with heterotroph (pink) and phototroph (green) is 

depicted. The number of proteins predicted with EukMetaSanity is shown as a bar graph along the outermost ring.
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FIG 2 Estimated trophic status of TOPAZ eukaryotic MAGs. (Top) Trophic status was predicted for each high-completion TOPAZ eukaryotic MAG using a Random 

Forest model trained on the presence and absence of KEGG orthologs and is shown as a color (green, phototroph, pink, heterotroph). The heterotrophy index 

(H-index) (equation 8) for each MAG is plotted with a box plot showing the range of the H-index for each higher-level group. (Bottom) The relative distribution 

and abundance of phototroph (green), non-metazoan heterotroph (pink), and metazoan heterotroph (purple) are depicted across all surface samples. Plots are 

subdivided by size classes. “SAR” denotes MAGs with taxonomy assignments that were not resolved beyond the SAR group (Stramenopile, Alveolate, or Rhizaria).
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34,450, while surface and DCM samples recruited 131,000 ± 104,00 and 136,00 ± 85,000 
reads, respectively (Fig. S11). The low read recruitment demonstrates how binning MAGs 
may not capture the entire eukaryotic community; in the case of the mesopelagic, this 
can be explained by the presence of highly diverse and distinct microbial populations 
(34), or that the mesopelagic communities sampled were dominated by prokaryotic 
biomass (38).

Eukaryotic MAG gene content can be used to predict trophic status

Eukaryotic microbes can exhibit a diversity of functional traits and trophic strategies in 
the marine environment (1, 39, 40), including phototrophy, heterotrophy, and mixotro­
phy. Phototrophic protists are responsible for a significant fraction of organic carbon 
synthesis via primary production; these phototrophs dominate the microbial biomass 
and diversity in the sunlit layer of the oceans (39, 41). Phagotrophic protists (hetero­
trophs), which ingest bacteria, archaea, and smaller eukaryotes, and parasitic protists are 
known to account for a large percentage of mortality in food webs (1, 39, 42). Protists 
are also capable of mixed nutrition (mixotrophy), where a single cell exhibits a combina­
tion of phototrophy and heterotrophy (43). Typically, the identification of trophic mode 
has relied upon direct observations of isolates within a lab setting, with more recent 
efforts including transcriptional profiling as a means of assessing trophic strategy (44, 
45). Scaling up these culture-based observations to environmentally relevant settings 
(46–49) has been an important advance in the field for exploring complex communi­
ties without cultivation. An outcome of these studies has been the realization that 
trophic strategies are not governed by single genes (50); in reality, trophic strategy 
will be shaped by an organism’s physiological potential and environmental setting. 
Therefore, larger genomic and transcriptomic efforts to predict or characterize presumed 
trophic strategies among mixed microbial communities will greatly contribute to our 
understanding of the role that microorganisms play in global biogeochemical cycles, by 
enabling the observation of functional traits and strategies in situ.

Large-scale meta’omic results, such as the TOPAZ MAGs recovered here, can be 
leveraged alongside presently available reference data to enable the prediction of 
biological traits (such as trophic mode) without a priori information. Machine learning 
(ML) applications can be implemented to access the potential of these large data sets. ML 
approaches have been recently shown to be capable of accurate functional prediction 
and cell type annotation using genetic input, in particular, for cancer cell prediction 
(51–53), and functional gene and phenotype prediction in plants (54). Recently, these 
approaches have been applied to culture and environmental transcriptomic data to 
predict trophic mode using currently available trophy annotations (55–58). Here, we 
apply an independent machine learning model to the eukaryotic TOPAZ MAGs to predict 
each organism’s capacity for various metabolisms.

We used a variable selection algorithm and Random Forest machine learning model 
framework to predict the likely trophic mode of the eukaryotic TOPAZ MAGs described 
in this study. Transcriptomes from the MMETSP and EukProt were manually annotated 
as phototroph, mixotroph, or heterotroph based on the literature (Data set S1 at https://
osf.io/twz2f/). We tested our model with a randomly selected test set comprising 25% 
of MMETSP and EukProt transcriptomes (44, 59) that were excluded from the model-
building procedure. With this test subset, we obtained an accuracy of 94.6% (Fig. S16), 
meaning that nearly 95% of taxonomic annotations derived from the machine learning 
model aligned with their manually assigned trophic mode annotation (Fig. S16). Thus, 
for all sufficiently complete (≥30%) TOPAZ MAGs, we have predicted a gross trophic 
category (heterotrophic [n = 227], mixotrophic [n = 0], or phototrophic [n = 258]). 
Notably, all MAGs were either classified as phototrophs or heterotrophs, with none 
classified as mixotrophs. This likely reflects that the model was generally conservative 
when it came to assigning genomes or transcriptomes as mixotrophs (Fig. S20). Broadly, 
the trophic predictions aligned well with the putative taxonomy of each MAG (Fig. 
1 and 2). For example, TOPAZ MAGs that had taxonomic annotation of well-known 
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heterotrophic lineages (Metazoa, Fungi) were predicted as heterotrophs by our model. 
Moreover, our data-driven trophic mode predictions correlate well with an independent 
model designed to identify the presence of photosynthetic machinery and capacity for 
phagotrophy (55, 56) (Fig. S19 and S20).

As the gradient of trophic mode among protists is not strictly ternary (heterotrophic, 
autotrophic, and mixotrophic) and continues to be refined (40), we also calculated a 
heterotrophy index (H-index) that places the TOPAZ MAGs on a scale of highly photo­
trophic (negative values) to highly heterotrophic (positive values) (Fig. 1 and 2). The 
H-index assesses the extent of heterotrophy in the test genomes and transcriptomes 
using Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthologs (KOs) selected by 
the feature selection process (n = 1,787). Instead of using the presence or absence of 
these KOs as a binary indicator to inform the classification of the MAGs (as above), we 
included their presence or absence in an equation to more sensitively assess the number 
of KOs present, which tended to be indicative of either heterotrophy or phototrophy. 
The resulting H-index is a metric for assessing trophy based on KEGG pathway presence 
or absence. Despite evidence that many lineages recovered include known mixotrophs, 
no TOPAZ MAGs were identified as mixotrophic using this approach. The H-index allows 
us to identify potential mixotrophy-capable MAGs via a descriptive scale rather than 
a ternary classification. We explore the likely reasons for this more deeply in Section 
2.3 of the supplemental material, but one potential explanation is that MAG recov­
ery targets the genome content of a eukaryotic lineage. The evolutionary history of 
phototrophy and heterotrophy is complicated and varies by species (60). Therefore, the 
genetic composition of MAGs may reflect encoded metabolisms that are not necessarily 
exhibited in situ. Mixotrophy is not a singular trait, but rather a spectrum of metabolic 
abilities that are largely driven by the microorganism’s nutritional needs and surrounding 
environment.

