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Abstract

Objective: The classification of clinical note sections is a critical step before doing more fine-grained natural language processing tasks such as
social determinants of health extraction and temporal information extraction. Often, clinical note section classification models that achieve high
accuracy for 1 institution experience a large drop of accuracy when transferred to another institution. The objective of this study is to develop
methods that classify clinical note sections under the SOAP (“Subjective,” “Object,” “Assessment,” and “Plan”) framework with improved
transferability.

Materials and methods: \We trained the baseline models by fine-tuning BERT-based models, and enhanced their transferability with continued
pretraining, including domain-adaptive pretraining and task-adaptive pretraining. We added in-domain annotated samples during fine-tuning and
observed model performance over a varying number of annotated sample size. Finally, we quantified the impact of continued pretraining in equiv-
alence of the number of in-domain annotated samples added.

Results: We found continued pretraining improved models only when combined with in-domain annotated samples, improving the F1 score
from 0.756 to 0.808, averaged across 3 datasets. This improvement was equivalent to adding 35 in-domain annotated samples.

Discussion: Although considered a straightforward task when performing in-domain, section classification is still a considerably difficult task
when performing cross-domain, even using highly sophisticated neural network-based methods.

Conclusion: Continued pretraining improved model transferability for cross-domain clinical note section classification in the presence of a small

amount of in-domain labeled samples.
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Introduction and background

Electronic health record (EHR) systems contain important clini-
cal information in unstructured text, and natural language proc-
essing (NLP) is an important tool for its secondary use. Clinical
note section classification is a foundational NLP task, as it facili-
tates many downstream tasks, and section information has been
found beneficial for a diversity of clinical NLP tasks including
named entity recognition,' abbreviation resolution,” cohort
retrieval,® and temporal relation extraction.”

Existing work in section classification®® has shown that the
task is solvable for a given dataset, but that performance drops
substantially when applying a trained system to a new dataset.
In clinical note section classification, researchers have found that
statistical methods and modern pretrained transformers (e.g.,
BERT) achieved high performance for single institution model-
ing.>® In a study for classifying emergency departments reports
into SOAP (“Subjective,” “Objective,” “Assessment,” and
“Plan”)® sections, researchers built an SVM classifier with

lexical syntactic, semantic, contextual, and heuristic features and
the macro-F1 score was 0.85.° In Rosenthal et al.,® BERT
achieved 0.99 and 0.9 F1 score for 2 section classification data-
sets with fine-grained section names. In Tepper et al.,” research-
ers studied performing note segmentation and section
classification together with fine-grained section names. Maxi-
mum entropy classifiers with fine-grained features (e.g., capital
letters, numbers, blank lines, previous section names) achieved
an F1 score of over 0.9 for 2 discharge summary datasets and 1
radiology report dataset. When transferring models learned
from 1 dataset to another, the F1 score dropped to 0.6.

To address the gap in developing section classifiers that can
perform accurately across domains, we developed domain
adaptation methods in the context of the SOAP section classi-
fication task. In clinical practice, SOAP style notes are a
widely used note-writing format taught for documenting the
daily care of patients.>'° In simplifying the section classifica-
tion task to the SOAP classification task, we make it possible
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to perform more cross-domain experiments and simplify the
task to examine the cross-domain performance loss in a set-
ting where we can eliminate 1 variable—the differences in the
output space between datasets.

Automatically classifying sections into SOAP categories is
still beneficial for better understanding the sourcing of infor-
mation extracted by other NLP systems. For example, social
determinants of health information may be more likely to be
found in the social history section of a clinical note which is a
“Subjective” section in the SOAP framework. Medication
mentions may have different interpretation if they are in an
“Objective” section (e.g., treatments in a medication list) ver-
sus a “Subjective” section (e.g., medication misuse in a social
history). In addition, state-of-the-art NLP models (pretrained
transformers) have memory constraints that limit the number
of words they can process,” so processing only relevant sec-
tions may make these models more applicable.

Domain adaptation refers to the study of improving mod-
el’s transferability from a source dataset to a target dataset
and is a common theme in clinical NLP. In this work, we used
the methods of domain-adaptive pretraining (DAPT) and
task-adapted pretraining (TAPT).'! These methods work by
applying the masked language modeling pretraining objective
to target domain data, before doing fine-tuning using labeled
source domain data. We then experimented with using small
amounts of labeled data in the target domain to quantify the
interaction between unsupervised and supervised domain
adaptation techniques.

