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ABSTRACT Successive waves of infection by SARS-CoV-2 have left little doubt that this 
virus will transition to an endemic disease. Foreknowledge of when to expect seasonal 
surges is crucial for healthcare and public health decision-making. However, the future 
seasonality of COVID-19 remains uncertain. Evaluating its seasonality is complicated 
due to the limited years of SARS-CoV-2 circulation, pandemic dynamics, and varied 
interventions. In this study, we project the expected endemic seasonality by employing 
a phylogenetic ancestral and descendant state approach that leverages long-term data 
on the incidence of circulating HCoV coronaviruses. Our projections indicate asynchro
nous surges of SARS-CoV-2 across different locations in the northern hemisphere, 
occurring between October and January in New York and between January and March in 
Yamagata, Japan. This knowledge of spatiotemporal surges leads to medical prepared
ness and enables the implementation of targeted public health interventions to mitigate 
COVID-19 transmission.

IMPORTANCE The seasonality of COVID-19 is important for effective healthcare and 
public health decision-making. Previous waves of SARS-CoV-2 infections have indicated 
that the virus will likely persist as an endemic pathogen with distinct surges. How
ever, the timing and patterns of potentially seasonal surges remain uncertain, render
ing effective public health policies uninformed and in danger of poorly anticipating 
opportunities for intervention, such as well-timed booster vaccination drives. Applying 
an evolutionary approach to long-term data on closely related circulating coronaviruses, 
our research provides projections of seasonal surges that should be expected at major 
temperate population centers. These projections enable local public health efforts that 
are tailored to expected surges at specific locales or regions. This knowledge is crucial for 
enhancing medical preparedness and facilitating the implementation of targeted public 
health interventions.
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T he current COVID-19 pandemic has resulted in over 6.5 million deaths worldwide. 
Public health interventions—especially the closing of schools and universities and 

banning of large gatherings—were highly effective at reducing transmission at the 
advent of the pandemic (1). Widespread vaccination further altered the course of the 
pandemic, saving tens of millions of lives globally in the first year alone (2). How
ever, governmental interventions have ebbed internationally. Sustained transmission 
is predicted to continue into the foreseeable future (3, 4), and there is now little 
doubt that COVID-19 is transitioning into a global endemic disease (5). This impending 
endemicity entails continued surges of infections causing morbidity and mortality that 
can be mitigated with advance preparation, especially via anticipation of future seasonal 
infection patterns.

COVID-19 case numbers have fluctuated in different regions and at different times 
during the last year. However, three challenges impede attempts to directly estimate 
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future seasonal infection patterns from COVID-19 data: global variability in public health 
measures, evolving pandemic transmission dynamics, and the short duration since 
SARS-CoV-2 emergence. These factors present too many confounders to yield highly 
informative studies correlating infection with environmental parameters across locations 
(6)—parameters such as ultraviolet light, humidity, precipitation, and temperature (7–
13). Without well-estimated correlative associations, parameters for epidemiological 
modeling studies are lacking. With only a few years of infection data collected in 
the contexts of highly volatile and heterogeneous interventions, there are qualitative 
inferences but little year-to-year data that can be appropriately applied to determine the 
seasonality of the virus (14). The absence of annual SARS-CoV-2 infection data without 
pandemic transmission dynamics or public health interventions has hampered efforts 
to determine COVID-19 seasonality and resulted in contradictory estimates of seasonal 
trends (15–17) and necessitates application of alternate approaches.

One approach to predicting SARS-CoV-2 seasonality relies on comparison with other 
endemic viruses that follow a similar route of respiratory transmission. These “flu and 
cold” viruses follow known seasonal patterns of infection that vary across the globe 
(18) and offer a possible analogy to the annual variation expected for SARS-CoV-2 (17, 
19–23). However, diverse respiratory viruses exhibit divergent patterns of seasonality. 
For example, rhinovirus infections occur relatively frequently in April through November, 
compared to respiratory syncytial virus infections, which are relatively more frequent 
in December, January, and February (24). Coronaviruses, in particular, may be informa
tive regarding the seasonality of SARS-CoV-2 (25, 26). Yet even at low evolutionary 
divergences, there is variance in seasonal incidence patterns: across locales in Sweden, 
coronavirus infection by HCoV-OC43 occurs at its highest frequency in December and 
January, while infections by HCoV-NL63 generally peak in February (24, 27). As in the case 
of influenza (28, 29), this seasonal variation is a consequence of evolutionary processes 
operating on a complex system of human behavior, epidemiology, immunology, and 
viral genetics.