This work demonstrates the value of large untargeted genetic approaches to gain 
insight into the in situ metabolisms of less explored branches of the eukaryotic tree of 
life. Automated recovery of eukaryotic MAGs, independent of a reference database, and 
the trophic mode prediction demonstrate how we can begin to parse the metabolic 
contributions of individual eukaryotes to mixed microbial communities. While we cannot 
confidently annotate beyond specific taxonomic levels or protein identities, our ML 
model approaches still allow us to capture predicted nutritional strategies alongside the 
environmental context provided by the large-scale global sampling effort. Continued 
culturing efforts combined with large-scale meta’omic studies will continue to improve 
such ML models focused on complex traits and ultimately our ability to predict trophic 
mode. We suggest that the integration of metagenomic and metatranscriptomic data 
sets might better reflect the active strategies being used.

TOPAZ prokaryotic MAGs distinct from previous marine MAG recovery efforts

Preliminary bins from EukHeist totaled over 16,000, of which a large percentage were 
prokaryotic MAGs, specifically Bacteria. A major utility of EukHeist is that results will 
include bins from all three domains of life. While EukHeist will work to filter putative 
eukaryotic MAGs, it will also process and analyze bacteria and archaeal bins. High-quality 
non-redundant TOPAZ (HQ-NR-TOPAZ) MAGs comprises 711 bacterial and 5 archaeal 
MAGs belonging to 30 different phyla (Fig. 3; Table S4); an additional 15 phyla were 
recovered in the medium-quality (MQ) MAGs. Of the 716 HQ-NR-TOPAZ MAGs, 507 were 
unique based on a 99% average nucleotide identity (ANI) comparison threshold with 
MAGs generated from previous binning efforts from Tara Oceans metagenomic data, 
including Delmont et al. (12) (TARA), Tully et al. (13) (TOBG), and Parks et al. (11) (UBA) 
(Fig. 3). The phylogenetic diversity captured by the TOPAZ MAGs was quantified by 
comparison to a “neutral” reference set of genomes; these neutral references approxi­
mate the state of marine microbial genomes, dominated by isolate genomes, previous 
to the incorporation of the Tara Oceans-derived MAGs (Table 1). Relative to the neutral 
genomic references, the entire TOPAZ NR (includes both HQ and MQ) set represented 
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a 42.8% phylogenetic gain (as measured by additional branch length contributed by a 
set of data) and 59.9% phylogenetic diversity (as measured by the total branch length 
spanned by a set of taxa), as compared to efforts focused solely on the smaller size 
fractions such as TARA and UBA, which had a smaller degree of gain (31.0% and 25.8%, 
respectively) and diversity (44.4% and 40.5%, respectively) (Table 1). An inclusive tree 
containing the neutral reference and all Tara Oceans MAGs (TOBG + UBA + TARA + 
TOPAZ), the TOPAZ NR MAGs represented 14.4% of the phylogenetic gain and 44.7% 
phylogenetic diversity, suggesting that the TOPAZ MAGs offer the largest increase in 
phylogenetic novelty when compared to MAGs reconstructed from the metagenomes 
of the smaller size fractions (<5.00 µm). The TOPAZ MAGs primarily originated from the 
larger Tara Ocean size fraction samples, and thus include a higher proportion of more 
complex host- and particle-associated bacterial communities. The novelty of the HQ- and 
MQ-NR-TOPAZ MAGs here suggests that these particle-associated MAGs are overlooked, 
and current genome databases are largely skewed toward free-living bacteria.

To confirm the hypothesis that the prokaryotic TOPAZ MAGs included particle-asso­
ciated members, we examined the genomic features of several selected groups that 
were well-recovered here and in single-cell amplified genomic (SAG) data sets (i.e., 
Global Ocean Reference Genomes [GORG]) (61). To avoid potential biases related to 
completeness and contamination of the genomes, only the HQ-NR MAGs were compared 
to the GORG SAGs, and analyses were limited to groups with sufficient representation 
within both data sets (Bacteriodota, Cyanobacteria, and Proteobacteria). For these 
well-represented groups, the average GC% and estimated genome size of the TOPAZ 
MAGs were significantly higher than the ones typically reported in free-living marine 
bacteria (62–64) and those observed within the GORG data set (61). TOPAZ MAGs were 
found to encode more tRNAs on average per genome than GORG (39.5 vs 30). Addi­
tionally, carbohydrate-active enzymes and peptidases were enriched within the TOPAZ 
MAGs relative to GORG (Fig. S22). Larger genomes have been considered diagnostic 
for a copiotrophic lifestyle in bacteria (65), since the more extended and flexible gene 
repertoire can facilitate substrate catabolism in organic-rich niches such as particles. 
Genomes of copiotrophs are also commonly found to have higher copy numbers of 
genes associated with replication and protein biosynthesis such as tRNAs and rRNAs 
(66), which facilitate higher growth rates. In contrast, the streamlined genomes of SAR11 
and other groups that have free-living oligotrophic lifestyles require fewer resources 
to maintain and replicate their genomes and have higher carbon-use efficiency (67). 
Similarly, G and C have higher energy cost of production and more limited intracellular 
availability compared to A and T (64, 68). The genomic trends observed support our 
findings that TOPAZ MAGs represent both particle-associated and free-living microbes 
and are relatively enriched for copiotrophic microbes.