Objective

The objective of this study is to develop methods that classify
clinical note sections with SOAP labels. The secondary objec-
tive of this work is to examine the generalizability of existing
datasets and methods by performing cross-domain validation,
and to attempt to address any performance degradation with
domain adaptation methods.

Methods
Datasets

We used 3 independent datasets across multiple health sys-
tems and different note types. The first dataset (discharge)
consists of discharge summaries from the i2b2 2010 challenge
from Partners Healthcare and Beth Israel Deaconess Medical
Center.’ The second dataset (thyme) includes colorectal clini-
cal notes of the THYME (temporal history of your medical
events) corpus of Mayo Clinic data.'> The third dataset (prog-
ress) consists of MIMIC-III progress notes derived from pro-
viders across different specialty intensive care units'*™'° We
created classification instances for each dataset by extracting
sections from all the notes. While all 3 datasets had available

section label annotations, the section labels were different
across datasets.

The progress dataset already contains mappings from section
labels to SOAP.' To facilitate cross-domain experiments and
following the SOAP definition guideline,® an expert physician
informaticist (M.A.) mapped the thyme and discharge datasets’
section labels into SOAP labels.”'® The expert was first pro-
vided with the section names, and for section names that could
not be directly mapped, instances of sections were provided for
additional context. The sections that did not fit into the SOAP
(e.g., “Comments,” “Administrative”) were labeled as
“Others.” This created a 5-way classification instance for each
section. The complete list of section names and their SOAP cate-
gories are included in Supplementary Appendices.

Table 1 presents the size, average word count, label distri-
bution, and train/test split ratio for each dataset. During
SOAP mapping, we observed that the “Assessment and Plan”
in the progress dataset covered both “Assessment” and
“Plan” contents, and were not easily separable. We mapped
such sections to the “Assessment” label. As a result, the prog-
ress dataset has a not applicable (N/A) for the “Plan” cate-
gory in Table 1. When splitting the dataset into training and
test set, for discharge, we randomly split the dataset with a
0.8/0.2 ratio. For thyme and progress, we followed the origi-
nal train/test splits.' >

Table 1 also suggests some potential challenge of transfer-
ring SOAP classifiers between domains, as the distribution of
SOAP categories drastically differs. Although “Subjective”
and “Objective” are always the 2 most prevalent categories,
discharge and progress have “Objective” being the largest
count while thyme has “Subjective” being the largest.

In-domain section classification

We used the pretrained transformer framework for section clas-
sification. We fine-tuned BioBERT'” for the thyme, discharge,
and progress datasets. We used BioBERT as the BERT imple-
mentation because BioBERT was pretrained using biomedical
texts and performed better than BERT on a variety of biomedi-
cal NLP tasks, including named entity recognition, relation
extraction and question answering.'” BioBERT also performs
well in medical concept/entity recognition'®' and bleeding
event relation extraction.”® Other domain-appropriate BERT
variants (e.g., BioClinicalBERT*') are already pretrained on
MIMICHI, the source of our progress dataset, so we avoid those
models for the initial fine-tuning experiments to avoid data leak-
age. The use of BioBERT as a baseline model, instead of other
models such as BEHRT?> and GatorTron,> also allows for
making BioClinicalBERT an off-the-shelf DAPT version of Bio-
BERT (see future sections for details).

We first measured the in-domain classification performance
for the 3 datasets. These performance values represented the
upper bounds for our subsequent experiments. We fine-tuned

Table 1. Size, average section word count (with standard deviation), and label distribution of the discharge, thyme, and progress dataset.

Average “Plan” “Others”
Total section word “Subjective” “Objective”  “Assessment” section section Train/test
Dataset counts count section count  section count  section count count count split
Discharge 1372 61+112 376 (27.4%) 628 (45.8%) 243 (17.7%) 103 (7.5%) 22 (1.6%) 0.8/0.2
Thyme 4223 74+ 121 1878 (44.5%) 1329 (31.5%) 676 (16.0%) 100 (2.4%) 240 (5.7%) 0.73/0.27
Progress 13367 46 =97 4521 (33.8%) 7039 (52.7%) 787%(5.9%) N/A 1020 (7.6%) 0.89/0.11

* Assessment and plan combined.
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a model on the training set and applied the model to the same
dataset’s test set. In the domain adaptation literature, the
source domain refers to the domain of the dataset used for
model training, and the target domain to the domain of the
dataset used for model testing. The source and target domain
are the same for in-domain experiments, so we denote the in-
domain experiments as FTy,,qe, indicating that we fine-tuned
directly on target data.