Prediction of the impending endemic seasonality of SARS-CoV-2 can be performed 
by leveraging precisely estimated evolutionary divergences between human-infecting 
coronaviruses, accumulated knowledge of seasonal HCoV coronavirus incidence, and 
advances in phylogenetic comparative methods that enable the unknown seasonality 
of SARS-CoV-2 to be estimated. We apply such an approach to the estimation of 
the seasonality of SARS-CoV-2 infection based on extensive long-term incidence of 
other coronaviruses (HCoV-OC43, HCoV-NL63, HCoV-HKU1, and HCoV-229E) across major 
population centers. This analysis provides a means for estimating the seasonal force 
of infection that is not dependent on isolation of interventions or identification of 
underlying mechanisms. Our resulting projections of endemic SARS-CoV-2 seasonality 
provide insight into the optimal long-term public policies that can be applied to high-risk 
periods and the preparation of healthcare providers for temporally and spatially localized 
surges.

MATERIALS AND METHODS

Study design

We conducted a literature search to identify data on monthly verified cases of HCoV-
NL63, HCoV-229E, HCoV-HKU1, and HCoV-OC43 infections within populations across the 
globe. To infer the seasonality of SARS-CoV-2, we applied ancestral and descendant state 
analyses on reconstructions of the evolutionary history of human-infecting coronavi
ruses to estimate the expected annual changes in cases at different geographic locales. 
These analyses provide a projection of the endemic seasonality for SARS-CoV-2.

Data acquisition

Phylogenetic tree topologies. Phylogenetic relationships of SARS-CoV-2 and HCoVs were 
based on data from 58 alphacoronavirus, 105 betacoronavirus, 11 deltacoronavirus, 
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and three gammacoronavirus as analyzed by Townsend et al. (30). These estimates 
of the phylogenetic topology were consistent with previous hypotheses of evolution
ary relationships among coronaviruses (31–35) and were congruent across multiple 
methods of inference with strong (100% bootstrap) support for all nodes. Tree topologies 
were inferred by multiple maximum-likelihood (ML) analyses of the concatenated DNA 
sequence alignment, and the results were robust to alternative phylogenetic likelihood 
search algorithms—IQ-TREE v2.0.6 (36) and RAxML v7.2.8 (37). Results were robust to 
a potential history of recombination among or within genes through phylogenetic 
analyses using an alignment of the putative non-recombining blocks (38).

Phylogenetic branch lengths. Timetrees were taken from the study of Townsend et 
al. (30). Briefly, ML phylogenies were time-calibrated using least-squares dating (LSD2; 
39) in IQ-TREE v2.0.6 (36). Divergence times were calibrated to the dates of viral 
sampling associated with the earliest samples of each virus that had been sequenced 
and deposited in GenBank. Consistency of the divergence time estimates to alternate 
approaches of divergence time estimation was assessed through comparisons of Relative 
Times (RelTime; 40) in MEGA X v10.1.9 (41) and TreeTime v0.7.6. The RAxML-derived ML 
and IQ-TREE-derived ML phylogenies with estimated branch lengths were used as the 
input phylogeny in RelTime (42) and TreeTime (43). To assess the impact of outgroup 
choice, TreeTime analyses were repeated with an unrooted input phylogeny and with the 
option to estimate a root. The resulting relative timetrees were robust to branch length 
differences arising from different approaches to relative divergence time estimation—
IQ-TREE v2.0.6 (36), RelTime (40) in MEGA X v10.1.9 (41), and TreeTime v0.7.6 (43). All 
trees from Townsend et al. (30) were pruned of tip branches terminating in SARS-CoV-1 
and MERS-CoV because temporal trends of infection by these viruses reflect short-term 
outbreaks and not seasonal endemic circulation.