Environmental factors structure TOPAZ MAG co-occurrence

The co-retrieval of eukaryotic and prokaryotic MAGs from across the global ocean allows 
the unique opportunity to assess the biogeographical and ecological associations and 
potential co-occurrence of these organisms while also being able to infer likely functions. 
To identify communities of associated organisms that co-occur across the surface ocean 
metagenomes, we performed a correlation clustering based on the abundances of 
the eukaryotic TOPAZ MAGS and the HQ-NR-TOPAZ MAGs (Fig. 4a). We employed a 
modularity optimization algorithm to the correlation analysis (69) to identify distinct 
communities of co-occurring organisms. This approach identified five distinct commun­
ities (Fig. 4b). The communities were variably connected to each other, as defined by 
equations 9–11, with the highest connectedness between communities 1 and 2, and 
4 and 5 (Fig. 4b; the maximum connectedness between 1 and 2 was 0.233, and the 
maximum connectedness between 4 and 5 was 0.448). Community 3 showed the lowest 
degree of connectivity within community members and to other communities (mean = 
0.108; remaining community mean = 0.248), suggesting that members of this commun­
ity co-occur less consistently across samples.
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FIG 3 Diversity of the high-quality non-redundant bacterial TOPAZ MAGs. The approximately maximum-likelihood phylogenetic tree was inferred from a 

concatenated protein alignment of 75 proteins using FastTree and GToTree workflow. The MAG names were omitted but the interactive version of the tree 

containing the MAG names can be accessed through iTOL (https://itol.embl.de/shared/halexand). Branches (nodes) are colored based on taxonomic annotations

(Continued on next page)
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The five communities that we identified based on metagenomic abundance 
correlations also significantly correlated with environmental factors, which consequently 
define the environmental niches where the communities were most abundant (Fig. 
4c; Table S9). Temperature (Tpot, which ranged from −1.6 to 30°C) was a primary 
factor defining the community correlations, significantly correlating with four of the 
five communities. Communities 2 and 4 correlated with colder temperatures (Fig. 4c). 
For Community 4, there was a significant positive correlation with chlorophyll (Chla: ρ 
= 0.236, P = 3.69e−11), while we found negative correlations with “residence time” (ρ 
= −0.438, P = 1.61e−24), indicating a likely occurrence in newly formed eddies (accord­
ing to the calculation by d’Ovidio et al. [71] as reported in the Tara Oceans metadata 
[(70] as “residence time”). This aligns with the finding that Community 4 was typically 
found within colder, productive regions and had higher metagenomic abundances in 
the Southern Ocean and the North Atlantic (Fig. S24). The composition of Community 
4 MAGs included Chlorophyta, Cryptophyta, Haptophyta, and Ochrophyta, the major 
groups containing primarily phototrophic eukaryotic microbes. A total of 19 prokaryotic 
MAGs were also contained in this community, including both photosynthetic (Synecho­
coccales) and non-photosynthetic lineages (e.g., Myxococcota and Planctomycetota). 
This guild of MAGs comprises likely photosynthesizers often found in cold but not 
necessarily nutrient-rich, environments. Communities 1 and 3 correlated with warmer 
temperatures (Fig. 4c), which was attributed to their presence in longer-lived eddies 
(Fig. 4c; community 1: ρ = 0.349, P = 1.19e−14; community 3: ρ = 0.345, P = 2.51e−14). 
However, these two communities differed both in their association with nutrients and 
their taxonomic compositions. Community 1 was dominated by Metazoa and bacteria 
and correlated with low nutrient (oligotrophic) conditions (nitrate and nitrite:ρ = −0.218, 
P = 3.36e−9; phosphate: ρ = −0.218. P = 3.39e−9 and silica: ρ = −0.157, P = 1.96e−4) 
and was most abundant in the larger size fraction samples (20–2,000 µm) (Fig. S24). 
In contrast, community 3 largely comprised phototrophic chlorophytes and bacteria 
and was not significantly correlated with nutrient conditions and was most abundant 
in smaller size fraction samples (0.8–20 µm), particularly around the tropics (Fig. S24). 
Community 5 was weakly associated with warmer water (ρ = 0.108, P = 9.109e−2) 
and comprised SAR and bacteria (Fig. 4b). Additionally, community 5 was negatively 

FIG 3 (Continued)

estimated by GTDBtk. The OR, SF, and D of the co-assembly that a MAG was isolated from is color coded as colored bars. The GC (%) content is shown as a bar 

graph (in green), the genome size as a bubble plot (the estimated size of the smallest genome included in this tree is 1.00 Mbp and the largest is 13.24 Mbp), and 

the number of MAGs in each genomic cluster (of 99 or higher %ANI) as a bar plot (in gray).

TABLE 1 Phylogenetic diversity and gain of various MAGs originating from Tara Oceansd

Base treec MAGs of interest No. of MAGs Phylogenetic diversitya (%) Phylogenetic gainb (%)

Neutral TOPAZ (MQ, NR) 1,571 59.9 42.8
Neutral TOPAZ (HQ, NR) 634 41.6 25.8
Neutral TOBG 1,974 61.3 46.7
Neutral UBA 1,052 40.5 25.8
Neutral TARA 722 44.4 31.0
Neutral TOBG +UBA + TARA 3,750 66.6 51.8
Neutral + Tara Oceans MAGs,HQ TOPAZ (HQ, NR) 634 26.1 6.2
Neutral + Tara Oceans MAGs, MQ TOPAZ (MQ, NR) 1,572 44.7 14.4
Neutral + Tara Oceans MAGs, MQ TOBG 1,977 48.5 11.1
Neutral + Tara Oceans MAGs, MQ UBA 1,055 23.8 1.6
Neutral + Tara Oceans MAGs, MQ TARA 722 28.0 3.4
aTotal branch length spanned by a set of taxa.
bAdditional branch length contributed by a set of taxa.
cHQ in base tree indicates that it includes Neutral, TOBG, UBA, TARA, TOPAZ HQ, and NR MAGs, and MQ in base tree indicates that it includes Neutral, TOBG, UBA, TARA, 
TOPAZ MQ, and NR MAGs.
dPhylogenetic diversity and gain of prokaryotic MAGs were assessed for this study (TOPAZ), TOBG (13), UBA (11), and TARA (12) relative to each other as well as a “Neutral” 
tree comprising relevant marine bacteria.
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correlated with nutrient concentrations (nitrate and nitrite: ρ = −0.348, P = 2.14e−25; 
phosphate: ρ = −0.407, P = 7.36e−36; and silica: ρ =−0.310, P = 7.62e−20), suggesting 
that this community thrives in oligotrophic regions.