When fine-tuning BERT, we used a learning rate of le-3,
epoch size of 40 and batch size of 10. These hyperparameters
were tuned using the training set. The best model during
model training (determined by the best F1 score on the held-
out validation set) was saved and used for testing. We report
a single run with the best model rather than averaging, which
has the tradeoff of showing realistic amounts of noise due to
small numbers of instances, while not giving a stable estimate
of the expected change in performance. The micro-F1 score
(referred to as F1 score in future sections) was used as the
evaluation metric because SOAP categories in this study
are highly imbalanced both within and across datasets. The
micro-F1 score helps provide high-level insights given that we
are comparing across multiple datasets and experimental set-
tings. We implemented the Huggingface Transformers pipe-
line with AdamW optimizer for fine-tuning.* Experiments in
this study were done on a 24GB NVIDIA TITAN RTX GPU
with FP16 precision.

Cross-domain section classification

We then measured the cross-domain classification perform-
ance for the 3 datasets. We measured the cross-domain classi-
fication performance by testing the fine-tuned model on the
other 2 datasets’ test sets. For example, when we trained a
model on discharge, we tested it on thyme and progress. We
denote these experiments as FT,qurcc because the models were
fine-tuned on a source domain and tested on a different
domain. We use the same model hyperparameter settings as
the in-domain experiments, to simulate the realistic case
where target domain resources are too limited to conduct
hyperparameter search.

Cross-domain section classification with continued
pretraining

Recent work has provided evidence that continued pretrain-
ing of pretrained language models on a target domain allows
for better adaptability of the model.'" Domain-adaptive pre-
training is an unsupervised domain adaptation technique
where a pretrained model is trained for additional steps, using
the same pretraining task of masked language modeling
objective, on a large collection of unlabeled data from the tar-
get domain. Task-adaptive pretraining is similar, but uses a
smaller amount of target domain data—only that portion that
was labeled for the task of interest. For example, for the prog-
ress dataset, the DAPT used the entire MIMIC-III dataset,
and the TAPT considered the training set of progress. In pre-
vious work on general domain datasets,'' both DAPT and
TAPT improved better cross-domain performance, and com-
bining them sequentially (i.e., DAPT + TAPT) obtained the
best performance. We thus experimented with pretrained
transformer models that have been adapted either with DAPT
or DAPT + TAPT. In these experiments, the DAPT, TAPT, or
DAPT + TAPT training is done on top of a base language
model (BioBERT), followed by fine-tuning BERT on labeled

examples in a source and/or target domain (as in the FT qurce
experiments in the last section). We denote these experiments
as DAPT + FTouree and DAPT + TAPT + FTyouce in the
remainder of the article.

We note that existing work in the clinical domain could be
interpreted as DAPT. For example, BioClinicalBERT*' was
created by doing continued pretraining on MIMIC-IIT'? using
BioBERT' as a starting point. From the perspective of down-
stream tasks that use MIMIC-III as a target domain (e.g., the
progress dataset), comparing a BioBERT that has been fine-
tuned on a source domain to BioClinical BERT that has been
fine-tuned on a source domain is essentially testing DAPT.
Since BioClinicalBERT has already been shown to perform
well on multiple tasks, in this work, we use the existing Bio-
ClinicalBERT checkpoint as our DAPT model when progress
is the target domain. When thyme is the target domain, we
used an unreleased section of additional unlabeled notes for
the patients in the THYME labeled corpus'? to perform the
continued pretraining for DAPT. For discharge, no additional
unlabeled data are available. As a proxy, we again used
MIMIC-III and used BioClinical BERT as the DAPT model for
progress.

In DAPT pretraining for thyme, we followed the setup of
the BioClinicalBERT paper*! and used a maximum training
step count of 15 000 and a learning rate of Se-5. For TAPT,
we followed the continued pretraining paper'' and trained
the model on the labeled data from the target domain (with
the masked language modeling task, so it is still unsupervised)
for 100 epochs with other settings being the same.

Our TAPT experiments used only the training splits of the
discharge, progress, and thyme datasets.

To summarize our experimental settings, Table 2 presents
the configuration details of experiments for when the thyme
dataset is the target domain. The corresponding tables for dis-
charge and progress datasets are included in Supplementary
Appendices.