Seasonal infection data. We conducted a literature search using the PubMed and 
Google Scholar databases searching for terms related to coronavirus, seasonality, and 
the known seasonal endemic human-infecting coronaviruses (HCoV-NL63, HCoV-229E, 
HCoV-HKU1, and HCoV-OC43). Searches were conducted in English between October 
2020 and August 2021 using the names of each coronavirus lineage as a key term 
in addition to all combinations of coronavirus, seasonality, environmental, incidence, 
infection, prevalence, latitude, temperature, humidity, weather, global, and cases—with 
no language restrictions imposed. A series of searches for additional data in English, 
Chinese, Japanese, and Spanish language journals were conducted between 30 August 
and 20 September 2023. Searches were conducted by language speakers and augmen
ted with follow-up searches utilizing ChatGPT v3.5 (OpenAI, 2023) and Google Translate 
by non-language speakers. Seasonal infection data were extracted from published, 
peer-reviewed research papers that reported monthly or finer seasonal case data for 
three or more coronaviruses, spanning at least 1 year.

Estimating the seasonality of SARS-CoV-2

To estimate the seasonality of infections by SARS-CoV-2, we first extracted the average 
number of cases per month testing positive for HCoV-NL63, HCoV-229E, HCoV-HKU1, 
and HCoV-OC43 for each location. We scaled these case counts by the annual total to 
yield proportions of the cases sampled in each month. We then used Rphylopars v0.2.12 
(44) to perform a phylogenetically informed ancestral and descendant state analysis 
on the monthly proportions of cases to estimate the proportion of yearly infection by 
SARS-CoV-2 in each month for each location. This approach takes known trait values 
(here, monthly proportions of cases for endemic coronaviruses) and applies models of 
trait evolution and a phylogeny to estimate unobserved trait values for a taxon or taxa. 
A Brownian motion model is commonly applied to phylogenetic evolution of continuous 
traits (45–48), but other models could also be applied (49). To assess how the specifi
cation of a model of trait evolution impacts the resulting inferences of incidence, we 
repeated the analyses across the range of trait evolution models available in Rphylo
pars: Brownian motion, Ornstein–Uhlenbeck (OU), Pagel’s lambda, and white noise. The 
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Brownian motion model specifies that trait values evolve over time in accordance with 
a Gaussian distribution of change. The OU model builds upon Brownian motion by 
incorporating a parameter for selection drawing lineages toward a fixed value (50, 51). 
Pagel’s lambda model spans from the Brownian motion model to the white noise model, 
transforming the internal branch lengths based on the amount of phylogenetic signal 
of the trait (52, 53). A white noise model provides predictions equivalent to a star tree. 
Phylogenetic ancestral and descendant analyses were repeated across all topologies 
resulting from different inference approaches (molecular trees, relative phylogenetic 
chronograms, and non-recombinant alignment) to assess the impact of phylogenetic 
inference methods on our estimation of seasonality.

To quantify the relative degree of seasonality among viruses, we calculated the 
Shannon diversity of monthly proportions for each virus at each site using the vegan 
package in R (54). Shannon diversity indices were pooled by virus; differences between 
group means were assessed using an analysis of variance. Pairwise t tests were subse
quently performed with a Bonferroni adjustment for multiple testing to assess differen
ces in the Shannon diversity of monthly proportions of infections by each virus. Pairwise 
testing was repeated using Tukey’s honest significant differences, yielding consistent 
results.

RESULTS

Our systematic review regarding seasonal patterns of endemic coronavirus incidence 
identified 19 studies that met the criteria of providing at least 1 year of data on at least 
three circulating human-infecting coronaviruses within a locale (Table 1). Of these, 12 
met a sufficiency of data criterion of having at least 100 cases distributed across the 
year. These studies spanned three continents across the northern hemisphere (Table 1). 
In temperate regions, endemic coronaviruses typically exhibited pronounced seasonality 
(Fig. S1–S4). The seasonal patterns observed in these larger studies were consistent with 
the results from incidence reports that contained smaller number of samples or limited 
months of sampling of coronaviruses in locations that include Ishikawa prefecture in 
Japan (55), Northern Italy (56), and Spain (57).