While many of the communities recovered appeared to be driven largely by 
environmental forces, the taxonomic affiliation of community 1 members suggests 
that this community comprised MAGs indicative of a eukaryotic host with an associ­
ated bacterial microbiome. Community 1 comprised primarily of metazoan, specifically 
Hexanauplia, and bacterial MAGs (Fig. 4b). Many of the bacterial MAGs in community 
1 had genes that suggest adaptations to microaerophic niches such as those which 
might be experienced when living in close host association (e.g., high­affinity oxygen 
cytochromes and reductases) (Fig. S26). The bacterial MAGs in community 1 could be 
broadly broken into two apparent functional types: those with larger genomes typical of 
copiotrophic bacteria and those with small genomes indicative potentially of reductive 
evolution. The first group comprised MAGs from the family Saprospiraceae in phylum 

FIG 4 Distinct communities recovered from the TOPAZ MAGs. (a) A network analysis performed on the metagenomic abundance of all recovered eukaryotic 

and prokaryotic TOPAZ MAGs based on Spearman correlation analysis, identifying five distinct communities (see Materials and Methods). A force-directed layout 

of the seven communities is shown with eukaryotes (circles) and bacteria (triangles). Only linkages between eukaryotes are visualized. (b) The connectedness 

and taxonomic composition of each community are depicted. Connectedness was calculated based on equations 9)–11. (c) A Spearman correlation between 

the summed metagenomic abundance of each community and environmental parameters from the sampling (70), modeled mesoscale physical features based 

on d’Ovidio et al. (71) (indicated with *), and averaged remote sensing products (indicated with **). Significant Spearman correlations, those with a Bonferroni 

adjusted P < 0.01, are indicated with a dot on the heatmap.
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Bacteriodota (n = 2, 3.0 Mbp average genome size), the order Opitutales in phylum 
Verrucomicrobiota (n = 2, 3.4 Mbp), and the family Vibrionaceae (n = 2, 4.5 Mbp) in 
phylum Proteobacteria (Fig. S26). In addition to their relatively large size, the Saprospira­
ceae and Vibrionaceae MAGs were found to encode for genes involved in the hydrolysis 
and utilization of various complex carbon sources including chitin and other carbohy­
drates (Fig. S26), such as those that might be shed or excreted by zooplankton such 
as copepods (72). By contrast, the second group of bacterial MAGs within community 
1 with smaller genomes included MAGs from the Proteobacteria order Rickettsiales 
(n = 3, 0.6–1.2 Mbp) and the Gammaproteobacteria family Francisellaceae (n = 1, 1.2 
Mbp) (Fig. S26). The smaller genome sizes exhibited by these groups may be indicative 
of a genome streamlining, which occurred with reductive evolution due to obligate 
or facultative symbiosis (67). Rickettsiales and Francisellaceae contain well-described 
obligate intracellular symbionts (73–75) and zoonotic pathogens (74, 76).

Conclusion

Sequence data sets are revolutionizing how we form new hypotheses and explore 
environments on the planet. Here, we demonstrated a critical advance in the recovery of 
MAGs from environmentally relevant eukaryotic organisms with EukHeist. The retrieval 
of MAGs to investigate the role of microorganisms in biogeochemical cycles in natural 
environments is promising; however, the current lack of eukaryotic reference genomes 
and transcriptomes complicates our ability to interpret the eukaryotic component of 
the microbial community. We recovered 988 total eukaryotic MAGs, 485 of which were 
deemed highly complete, and over 4,000 prokaryotic MAGs, which had signatures of 
particle association. Our findings demonstrate that specific branches of the eukaryotic 
tree were more likely to be resolved at the MAG level due to their smaller genome size, 
distribution in the water column, and biological complexity. A substantial portion of 
the recovered eukaryotic MAGs were distinct from existing sequenced representatives, 
demonstrating that these large-scale surveys are a critical step toward characterizing 
less-resolved branches of the eukaryotic tree of life.

The continuing expansion of global-scale meta’omic surveys, such as BioGeoTraces 
(77), Bio-GO-SHIP (78, 79), and the continuation of the Tara Oceans program (80–82), 
highlights the importance of developing scalable and automated methods to enable a 
more complete analysis of these data. Metagenomic pipelines that specifically inte­
grate steps for handling eukaryotic biology, such as the EukHeist pipeline, are vital as 
eukaryotes are important members of microbial communities, ranging from the ocean 
to soil (83) and human- (84) and animal-associated (85) environments. Additionally, we 
aim to contribute computational tools that can be integrated or customized, including 
EUKulele, EukMetaSanity, and eukrhythmic (23, 25, 86). The application of eukaryotic-
sensitive methods such as EukHeist to other systems stands to greatly increase our 
understanding of the diversity and function of the “eukaryome.”

MATERIALS AND METHODS

Data acquisition

The metagenomic and metatranscriptomic data corresponding to the size fractions 
dominated by eukaryotic organisms ranging from microbial eukaryotes and zooplank­
ton (0.8–2,000 µm) as originally published by Carradec et al. (21) were retrieved from 
the European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-
EBI) under the accession numbers PRJEB4352 (large size fraction metagenomic data) 
and PRJEB6603 (large size fraction metatranscriptomic data) on 20 November 2018. 
Only samples with paired-end reads (forward and reverse) were used in the subse­
quent analyses (Table S1). After an initial sample-to-sample comparison with sourmash 
(sourmash compare -k 31 -scaled 10,000) (87) (Fig. S3), it was determined that samples 
largely clustered by depth and size fraction. Samples were grouped for co-assembly by 
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size fraction (0.8–5 µm, 5–20 µm, 20–180 µm, and180–2,000 µm) as per reference 21 
depth or sample type (SRF, DCM, MES, MIX, and FSW) and geographic location (Table 
S1). In cases where a sample did not fall directly within one of the size classes, it was 
assigned to an existing size class based on the upper micrometer limit of the sample. This 
grouping resulted in the combination of 824 cleaned, paired FASTQ file samples into 94 
distinct co-assembly groups, which were used downstream for co-assembly (Table S1).

