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ABSTRACT
Objective: Applications of machine learning in healthcare are of high interest and have the potential to improve patient care. Yet, the real-world
accuracy of these models in clinical practice and on different patient subpopulations remains unclear. To address these important questions, we
hosted a community challenge to evaluate methods that predict healthcare outcomes. We focused on the prediction of all-cause mortality as the
community challenge question.

Materials and methods: Using a Model-to-Data framework, 345 registered participants, coalescing into 25 independent teams, spread over 3
continents and 10 countries, generated 25 accurate models all trained on a dataset of over 1.1 million patients and evaluated on patients prospec-
tively collected over a 1-year observation of a large health system.

Results: The top performing team achieved a final area under the receiver operator curve of 0.947 (95% CI, 0.942-0.951) and an area under the
precision-recall curve of 0.487 (95% CI, 0.458-0.499) on a prospectively collected patient cohort.

Discussion: Post hoc analysis after the challenge revealed that models differ in accuracy on subpopulations, delineated by race or gender, even
when they are trained on the same data.

Conclusion: This is the largest community challenge focused on the evaluation of state-of-the-art machine learning methods in a healthcare sys-
tem performed to date, revealing both opportunities and pitfalls of clinical AI.
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Introduction

Applications of machine learning applied to patient data are
undergoing wide development and implementation in health-
care.1,2 The performance of these methods as they are used in
the clinic—and their associated impact on patient and pro-
vider outcomes—are not well understood. An important risk
in the design and implementation of machine learning

algorithms is the self-assessment bias, where the implementer
and evaluator are the same person or team, which can result
in overfitting and poor generalization.3 At the same time,
health systems and journals are inundated with new methods
that overwhelm the ability of healthcare providers to assess
effective solutions. Clinical practice and data collection practi-
ces change over time, in some cases, rendering EHR data
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obsolete in as little as 3-6 months, as it no longer reflects cur-
rent data distributions.4 Clinical data can also contain hidden
biases that reflect social and institutional disparities.5 Risks of
biases in medicine have been well documented, and models
built using biased data will propagate these biases into prac-
tice through model recommendations.5,6 Addressing these
issues requires a rigorous, unbiased framework that can eval-
uate algorithm performance using independent honest
brokers, assess generalizability over time and across institu-
tions, and report on performance disparities across
subpopulations.

Concurrently, over the past several decades, “big data”
open science experiments have been established that lever-
age a community of data scientists to work together to
competitively solve a specific problem where the answer is
unknown to the data scientists. Examples include the
DREAM Challenges7 and the Critical Assessments.8–12

Large-scale clinical data has not been broadly utilized in
these experiments because of HIPAA, privacy concerns,
and business risks. However, recent technological advances
can enable open science on clinical data by restricting data
scientist access to protected data and instead of traditional
data sharing where the data is given to data scientists, the
methods are shared and applied to restricted data by the
managers of that data.

We have developed an approach, called Model-to-Data
(MTD), that delivers analytical models to protected data
without sharing the data directly with model developers.13

Instead, developers receive synthetic patient data that con-
forms to the same data model and architecture as the
source protected data and containerized models developed
by the participants are delivered to the protected health
data for training and evaluation. We previously piloted
this method on an EHR dataset from the University of
Washington and demonstrated the feasibility of accurate
model development without the model developer having
direct access to the patient data.14 This approach has 2
benefits: (1) it protects patient data while allowing
researchers to build machine learning methods and (2) it
forces a more standardized and transferable approach to
building models allowing the data host to perform rigorous
evaluations of submitted models.

We leveraged this platform to implement the EHR
DREAM Challenge: Patient Mortality Prediction to assess
machine learning approaches applied to a clinical data
warehouse while protecting patient privacy. DREAM Chal-
lenges are open competitions, where the challenge organiz-
ers solicit the broader research community to develop
methods to answer a specific set of biomedical questions,7

and to assess these methods using hidden, gold standard
datasets. Community challenges have proven to be a
robust setting for the objective evaluation of prediction
models since they remove the researcher from the evalua-
tion process,8,9,15–17 limiting the self-assessment bias.3 We
focused on the clinical question of predicting all-cause
mortality, as the clinical phenotype is clearly defined and
complete (University of Washington merges patient records
with state death records to minimize missingness) and pre-
vious mortality prediction methods have been developed.18–21

In this Challenge, we asked participants to predict whether
patients would pass away within 180 days of their last visit
to the UW medical system based on that patient’s previous
medical history. We evaluated models for population level

accuracy and longitudinal generalizability by evaluating mod-
els on a prospectively collected data set. We also assessed
demographic generalizability by evaluating model perform-
ance across sensitive demographic strata.

Methods
The University of Washington clinical data

repository

The UW Medicine enterprise data warehouse (EDW) includes
patient records from clinical sites within the UW Medicine
system, including more than 300 specialty and primary care
clinics. The EDW gathers data from more than 60 sources,
including laboratory results, demographic data, diagnosis
codes, and medications prescribed. Patient records from 2010
to 2019 in the EDW were transformed into a standardized
data format, the Observational Medical Outcomes Partner-
ships Common Data Model (OMOP CDM v5.0).22 For the
EHR DREAM Challenge, we used all patients who had at
least 1 visit in the UW OMOP repository, which represented
1.3 million patients with 22 million visits covering approxi-
mately 10 years of patient histories.