From our literature review, we obtained two data sets pertaining to North America. 
Data set i contained results from 8,839 nasopharyngeal swabs, bronchoalveolar fluid, 
or bronchial washes collected between April 2014 and March 2020 from the Mayo 
Clinic Laboratories in Rochester, MN. Samples were screened for HCoV-229, HCoV-HKU1, 
HCoV-NL63, and HCoV-OC43 using multiplex respiratory panels (25). Data set ii was 
composed of 4,215 samples taken from 196 individuals in New York City from October 
2016 through April 2018 including children, teenagers, and adults with and without daily 
contact with children (58). To be included in the data set, cases must have provided 
nasopharyngeal samples weekly from both nostrils for a minimum of 6 weeks. We 
obtained five data sets pertaining to Europe. Data set iii included incidence data on 
HCoV-229, HCoV-HKU1, HCoV-NL63, and HCoV-OC43 from 11,661 respiratory samples 
from 7,383 patients collected by the Royal Infirmary of Edinburgh between July 2006 and 
June 2009. Samples were collected as part of routine incidence monitoring from both 
male and female patients ranging in age from 0 to 3 months to over 65 years (60). Data 
set iv was composed of 2,084 cases found to be positive for one of the coronaviruses, 
collected between 1 January 2010 and 31 December 2019 at the Karolinska University 
Hospital in Stockholm, Sweden (61). Data set v was composed of samples collected at 
St Olavs Hospital in Trondheim, Norway, from children under 16 years of age who were 
exhibiting no symptoms and presenting for elective surgery or who were presenting 
with symptoms of respiratory tract infection. (62). Data set vi was composed of 7,853 
samples (239 HCoV-positive) collected from November 2006 to October 2009 from 7,220 
patients ranging from age 0 to 98, with a median age of 22, in Gothenburg, Sweden (24). 
Data set vii was collected from serum and blood samples of adult males in the HIV-1 
uninfected cohort of the Amsterdam Cohort Studies on HIV-1 and AIDS at primarily 3-to 
6-month intervals spanning a 35-year period (21).
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We obtained four data sets with sufficient sample sizes pertaining to Asia. Data set 
viii was collected across 36 facilities in Korea by the Korea Influenza and Respiratory 

TABLE 1 Data sets on seasonal coronavirus incidence

Data set Location Datese Samplea HCoV incidence Reference

229E OC43 NL63 HKU1

North America

  i Rochester, MN, USA
4/1/2014–
3/31/2020 326 47 103 81 95 (25)

  ii
New York City, NY,
USA

10/2016–
12/2018 122 31 48 15 28 (58)

  —b Denver, CO, USA
12/2004–
11/2005 84 11 34 37 2 (59)

United Kingdom

  iii Edinburgh, United Kingdom
7/2006–
6/2009 267 NA NA NA NA (60)

Europe

  iv Stockholm, Sweden
1/2010–
2/2020 2,093 320 1,266 507 *c (61)

  v Trøndelag, Norway
1/2007–
12/2014 263 16 113 84 50 (62)

  vi Gothenburg, Sweden
11/2006–
10/2009 239 33 124 82 *c (24)

  vii Amsterdam, Netherlands
1985–
2011 101 38 30 25 8 (21)

  —b

Tampere,
Finland

9/2009–
8/2011 52 13 13 15 11 (63)

Asia

  viii South Koread

1/2010–
12/2012 1,568 153 871 544 *c (64)

  ix
Yamagata,
Japan

1/2010–
12/2014 388 40 94 154 100 (65)

  x Guangzhou, China
7/2010–
6/2015 293 49 177 44 23 (66)

  xi
Sarlahi,
Nepal

6/2011–
5/2014 270 19 103 70 78 (67)