EukHeist pipeline for metagenome assembly and binning

The metagenomic analysis, assembly, binning, and all associated quality control steps 
were carried out with a bioinformatic pipeline, EukHeist, which enables user-guided 
analysis of stand-alone metagenomic or paired metagenomic and metatranscriptomic 
sequence data. EukHeist is a streamlined and scalable pipeline currently based on the 
Snakemake workflow engine (88) that is configured to facilitate deployment on local HPC 
systems. Figure S2 outlines the structure and outputs of the existing EukHeist pipeline. 
EukHeist is designed to retrieve and identify both eukaryotic and prokaryotic MAGs from 
large, metagenomic and metatranscriptomic data sets (Fig. S2). EukHeist takes input of 
sequence meta-data, user­specified assembly pairings (co-assembly groups), and raw 
sequence files and returns MAGs that are characterized as either likely eukaryotic or 
prokaryotic.

Here, all raw sequences accessed from the EMBL-EBI were quality assessed 
with FastQC and MultiQC (89). Sequences were trimmed using Trimmomatic 
(v.0.36; parameters: ILLUMINACLIP: 2:30:7, LEADING:2, TRAILING:2, SLIDINGWINDOW:4:2, 
MINLEN:50) (90). Passing mate paired reads were maintained for assembly and down­
stream analyses. Quality trimmed reads co-assembled based on assembly groups (Table 
S1) with MEGAHIT (v1.1.3, parameters: k = 29, 39, 59, 79, 99, 119) (91). Basic assem­
bly statistics were assessed for all co-assemblies with Quast (v. 5.0.2) (92) (Table S1). 
Cleaned reads from assembly-group-associated metagenomic and metatranscriptomic 
samples were mapped back against the assemblies with bwa mem (v.0.7.17) (93). The 
bwa-derived abundances were summarized with MetaBat2 (v. 2.12.1) script jgi_summa­
rize_bam_contig_depths (with default parameters). The output contig abundance tables 
were used along with tetranucleotide frequencies to associate contigs into putative 
genomic bins using MetaBat2 (v. 2.12.1) (9). The Snakemake profile used to conduct 
this analysis is available at https://www.github.com/alexanderlabwhoi/tara-euk-metag. 
A generalized version of the Snakemake pipeline (called EukHeist) that might be 
readily applied to other data sets is available at https://www.github.com/alexanderlab­
whoi/EukHeist. MAGs here are subsequently named and referred to as TOPAZ and are 
individually named based on their assembly group (Tables S2 and S3).

Identification of putative eukaryotic MAGs

The binning process described above recovered a total of 16,385 putative bins. These 
bins were screened to identify high-completion eukaryotic and prokaryotic bins. All bins 
were first screened for length, assuming that eukaryotic bins would likely be greater 
than 2.5 Mbp in size [modeled off of the size of the smallest known eukaryotic genome, 
∼2.3 Mbp Microsporidian Encephalitozoon intestinalis (94)]. Bins larger than 2.5 Mbp were 
screened for relative eukaryotic content using EukRep (22), a k-mer-based strategy that 
estimates the likely domain origin of metagenomic contigs. EukRep was used to classify 
the relative proportion of eukaryotic and prokaryotic content in each bin in a contig-by-
contig manner. This approach identified 907 candidate eukaryotic bins that were greater 
than 2.5 Mb in length and estimated to have more than 90% eukaryotic content by 
length. Protein coding domains were predicted in all 907 putative eukaryotic bins using 
EukMetaSanity (23).
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Protein prediction in eukaryotic MAGs with EukMetaSanity

Taxonomy

The MMseqs2 v12.113e3 (24, 95, 96) taxonomy module (parameters: -s 7 --min-seq-id 
0.40 -c 0.3 --cov-mode 0) was used to provide a first­pass taxonomic assignment of the 
input MAG for use in a downstream element of EukMetaSanity pipeline that requires 
an input NCBI taxon id or a taxonomic level (i.e., Order, Family, etc.). We created a 
custom database comprising both OrthoDB (97) and MMETSP (44) protein databases 
(OrthoDB-MMETSP) that integrate NCBI taxon ids. MMseqs2 was used to query each MAG 
against the OrthoDB-MMETSP database to identify a first­pass taxonomic assignment. 
The lowest common ancestor of top-scoring hits was identified to provide taxonomic 
assignment to each candidate eukaryotic bin. The taxonomyreport module generates a 
taxon tree that includes the percentage of MMseqs mappings that correspond to each 
taxonomic level. A taxonomic identifier and scientific name are selected to the strain 
level or when total mapping exceeds 8%, whichever comes first. The assigned NCBI taxon 
id is retained for downstream analyses.

Repeats identification

RepeatModeler (98, 99) was used to provide ab initio prediction of transposable 
elements, including short and long interspersed nuclear repeats, as well as other 
DNA transposons, small RNA, and satellite repeats. RepeatMasker (100) was then 
used to hard-mask these identified regions, as well as any Family-level (as identified 
above) repeats from the DFam 3.2 database (101). RepeatMasker commands ProcessRe­
peats (parameter: -nolow) and rmOutToGff3 (parameter: -nolow) were used to output 
masked sequences (excluding low-complexity repeat DNA from the mask) as FASTA and 
gene­finding format (GFF3) files, respectively.

Ab initio prediction

GeneMark (102) was used to generate ab initio gene predictions with the repeat-
masked eukaryotic candidate bin sequences’ output from the prior step. The Gene­
Mark subprogram ProtHint attempts to use Order-level proteins from OrthoDB-MMETSP 
database to generate intron splice-site predictions for ab initio modeling using 
GeneMark EP (103). If ProtHint fails to generate predictions, then GeneMark will 
default to ES mode. Due to the fragmented nature of metagenomic assemblies, the 
prediction parameter stringency was drastically reduced relative to what is recommen­
ded for draft genome projects (parameters: -min_contig 500 -min_contig_in_predict 
500 -min_gene_in_predict 100). These parameters can be easily modified within the 
EukMetaSanity config file. GeneMark outputs predictions of protein-coding sequences 
(CDS) and exon/intron structure as GFF3 files.