Cross-domain section classification with continued
pretraining and target domain labeled data

In the DAPT and DAPT + TAPT experiments, we used only
the source domain data for BERT fine-tuning, simulating the
realistic setting where no annotation is possible at the target
site (i.e., unsupervised domain adaptation). We next per-
formed experiments that simulate the possibility that a small
amount of labeled data is available at the target site, by
including small numbers of labeled samples from the target
domain during BERT fine-tuning (i.e., supervised domain
adaptation). We also explore how the addition of labeled tar-
get domain data interacts with DAPT and TAPT. We varied
the number of target domain samples from 10, 20, 30, 40 to
50. We denote these experiments as FTsource + rargery DAPT +
FTsource + targety and DAPT + TAPT + FTsource + target*

Quantifying the value of domain adaptation
methods

Annotation can be expensive, and domain adaptation meth-
ods can reduce annotation costs. However, the exact relation-
ship between the domain adaption method and the number of
annotations it can save is unknown for section classification.
We next take a step to address this question.

We do this by estimating the number of in-domain annota-
tions needed for an in-domain model to achieve the F1 score
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Table 2. Summarization of experiment configurations with thyme being the target domain.

Method Experiment Source domain Target domain Number of target DAPT corpus TAPT corpus
domain labeled
samples
added to fine-tuning

In-domain section Flarger Thyme Thyme All Unlabeled notes in Thyme training set

classification THYME corpus
Cross-domain section FTource Discharge or 0

classification progress
Cross-domain section DAPT + FTsource

classification with DAPT + TAPT + FTgurce

continued pretraining

Cross-domain section
classification with
continued pretraining
and target domain
labeled data

Quantifying the value of
domain adaptation
methods

FTsource -+ target

DAPT + FTsourcc + target
DAPT + TAPT + FTsource -+ target

FTtarget

10, 20, 30, 40, 50

10, 20, ..., 190, 200

6
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Table 3. Overall F1 scores of in-domain and cross-domain models, with DAPT and TAPT when applicable.

Source domain (—) Discharge Thyme Progress

DAPT + DAPT + DAPT +
Target domain () FT DAPT + FT  TAPT + FT FT DAPT + FT  TAPT + FT FT DAPT + FT  TAPT + FT
Discharge 0.972 - - 0.572 0.6 0.675 0.541 0.5 0.501
Thyme 0.601 0.469 0.53 0.99 - - 0.646 0.632 0.544
Progress 0.656 0.67 0.749 0.717 0.58 0.528 0.973 - -

The best F1 score for each combination of source and target domain is in bold.
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Figure 1. F1 scores of FTgource + targets DAPT + FTsource + target: @aNd DAPT + TAPT 4 FTsource + target With 10, 20, 30, 40, and 50 target domain samples for
different source and target domain experiments. For example, thyme — discharge represents the experiment with thyme being the source domain and

discharge being the target domain.

of the domain adapted model. For example, if a cross-domain
model with 10 target domain samples (FTsource + targer) €anl
achieve an F1 score of 0.66, and that F1 score will take an in-
domain model (FT,qe:) 61 samples to achieve, we can say the
domain adaption method (transfer learning) saved 51
annotations.

To do this, we created a function that estimates the number
of in-domain samples needed for FTy,, to achieve a specific
F1 score, using a measure-then-interpolate approach. We
measured the F1 score of FTi e (i€, in-domain training)
when given 10, 20, ... 200 (with an interval of 10) in-domain
annotated samples. With the measured F1 scores from this
setup we fit a power law function, F1 =a x n?, over these
data points, with 7, being the target domain annotated sample
size. The power law function has previously been used for

predicting model performance from sample size.”>>” We
invert that function to obtain a function that, given an F1
score, can estimate 7, = (EL)?. We used this function to con-
vert the F1 score of multiple domain adapted models to the
equivalent FTy,,qe sample sizes, rounding to the closest inte-
ger. To improve the generalizability of reporting, the results
of this analysis are all based on the 3 datasets’ average.

Results
In-domain section classification
In Table 3, the shaded cells of the FT columns show the

results of the in-domain section classification experiments,
with F1 scores greater than 0.95 for all 3 datasets. The high
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Figure 3. Dataset averaged F1 scores of FT,rget When trained with 10-200 samples. Results from Figure 2 are overlaid for illustration.

accuracy of in-domain section classification findings are con-
sistent with other studies such as Tepper et al.’

Cross-domain section classification

In Table 3, the unshaded cells in the FT columns show the
results of the cross-domain section classification experiments,
with significantly worse performance than the in-domain set-
ting. When moving from in-domain to cross-domain, the F1

scores dropped from 0.97-0.99 to 0.541-0.717 range. The
average in-domain (FT ) F1 score is 0.977 while the aver-
age cross-domain (FTsguree) F1 score is 0.618.