  —b

Beijing,
China

5/2005–
4/2009 87 15 50 8 14 (68)

  —b Hong Kong, China
4/2014–
5/2015 87 4 53 17 13 (69)

  —b Sa Kaeo Province, Thailand
9/1/2003–
8/31/2005 83 13 37 19 14 (70)

  —b Hong Kong, China
9/2008–
8/2014 77 12 48 6 11 (71)

  —b Nakhon Si Thammarat, Thailand
7/2009–
6/2010 32 *c 22 9 1 (72)

Middle East

  xii Beersheba, Israel
7/2015–
6/2016 195 10 96 45 44 (73)

aSample numbers may not agree with the study totals summarized in the Results section because some studies included samples that were not associated with coronavirus 
infection. Also, tabulated numbers in the table may not agree exactly with numbers in tables from the cited papers because some studies exhibited discrepancies between 
the raw data and their tabulated summaries. In all cases, we used numbers from the available raw data.
bThese studies were excluded from our primary analysis because they were composed of low sample sizes (<100) across the calendar year. A secondary analysis of these data 
sets is presented in the Supplementary Materials.
cSamples from this region were not assayed for this virus.
dNationwide.
eMonth/day/year or month/year.
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Viruses Surveillance System between 2013 and 2015 via throat swabs of 36,915 patients 
presenting with symptoms of acute respiratory infections (64). Data set ix was composed 
of results from throat and nasal swabs of 4,342 patients (3,092 aged ≤5 years, 767 aged 
6–10, 326 aged 11–15, and 104 aged >15 years) presenting with symptoms of respiratory 
infection in pediatric clinics in Yamagata, Japan spanning January 2010 to December 
2013 (65). Data set x was sourced from 13,048 throat and nasal swabs of adults and 
children symptomatic for acute respiratory infection between July 2010 and June 2015 
in Guangzhou, China, at an approximately 1.5:1 ratio of males to females (66). Data set 
xi was composed of results from weekly nasal swabs of 3,693 women enrolled in their 
second or third trimester of pregnancy, obtained between 2011 and 2014 in the Sarlahi 
district in Nepal. Participants were enrolled in either their second or third trimester of 
pregnancy and were monitored until 6 months after giving birth (67). We additionally 
found a single data set (data set xii) of 195 individuals in Israel who were identified 
as HCoV-infected in a hospital setting during 2015–2016 (73). Additional data sets with 
sample sizes less than 100 in each region were retained for additional sensitivity analyses 
to assess whether results from similar geographic regions were robust to smaller sample 
sizes. For each location, we pruned the phylogeny of major coronavirus lineages from 
Townsend et al. (30) to include only the HCoVs with sample data and SARS-CoV-2 (Table 
1 and Fig. 1A). To generate ML estimates of the spatiotemporal incidences of SARS-CoV-2, 
we conducted analyses of ancestral and descendant states on the relative monthly 
incidences for each coronavirus (Fig. 1B through E). All four endemic coronaviruses 
contributed to our projection of the relative monthly incidences of SARS-CoV-2 (Fig. 
1F). However, the late-diverging HCoV-OC43 and HCoV-HKU1 provide more phylogenetic 
information than the early-diverging HCoV-NL63 and HCoV-229E. Across cases, estimates 
of seasonality were strongly correlated between models and nearly interchangeable, 
indicating the results to be robust to the selected model of trait evolution (Fig. 2).