Integrating protein evidence

MetaEuk (104) was used to directly map the repeat-masked eukaryotic candidate bin 
sequences against proteins from the MMETSP (44, 105) and eukaryotes included in the 
OrthoDB v10 data set (97), hereafter referred to as the OrthoDB-MMETSP database. 
MetaEuk easy-predict (parameters: -min-length 30 -metaeuk-eval 0.0001 -s 7 -cov-mode 
0 -c 0.3 -e 100 -max-overlap 0) used Order-level proteins to identify putative CDS and 
exon/intron structure. MetaEuk encodes this output as headers in FASTA sequences that 
are then parsed into GFF3 files.

Merging final results

GFF3 output from the previous ab initio and MetaEuk protein evidence steps were input 
into Gffread (106) (parameters: -G -merge) to localize predictions from both lines of 
evidence into a single GFF3 output file. Each locus was then merged together using a 
Python (107) script and the BioPython API (108) within EukMetaSanity. The set of ab 
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initio generated exons in each locus is used as a prediction of the underlying exon/intron 
structure of the gene locus to which it is assigned. If there are any protein-evidence-gen­
erated exons present at the same locus, and if the total numbers of exons predicted 
by each line of evidence have ≥70% agreement, ab initio generated exons lacking a 
corresponding protein-evidence-generated exon are removed (the first and last exons of 
a locus are not removed). Conversely, any protein-evidence-generated exon present that 
lacks a corresponding ab initio generated exon is added to the predicted exon/intron 
structure. The final gene structure for each locus is then processed into GFF3 and FASTA 
format.

Functional and taxonomic annotation of eukaryotic MAGs

Predicted proteins from EukMetaSanity were annotated for function against protein 
families in Pfam with PfamScan (109) and KEGG using kofamscan (110, 111) (Tables 
S7 and S8). The relative completeness and contamination of each putative Eukary­
otic MAG was assessed based on protein content using BUSCO v 4.0.5 against the 
eukaryota_odb10 gene set using default parameters (26) and EukCC v 0.2 using 
the EukCC database [created 22 October 2019 (112)]. Annotation and completeness 
assessment were carried out using a EukHeist-Annotate (https://github.com/Alexander­
LabWHOI/eukhesit-annotate). EukCC (112) was also used to calculate MAG completeness 
and contamination. The average completeness across groups increased in all cases with 
EukCC except for metazoans, which on average had a lower estimated completeness (Fig. 
S10).

The taxonomic affiliation of the high- and low-completion bins was estimated using 
MMSeqs taxonomy through EukMetaSanity and EUKulele (25), an annotation tool that 
takes a protein-consensus approach, leveraging a last common ancestor estimation of 
protein taxonomy, as well as MMSeqs2 taxonomy module (24, 95, 96). Taxonomic level 
estimation in EUKulele was assessed based on e-value derived best-hits, where percent 
id was used as a means of assessing taxonomic level, with the following cutoffs: species, 
>95%; genus, 95%–80%; family, 80%–65%; order, 65%–50%; class, 50%–30% modeled 
off of Carradec et al. (21). All MAGs were searched against the MarMetZoan combining 
the MarRef, MMETSP, and metazoan orthoDB databases (44, 97, 105, 113). MAGs with 
taxonomy assignment that did not resolve beyond SAR (Stramenopile, Alveolate, and 
Rhizaria) are classified as SAR. This database is available for download through EUKulele.

Phylogeny of eukaryotic MAGs

A total of 49 BUSCO proteins were found to be present across 80% or more of the 
highly complete eukaryotic TOPAZ MAGs and were selected for the construction of 
the tree. Amino acid sequences from all genomes and transcriptomes of interest were 
collected and aligned individually using mafft (v7.471) (parameters: -thread -8 -auto) 
(114). Individual protein alignments were trimmed to remove sections of the alignment, 
which were poorly aligned with trimAl (v1.4.rev15) (parameters: -automated1) (115). 
Protein sequences were then concatenated and trimmed again with trimAl (parameters: 
-automated1). A final tree was then constructed using RAxML (v 8.2.12; parameters: 
raxmlHPC-PTHREADS-SSE3 -T 16 -f a -m PROTGAMMAJTT -N 100 -p 42 -x 42) (116). The 
amino acid alignment and construction were controlled with a Snakemake workflow: 
https://github.com/AlexanderLabWHOI/BUSCO-MAG-Phylogeny. Trees were visualized 
and finalized with Interactive Tree of Life (iTOL) (117).

Prokaryotic MAG assessment and analysis

The 15,478 bins that were not identified as putative eukaryotic bins based on length 
and EukRep metrics were screened to identify quality prokaryotic bins. The quality 
and phylogenetic association of these bins were assessed with a modified version 
of MAGpy (118), which was altered to include taxonomic annotation with GTDB-TK 
v.0.3.2 (119). Bins were assessed based on single copy ortholog content with CheckM 
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v (120) to identify two different bin quality sets: (i) high-quality prokaryotic bins (>90% 
completeness and <5% contamination) and (ii) medium-qualityprokaryotic bins (90%–
75% completeness and <10% contamination). A total of 4,022 prokaryotic MAGs met 
the above criteria. A final set of 2,407 non-redundant HQ-MQ MAGs were identified 
using dRep v2.6.2 (121), which performs pairwise genome comparisons in two steps. 
First, a rapid primary algorithm, Mash v1.1.1 (122) is applied. Genomes with Mash 
values equivalent to 90% ANI or higher were then compared with MUMmer v3.23 (123). 
Genomes with ANI ≥ 99% were considered to belong to the same cluster. The best 
representative MAGs were selected based on the dRep default scoring equation (121). 
Out of the final set of 2,407 NR MAGs, 716 were HQ. The same pipeline was used to 
determine the HQ and MQ NR MAGs reconstructed from the Tara Oceans metagenomes 
in previous studies (11–13).