Cross-domain section classification with continued
pretraining

Table 3 also shows that continued pretraining (DAPT + FT
and DAPT + TAPT 4 FT columns) led to decreased
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Table 4. The number of samples FTy,4ct Needs to reach to the same F1 score as a domain adapted model.

Domain adaptation method (—)
Target domain (|) labeled sample size

FTsource + target

10 61(51)
20 103 (83)
30 135 (105)
40 124 (84)
50 153 (103)
Average 115.2(85.2)

DAPT + FTsource + target DAPT + TAPT + FTsource + target

3(83) 101 (91)
125 (105) 137 (117)
163 (133) 151 (121)
162 (122) 180 (140)
169 (119) 182 (132)

142.4 (112.4) 150.2 (120.2)

The F1 scores of domain adapted models varied with the number of in-domain samples provided (10-50). Numbers in parenthesis show the number of

annotations saved by the domain adaptation methods.

performance when thyme was the target domain. The effect
of continued pretraining was mixed for progress and dis-
charge. No significant performance improvement was
observed when continued pretraining (DAPT or DAPT +
TAPT) was applied directly on cross-domain section
classification.

Cross-domain section classification with continued
pretraining and target domain labeled data

Figure 1 shows learning curves when some target-domain
labeled data were provided for fine-tuning. When comparing
before and after continued pretraining (DAPT or DAPT +
TAPT), we found continued pretraining generally improved
model performance when combined with small numbers of
target domain instances.

The F1 scores of FTsource + rarger €xhibit substantial noise
when the source domain is progress and the target domain is
discharge (Figure 1, bottom left). This is likely due to noise
that can occur with small amounts of labeled target data,
especially given the large difference in section count and sec-
tion ratio between the 2 datasets. In discharge, almost all of
its section categories are 10 times fewer than that of progress.
In terms of section ratio, “Assessment” accounts for 17.7%
sections in discharge, but only 5.9% in progress. “Others”
accounts only for 1.6% sections in discharge, but 7.6% for
progress.

Figure 2 shows the F1 score curves (from Figure 1) aver-
aged over the 6 source and target domain dataset combina-
tions. FToource + targer has a drop at sample size 40, which can
be a result of the more fluctuating progress — discharge
model in Figure 1. On average, continued pretraining (DAPT
or DAPT + TAPT) improved over the model without it
(FTsource + targer) consistently. When comparing within contin-
ued pretraining models (DAPT + FTource + targec and DAPT
+ TAPT + FTsource + targer), We found applying TAPT after
DAPT further increased the F1 score for 4 out of 5 sample
sizes. DAPT + TAPT on averaged increased the F1 score from
0.756 to 0.808 (+0.052).

Quantifying the value of domain adaptation
methods

Figure 3 shows the F1 scores (averaged over datasets) of the
in-domain model (FT ge) With sample size varying from 10
to 200, and the power law curve. The results in Figure 2 were
overlaid on Figure 3 to help illustrate the quantification proc-
ess. With 7, being the target domain annotated sample size,
the fit power law function is, F1 = 0.251 x #,%%3* and the

1
corresponding inverse function is, 7, = (%) 0234,

By applying the function to the domain adapted models’ F1
scores, we can convert them to the training sample size needed
for FT arge: to achieve the same F1. We can therefore quantify
domain-adapted models in the unit of target domain annota-
tions. As an example and visualized in Figure 3 (full visualiza-
tion included in Supplementary Appendices), FTsource + rarget
when trained with 10 target domain samples, achieved an F1
score equivalent to an in-domain model (FTiyqe) trained
using 61 target domain samples. Similarly, the equivalent tar-
get domain sample size is 93 for DAPT + FTource + rarger and
101 for TAPT + DAPT + FTsouce + rargerr The complete
result is included in Table 4. We observed that, compared to
FTrarges FTsource + targer ON average saved 85.2 annotations,
DAPT + FTsource + targer Saved 112.4, and DAPT + TAPT +
FTsource + targer Saved 120.2. Continued pretraining (DAPT +
TAPT) saved 120.2 — 85.2 =35 annotations.