Application of this evolutionary analysis to Trøndelag, Norway, provides projections 
that late fall and winter months will exhibit significantly higher levels of SARS-CoV-2 
incidence than summer and early fall months (Fig. 1F). This lower incidence in the 
summer and surrounding months is largely generalizable to much of the temperate 
northern hemisphere (Fig. 3). Specifically, significantly higher SARS-CoV-2 incidence is 
projected in late fall and winter months in New York City . A similar seasonality is 
projected for multiple locales in Asia, including Yamagata, Japan; Guangzhou, China; and 
South Korea; as well as Edinburgh, UK; Tampere, Finland; and Gothenburg and Stock
holm in Sweden. However, in each northern hemisphere continent, there are regional 
deviations from this seasonal pattern. In Rochester, incidence is projected not to rise until 
December, with a prolonged plateau of infection extending through the late spring. 
Incidence in Amsterdam is similarly projected to decline in late spring, though the overall 
seasonal trends are more muted than other locations. In Asia, incidence in Sarlahi, Nepal, 
is projected to surge at the beginning of the new year, while in the Middle East, the 
seasonality of incidence in Beersheba, Israel, appears atypical with no distinct pattern. In 
all cases, these results were robust to the phylogenetic inference method, to the 
underlying molecular data set, as well as to the use of a chronogram or a molecular 
evolutionary tree (Fig. S5–S8).

Comparison of the Shannon diversities of monthly incidences among coronaviruses 
at sites revealed that diversity did not vary substantially by coronavirus (Fig. S9). Modest 
differences in the mean Shannon diversity values among some coronaviruses were 
weakly supported by an analysis of variance (d.f. = 4, F = 2.59, P = 0.042). Evaluating 
pairwise comparisons using a post-hoc Tukey’s Honest significance test did not yield a 
statistically significant difference in mean diversity across months for SARS-CoV-2 
compared to HCoV-NL63 (ratio 1.12:1; P = 0.061), HCoV-OC43 (1.12:1; P = 0.053), 
HCoV-229E (0.91:1; P = 0.179), and HCoV-HKU1 (1.10:1; P = 0.168). Similarly, Tukey’s 
honest significance test did not yield statistically significant differences in mean diversity 
across months for any other pairwise comparison of coronavirus at any site (1.00–1.02:1; 
P > 0.98 for all comparisons).
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DISCUSSION

Here we analyzed the monthly incidence data of the long-time circulating coronaviruses 
HCoV-NL63, HCoV-229E, HCoV-HKU1, and HCoV-OC43 to quantify the seasonality of 
infection in regions that span a broad range of predominantly temperate localities across 
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FIG 3 Ancestral- and descendant-state analytical estimates of the relative monthly incidence of SARS-CoV-2 under endemic conditions. New York City and 
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North America, Europe, and Asia. We then conducted ancestral- and descendant-state 
analyses that project the seasonality of SARS-CoV-2 infection as COVID-19 becomes 
endemic. Across much of the temperate northern hemisphere, SARS-CoV-2 infections 
can be expected to transition to a seasonal pattern of incidence that is high in late fall 
and winter months relative to late spring and summer. Our projections also reveal 
geographic heterogeneity. This heterogeneity often manifested as a syncopation of the 
general northern hemispheric trend—a delay in rise to peak incidence or a prolonged 
duration of higher levels of incidence relative to other areas. These temporal transmis
sion patterns of SARS-CoV-2 provide fundamental insights for the determination of local 
public health policies, enabling preparedness and consequent mitigation of seasonal 
infection.

Several previous studies have taken on the challenge of predicting seasonality of 
SARS-CoV-2 based on direct analysis of incidence across seasons during the initial 
pandemic spread (74–76). During a zoonotic pandemic, immune naïveté, out-of-phase 
emergence, regional variations in public health intervention, and stochastic pulses of 
local transmission can obscure the signature of seasonality from surveillance data (14). 
Such concerns have made these analyses controversial (77, 78). To avoid such concerns, 
we based our analyses on multi-year long-time circulating coronavirus infection data 
that were not subject to the biases introduced by pandemic emergence and large-scale 
public health interventions. Unlike most other studies, our analyses do not force or even 
suggest any functional form or a priori expectation of seasonality. Instead, our results 
are driven by infection data from other circulating human-infecting coronaviruses and 
informed by their shared evolutionary history. Results from our analyses are broadly 
consistent with the seasonal infection trends observed for common respiratory viruses in 
the northern hemisphere (19).