Phylogeny of bacterial non-redundant high-quality MAGs

Only 5 out of the 716 HQ NR MAGs were found to belong to Archaea, thus only bacterial 
MAGs were used for the construction of the phylogenetic tree with GToTree v.1.4.10 (124) 
and the gene set (HMM file) for Bacteria (74 targets). GToTree pipeline uses Prodigal 
v2.6.3 (125) to retrieve the coding sequences in the genomes and HMMER3 v3.2.1 (126) 
to identify the target genes based on the provided HMM file. MUSCLE v3.8 (127) was 
then used for the gene alignments and Trimal v1.4 (15) for trimming. The concatenated 
aligned is used for the tree constructions using FastTree v2.1 (128). Three genomes were 
excluded from the analysis due to having too few of the target genes. The tree was 
visualized using the iToL (17).

Prokaryote MAG phylogeny comparison

A set of 8,644 microbial genomes were collected from the MarDB database (113) 
(accessed 31 May 2018) encompassing the publicly available marine microbial genomes. 
Genomes were assessed using CheckM v1.1.1 (120) (parameters: lineage_wf) and 
genomes estimated to be <70% complete or >10% contamination were discarded. The 
remaining genomes (n = 5,878) were assessed using CompareM v0.0.23 (parameters: 
aai_wf; https://github.com/dparks1134/CompareM), and near identical genomes were 
identified using a cutoff of ≥95% average amino acid identity (AAI) with ≥85% orthol­
ogous fraction (determined as one standard deviation from the average orthologous 
fraction for genomes with 97–100% AAI). Based on CheckM quality, the genome with 
the highest completion and/or lowest contamination was retained. From the remaining 
genomes (n = 3,843), all MAGs derived from the Tara Oceans data set, specifically from 
Tully et al. (13) and Parks et al. (11), were removed. The remaining genomes (n = 2,275) 
would be used to form the base of a phylogenetic tree representing the available 
genome diversity prior to the release of previous Tara Oceans-related MAG data sets 
(11–13), termed the “neutral” component of subsequent phylogenetic trees.

For the comparisons, phylogenetic trees were constructed using GToTree v1.4.7 (124) 
(default parameters; 25 Bacteria_and_Archaea markers). Any genome added to a tree 
that did not meet the default 50% marker presence requirement was excluded from that 
tree. Five iterations of phylogenetic trees were constructed using the neutral genomes 
paired with each Tara Oceans MAG data set, the high-quality TOPAZ prokaryote MAGs, 
and the medium-quality TOPAZ prokaryote MAGs, individually, and two larger trees 
were constructed containing all neutral genomes and Tara Oceans MAGs, with addi­
tions of either high- or medium-quality TOPAZ MAGs. Phylogenetic trees were assessed 
using genometreetk (parameter: pd; https://github.com/dparks1134/GenomeTreeTk) to 
determine the phylogenetic diversity (i.e., the total branch length traversed by a set of 
leaves) and phylogenetic gain (i.e., the additional branch length added by a set of leaves) 
(11) for each set of MAGs compared against the neutral genomes and for the TOPAZ 
prokaryote MAGs compared against the neutral genomes and the other Tara Oceans 
MAGs.
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MAG abundance profiling

Raw reads from all metagenomic and metatranscriptomic samples were mapped against 
the eukaryotic and prokaryotic TOPAZ MAGs to estimate relative abundances with 
CoverM (v. 0.5.0; parameters: -min-read-percent-identity 0.95 -min-read-aligned-percent 
0.75 -dereplicate -dereplication-ani 99 -dereplication-aligned-fraction 50 -dereplication-
quality-formula dRep -output-format dense -min-covered-fraction 0 -contig-end-exclu­
sion 75 -trim-min 0.05 -trim-max 0.95 -proper-pairs-only; https://github.com/wwood/
CoverM). The total number of reads mapped to each MAG was then used to calculate 
reads per kilobase million (RPKM), where for some MAG, i, with X = total number of 
reads recruiting to a MAG, l = length of MAG in kb, and N = total number of trimmed 
reads mapping to a sample in millions. We also calculated counts per million (CPM), a 
normalization of the RPKM to the sum of all RPKMs in a sample. CPM, a modification 
of transcripts per million was first proposed by Wagner et al. (129) as an alternative to 
RPKM that reduces statistical bias. The metric has since been applied to metagenomics 
data, called genes per million (130). We chose not to more stringently cluster MAGs 
on the basis of genome content due to the documented utility of preserving population­
specific genes (131); we show a comparison of the CoverM-based dereplication approach 
using fastANI to the dnadiff function of the MUMmer paper in Fig. S25.

Nutritional modeling

To predict the trophic mode of the high-quality TOPAZ eukaryotic MAGs (n = 485), 
a Random Forest model (132) was constructed and calibrated using the ranger (133) 
and tuneRanger packages in R (134), respectively. The model was trained using KEGG 
Orthology annotations (110) from a manually curated reference trophic mode transcrip­
tomic data set consisting of the MMETSP (44) and EukProt (59) (Data set S1 at https://
osf.io/twz2f/). A total of 644 transcriptomes in this reference data set came from the 
MMETSP (44), after 22 transcriptomes were removed due to low coverage of KEGG 
and Pfam annotations (109). The remaining 266 came from the EukProt database (59), 
after 162 were removed due to having fewer than 500 present KOs. Nutritional strategy 
(phototrophy, heterotrophy, or mixotrophy) was assessed for each reference transcrip­
tome individually based on the literature, 25% of the combined reference transcriptomes 
were excluded from model training as testing data (Fig. S16).

A subset of KOs that were predictive for trophic mode classification was determined 
computationally with the vita variable selection package in R (135) (Table S5), which has 
been tested and justified for this use case (136). This process was carried out by the 
algorithm without regard to the predicted function of the KOs, but we found that many 
of these KOs were implicated in carbohydrate and energy metabolism, with a preference 
for those KOs that differ strongly between heterotrophs and phototrophs (particularly for 
energy metabolism; Fig. S18). The model was built using the selected KOs (n = 1,787 of a 
total 21,585 KOs) with 75% of the combined database assigned as training data.