Discussion
Challenges of transferring SOAP section
classification

Our results show that, while SOAP section classification is a
straightforward task for humans, and one that can be effec-
tively solved for individual datasets, current state of the art
supervised methods did not solve the task in a generalizable
way. Part of the challenge may be attributable to different
institutions having different documentation practices by pro-
viders, different note types in the EHR, and changes in label
distribution. Many tasks are not adequately tested in out-of-
sample environments across different domains and we pro-
vided a rigorous approach across multiple centers and note
types to show that even “simple” tasks are difficult to general-
ize. The results also follow a similar finding in a finer-grained
version of the task,’ as well as other clinical NLP tasks,*® but
is perhaps more surprising here due to the relative simplicity
of the task and the degree to which it is solved within each
dataset. The attempts to leverage pretrained language models,
and multiple fine-tuning and continual training approaches,
still did not completely overcome the cross-domain
challenges.

Transferability difference by SOAP category

To understand which SOAP categories are more transferable,
we analyzed the results from the “Cross-domain section clas-
sification” section by SOAP categories, averaged across the 3
datasets. The by-category F1 scores are 0.68 for “Subjective,”
0.73 for “Objective,” 0.15 for “Assessment,” 0.13 for
“Plan,” and 0.05 for “Others.”
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“Subjective” and “Objective” are the 2 most prevalent cate-
gories, and are more transferable than the others. The 2 com-
bined always account for more than 70% sections. In
comparison, the other 3 categories are rare and their preva-
lence differ greatly between datasets. For example, the preva-
lence of “Plan” is 7.5% for discharge, 2.4% for thyme, and
N/A for progress.

We also noted that “Subjective” and “Objective” categories
usually have more homogenous fine-grained section names
across datasets. Section names like “Chief complaint,”
“Social History,” and “Vital Sign” are common across data-
sets. In contrast, the other 3 categories often have section
names unique to certain datasets, such as “Special
Instructions” which only occurs in thyme’s “Plan.”

Benefits of domain adaptation methods

The experiments between different combinations of training
sets and training methods highlight trade-offs between differ-
ent ways of mitigating the performance drop-offs when cross-
ing domains. Unsupervised adaptation methods like DAPT
and TAPT show benefits that are equivalent to dozens of
target-domain training samples, but only when some target
samples are already annotated. We also noted minimal per-
formance gain from TAPT over DAPT, unlike prior work.!!
The small benefit from TAPT could be due to the fact that
transfer learning already brought knowledge to the model in
a similar form as pretraining. One important direction mov-
ing forward is to regularly report quantification of this type
of information across tasks so that different NLP tasks can be
situated amongst each other in terms of the relative benefit
they receive from unsupervised adaptation versus labeling
additional instances.

The modest performance gain of continued pretraining in
this study is similar to other papers that reported domain
adaptation methods in clinical NLP tasks. In a study,
researchers developed BioClincalBERT?! by continued pre-
training BioBERT'” on clinical notes and reported that the
performance gain is usually less than 2%. Similarly, in a study
experimenting continued pretraining of TS5 on clinical notes,
only 2%-4% performance gain was observed.”” In a study on
negation classification,”® it was found that even with a super-
vised domain adaption method, the performance gain is
minimal.

The value of unsupervised domain adaptation of pretrained
transformers when paired with small amounts of in-domain
data is an encouraging result of this work. We caution, how-
ever, that it does not tell a complete story. Target domain
annotation and continued pretraining, our 2 adaptation meth-
ods, both can be challenging and require resources at a target
site. So, while the improvements of DAPT and TAPT are large
in some cases, for this task they do seem to require some small
amount of target-domain labeling. It could be the case that
annotating a few hundred more instances is actually a more
efficient decision than setting up continued pretraining infra-
structure. In summary, even for the straightforward SOAP
section classification task, these questions around adapting
NLP systems are complex.

Limitations and future work

Each of the individual datasets we used were derived from sin-
gle centers, which may be a contributing factor to the lack of
generalizability. Future work in this task should explore the
benefits of incorporating more variability in the types of notes

and health systems used as source training data, to see
whether combinations of datasets generalize better.

Future work should also extend to the segmentation ver-
sion of the task, to see whether the same conclusions apply in
that setting. Finally, future work should study whether the
same findings may also be applicable to the more fine-grained
section classification task, where the problem is more chal-
lenging due to lack of label standardization and sparsity of
different section labels.

Conclusion

Our primary conclusion is that SOAP section classification is
challenging in the cross-domain setting, even despite recent
advances in modeling and the simplification of the task from
full section classification. Our experiments with domain adap-
tation showed that straightforward unsupervised methods
were not helpful on their own, but when combined with small
amounts of supervision in the target domain had a larger
impact.
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