Our results on the seasonality of SARS-CoV-2 provide expected incidence trends 
under endemic conditions. Through two alternative mechanisms, seasonality during 
the pandemic phase of COVID-19 might be either more or less pronounced than our 
endemic expectations. On the one hand, the absence of previous exposure and the 
corresponding naïve immune response are associated with higher transmission in a 
pandemic. This higher transmission would exacerbate the peaks and potentially the 
troughs of infection. In this context, seasonality can be further amplified by an over
whelmed and lagging public health response. As such, we could observe heightened 
seasonal differences in incidence relative to those seen during endemic spread, overlaid 
onto peaks and troughs caused by the out-of-phase emergence of pandemic disease 
(79). On the other hand, the mechanisms that are driving the seasonality of coronavirus 
infections might exert slight influences that are magnified by host-pathogen popula
tion dynamics year on year (80). This resonation to convergence could underlie the 
observed seasonality of endemic coronaviruses (Fig. S1–S4). If seasonality in the endemic 
coronaviruses is a consequence of a small forcing factor that is amplified by host-patho
gen population dynamics, then the expectation would be that we would observe less 
seasonality for SARS-CoV-2 during pandemic spread than would be seen in its eventual 
endemic incidence. It is likely that not enough time has elapsed for SARS-CoV-2 to 
completely transition to a stable endemic seasonality. Regardless of how the seasonal 
dynamics will manifest during this transition from its pandemic phase, our projections 
provide the expected endemic seasonality.

It is tempting to compare our results to the history of surges throughout the 
COVID-19 pandemic thus far. For instance, following the initial outbreak, peaks of 
COVID-19 deaths in Sweden, where interventions were very limited and kept steady, 
are consistent with our projections of a December–February peak of infection. In much 
of the rest of the world, however, interventions were more extreme and were unsteadily 
applied. Relaxation of COVID-19 interventions could explain the “out-of-season” surges 
of infection in the summer of 2022 in countries such as Japan and irregular patterns 
of infection in countries that delayed widespread infection such as Australia or New 
Zealand. Similar irregular patterns can also be found within countries that had variation 
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in interventions such as vaccine uptake or adherence to public health guidelines, 
including within the United States (81, 82). This range of policies and adherence to 
guidelines confounds direct comparisons (83).

In addition to heterogeneous health policies, it is also very likely that the urgent 
rollout of initial vaccination and later waves of booster uptake had substantial effects 
on the seasonality of COVID-19 during the pandemic phase. Seasonality of circulat
ing coronaviruses HCoV-OC43, HCoV-NL63, HCoV-HKU1, and HCoV-229E—which our 
predictions are based on, via their evolutionary relatedness to SARS-CoV-2—is not 
affected by vaccination because there are no currently approved vaccines that target 
them. Accordingly, substantial uptake of booster vaccinations could alter SARS-CoV-2 
seasonality from our endemic predictions. Such an outcome would be expected if 
boosters are administered to large portions of the global population at a time that 
confers maximum antibody protection against an anticipated seasonal surge. However, 
historical incidence data from a similarly seasonal respiratory virus, influenza, suggest 
that the presence of systematic seasonal vaccination efforts will not substantially alter 
the seasonality of an endemic respiratory disease. Influenza vaccines have been widely 
available for decades, with the center for disease control urging vaccination in the 
months prior to the known seasonal spikes in incidence (84). Despite this policy, 
the seasonal incidence patterns of influenza remain similar to those observed prior 
to the development of the vaccine. This robustness to vaccination timing is likely a 
consequence of multiple interacting factors including vaccine inequity (85), vaccine 
hesitation (86), and antigenic evolution of the pathogen relative to the vaccine (87). 
Vaccination efforts against COVID-19 face similar challenges (88–90). Consequently, it is 
quite possible that endemic incidence levels will approach projected seasonal trends 
even with the availability of vaccines, administered at appropriate times of the year, that 
confer effective but rapidly waning protection against SARS-CoV-2.