Additionally, we developed a secondary metric for assessing the extent of heterotro­
phy of a transcriptome or MAG. As opposed to the trinary classification scheme of 
the Random Forest model, this approach quantifies the extent which the MAG aligns 
with heterotrophic, phototrophic, or mixotrophic references by assigning a composite 
score. We calculated the likelihood of vita-selected KOs used in the Random Forest 
model above to be present within heterotrophic, phototrophic, or mixotrophic reference 
transcriptomes. Three scores (h, p, m), one corresponding to each trophic mode, were 
hence calculated for each vita-selected KO (k) (n = 1,787) (Table S5). In equation 1, K is the 
number of references the KO was present for each trophic mode category, while n is the 
total number of references available for each trophic mode category.

(1)ℎk = g Khetnhet
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(2)pk = g Kphotonphoto (3)mk = g Kmixonmixo (4)where, g(a) = a if  a > 0.5−(0.5 − a)  otherwise
If a given KO occurred in fewer than 50% of the reference transcriptomes for a trophic 

mode, it was considered not to be characteristic of that trophic mode and as such the 
score, which we represent as variable a, the ratio of the present KOs to the total for the 
subset of transcriptomes annotated some trophic mode (equation 4), was transformed 
[−(0.5 − a), if a < 0.5] to reflect the absence without valuing absence over presence. In 
the test transcriptome data set, the ratio-transformed scores were negated when a given 
KO was absent from the transcriptome. For instance, if a KO was absent from 90% of 
reference transcriptomes assigned to heterotrophy (a = 0.1) and absent in the MAG or 
transcriptome being evaluated, it would receive a score of hk = −1 × [−(0.5 − 0.1)] = 0.4 
(equation 1) for that KO. This reflects that the absence of the KO in the evaluated MAG or 
transcriptome aligned well with the high probability that the KO was absent among the 
reference transcriptomes.

The scores for all KOs selected by vita were then used to scale the presence/absence 
patterns observed across transcriptomes and MAGs. Thus, for each transcriptome or 
MAG, a single score was calculated for each trophic mode heterotrophy (H), phototrophy 
(P), and mixotrophy (M) for all KOs present within the transcriptome or MAG (K)

(5)H = k ∈ Kℎk (6)P = k ∈ Kpk (7)M = k ∈ Kmk
These calculated values can then be aggregated to a composite heterotrophy score 

(Hind) (Table S6). The score was computed as follows:

(8)Hind = −1(H − P) (H − P)2, if  M − max (H, P) < 50,−1(H − P) (H − P)2M , if  M − max (H, P) ≥ 50

Network analysis

To identify co-occurring MAGs across the stations surveyed by Tara Oceans, the CPM 
abundance of each highly complete eukaryotic MAG (>30% BUSCO completeness) and 
each non-redundant, highly complete bacterial MAG was assessed at each station at 
all available depths and size fractions as described above. CPM was used because of 
the power of this metric for comparing samples directly: the sum of all CPM values 
per sample will be the same, as sequencing depth is accounted for after gene length. 
This makes it easier to compare the abundances of MAGs originally recovered from 
different sites (130). A Spearman correlation matrix was generated to identify monotonic 
relationships between MAGs. Correlations were filtered based first on P-value, using the 
Šidák correction (137), a slightly less stringent metric than the Bonferroni correction. The 
Šidák correlation adjusts for multiple comparisons and is given by P < 1 − (1 − α)1/n, 
where n is the total number of comparisons and α is the significance value, in this case, 
0.05. We considered only those correlations within the 90th percentile of CPM correla­
tions, thus correlations with absolute value <0.504 were removed from the analysis. 
Subsequently, we further filtered interactions to those with a coefficient of correlation 
<0.70 for the construction of the network diagram. Because it was expected for several 
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of the eukaryotic MAGs to be closely related (based on ANI), the relationships in the 
network were further filtered to exclude interactions between MAGs of exceedingly 
high similarity (having both 99% ANI similarity and >0.70 coefficient of correlation in 
the network analysis) (Table S8). ANI-based group members tended to have identical 
taxonomic classifications: only 2 of the 94 clusters had different classifications at the 
order level per EUKulele (Fig. S25).

We generated a network from this reduced set of labeled interactions (cut off at >0.70 
coefficient of correlation, focusing on interactions between eukaryotes and prokaryotes 
or eukaryotes and eukaryotes, and using ANI-based clusters instead of MAG names 
when applicable) using igraph (138, 139) (Table S7). Communities of highly associated 
MAGs were identified using a modularity optimization algorithm introduced in (69) and 
implemented in igraph (138).

We assessed the connectedness within and between communities by calculating 
a connectedness metric as follows. For the connectedness within a community (one 
community to itself ), we identified the number of “dense” connections by counting 
up the total number of links found between community members, regardless of how 
many times the particular MAG had been connected to its own community and 
divided that number by the total possible “dense,” meaning the number of connections 
which would exist if all community members were connected to all other community 
members. Between different communities, we defined connectedness by qualifying that 
a “connection” is made the first time each MAG from a given community is linked to 
another community and calculated this quantity by dividing the number of realized 
links between community members by the maximum total size of the two involved 
communities (Fig. 4b; equations 9–11).

(9)Cx, x = Σx = 1
nx Σy = 1

ny f(x, x)nx(ny − 1)
2

(10)Cx, y = Σx = 1
nx Σy = x + 1

ny f(x, y)
max (nx, ny) (11)f(a, b) = 1 if a and b are connected

0 otherwise

We calculated Spearman correlation coefficients for the relationship between the 
abundance of communities between stations and several environmental parameters 
of interest from the Tara Oceans metadata (70, 140) (Fig. 4). We considered the meas­
ured physical and chemical parameters, the modeled mesoscale physical oceanographic 
parameters, and averaged remote sensing products (70, 71, 140). We adjusted the 
P-value of these comparisons using a Bonferroni adjustment within the statistics package 
in R (139).
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