Limitations

The seasonal coronavirus incidences in each location were collected in studies that 
monitored disease in distinct time spans and that may have been subject to a number 
of annually varying factors that can drive seasonal trends of respiratory infections. 
However, in many cases, the incidences were obtained across multiple years of sam
pling. For example, the Stockholm, Sweden data set (61) encompasses 2,093 samples 
spanning a full decade. Consequently, it is unlikely that the month-to-month average 
incidences of these long-term data sets are substantially affected by anomalous years. 
Our results project a seasonal rhythm of SARS-CoV-2 that is broadly similar to the 
trends observed among many major human-infecting respiratory viruses (91–93). This 
well-known seasonal trend toward greater respiratory incidence in the winter is typically 
considered to be muted in the tropics and reversed in the southern hemisphere (93, 94) 
and has been associated with a number of factors: temperature (19, 95, 96), humidity 
(97–100), solar ultraviolet radiation (101), and host behavior (102). The significance of 
these factors relative to each other—and whether additional factors influence seasonal
ity of SARS-CoV-2—remains to be determined.

Across the data sets assembled for this study, there was also substantial non-temporal 
variance in patients who were sampled for coronavirus infection. Some data sets were 
largely or wholly restricted to infants or children (63), whereas others were cross-popula
tional studies aggregating a mix of children, teenagers, and adults (24, 68). A forecast of 
absolute case numbers could certainly vary between cohorts (66). However, this variance 
in sampling should not impact our estimates of relative seasonal infection trends. This 
invariance in seasonal incidence arises because relative incidence in children is strongly 
correlated with relative incidence in other subsets of the local population (58). Any 
relative scale will work to reveal when higher or lower relative incidence should be 
expected. Indeed, the relative seasonal patterns for the long-term circulating coronavi
ruses from our analysis of these data sets are consistent with expectations determined 
for other seasonal respiratory viruses (91–93).
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Our search of the literature and subsequent analyses reflect the spatiotemporal biases 
toward surveillance in only a few countries—aligned with broader patterns of health 
disparity (103–105). An expanded global surveillance of endemic seasonal coronavi
rus incidence—especially in the undersampled tropics and southern hemisphere—will 
enhance our understanding of coronavirus seasonality and facilitate preparedness. 
Sampling in the tropics would enable testing of the muted seasonality that appears 
there; sampling in the southern hemisphere would enable testing of a hypothesis of 
inverted seasonality compared to the northern hemisphere. Moreover, denser sampling 
across any areas would enable more precise regional estimates. For example, continual 
long-term monitoring of coronaviruses using clinical sampling (106, 107) or wastewater 
(108–110) could strengthen the foundation for forecasting not only long-term circulating 
coronavirus seasonality but also the seasonality of emergent coronaviruses such as 
SARS-CoV-2.

Conclusions

Both public health interventions and evolutionary change impact whether the projected 
seasonality of SARS-CoV-2 will be observed. Transmission could be dampened by the 
acceleration of vaccination efforts around the world that, like other interventions, have 
the potential to disrupt erstwhile seasonality. Alternatively, the emergence of novel 
variants with elevated transmissibility—such as the Delta or Omicron variants (111–113)
—have the potential to thwart public health efforts and impact seasonal trends. Our 
results suggest that surges of infection by novel SARS-CoV-2 variants will frequently 
coincide with anticipated surges in other seasonal endemic respiratory viruses including 
influenza and respiratory syncytial virus (114, 115). Our projections affirm the need for 
systematic, prescient public health interventions that are cognizant of seasonality.

Foreknowledge of seasonality will enable informed, advanced public health 
messaging regarding seasons of high concern that could help to overcome barriers 
of non-adherence. Even with widespread vaccination efforts, SARS-CoV-2 will join 
HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1 as a coronavirus causing endemic 
disease (116). For epidemiological inferences such as seasonality that require long-term 
longitudinal data sets, evolutionary biology can provide the theoretical foundation to 
deliver swift, quantitative, and rigorous insight into how novel threats to human health 
may behave. Our approach provides guidance for myriad public health decisions as the 
pandemic phase of SARS-CoV-2 spread diminishes and collection of long-term data on 
endemic COVID-19 incidence becomes feasible.
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