The EHR DREAM challenge: patient mortality

prediction
Challenge question
For this challenge, we asked participants to predict 180-day
all-cause mortality from the last patient visit at UW Medicine.
True positives were defined as patients who had a death
record in the first 180 days of their last visit record and true
negatives were defined as patients who either had a death
record more than 180 days from their last visit, or who did
not have a death record. Death records were derived from the
UW medical record and the Washington State death records
which were mapped to a patients’ EHR record using their
name, address, date of birth, and social security number.

The challenge infrastructure
The EHR DREAM Challenge was developed and run using a
“Model to Data” (MTD) approach.13,14 This method relies
on containerization software (Docker),23 a common data
model (OMOP),22 a model intake mechanism (Synapse),24

and a synthetic dataset for low risk technical validation of
submitted models (Synpuf).25 Information on the synthetic
data is available in the Supplementary Material. Challenge
participants were required to submit “containerized” models
to be applied to protected data by the Challenge organizers.
At no time during the Challenge did participants have direct
access to real patient data and models never had access to
direct patient identifiers. Participants were allowed to down-
load the synthetic data to locally test and debug their docker
container. Synthetic data was not used to train their models
(see Supplementary Material for synthetic data methods). Par-
ticipants were allowed to submit pretrained models using
data to which they had access, such as their own institution’s
clinical data warehouse. The containerized algorithms submit-
ted by participants were able to use a training split of the UW
dataset to train a predictive model de novo, or to further opti-
mize a pretrained model. Submitted models were first applied
to synthetic data to check for technical compliance (Figure 1,
Stage 1: Model Validation) and the log files generated by the
models in the synthetic data environment were returned to
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participants. Following successful execution on the synthetic
data, the models were pulled into a University of Washington
secure environment that was disconnected from the internet
where they were trained on the UW OMOP repository. The
UW OMOP repository did not contain patient identifiers.
The models had no access to the internet during training and
evaluation (Figure 1, Stage 2: Model Evaluation). The trained
models were tested on a holdout set and the area under the
receiver operating curve (AUROC) and area under the preci-
sion recall curve (AUPRC) were returned to participants via
the Synapse platform. No logs, model parameters, or other
information other than the performance metrics, were
returned to participants after models were applied to the UW
patient repository (including the final models themselves).
Participants were allowed a total of 10 hours to train and test
their models in this environment. The models were run on a
server environment with access to 70 GB of RAM, 32 2.3
GHz CPU cores and no GPUs during this process. Model pre-
dictions were never linked to identified patient records.

Challenge timeline and data
The EHR DREAM Challenge lasted from September 9, 2019
to February 23, 2020 and was conducted in 3 phases: the
open phase, the leaderboard phase, and the validation phase.
During the open phase, participants could submit models for
technical validation using only synthetic data in the Challenge
cloud environment (Figure 1, Stage 1). During the leader-
board phase, models that were technically validated against
the synthetic data were applied to the leaderboard training
data and evaluated against the leaderboard validation data
(Table 1). The leaderboard training and validation data repre-
sented patients who had a clinical visit from January 2010 to
August 2018 with possible death records spanning into

February 2019. During the open and leaderboard phases,
new data accumulated in the UW EHR. We gathered this
data (holdout test data) which represented patients who vis-
ited UW medical facilities between January and June of 2019
and whose last visit record was at least 180 days prior to
December 31, 2019 (the end of the prospectively collected
data). Patients who were originally in the training data but
who later had clinical records in 2019 were removed from the
training data and included in the holdout test data. During
the validation phase, models were retrained on the leader-
board training data (excluding the patients transitioned to the
holdout test data) and were tested on this new prospectively
collected holdout test data. (See Supplementary Material for
details on the timeline and data generation processes.)

Model evaluation
Challenge evaluation metrics
The AUROC was used as the primary metric for assessing
model performance.26 An empirical Bayes factor, K, (boot-
strapped distributions n¼ 10 000) was computed to deter-
mine if the AUROCs between 2 models were consistently
different. If 2 models were found to have a small Bayes factor
(K< 19), we used the AUPRC as a tie-breaking metric. Both
the AUROC and the AUPRC were computed for all submis-
sions and were used to rank teams on the Challenge leader-
board. During the leaderboard phase, models were scored
against the leaderboard validation data to build the initial
leaderboard phase model ranking. During the final validation
phase, models were scored against the prospectively collected
holdout test set. The top performing teams were declared
from the resulting validation phase model rankings. This
holdout test set served to evaluate models on prospectively

Figure 1. Model-to-data architecture to evaluate the performance of EHR prediction models in the Patient Mortality DREAM Challenge. Models were

developed on local environments using synthetic data that resembled the real private EHR data. Docker images were submitted through the Synapse

collaboration platform to a submission queue. Images were pulled into the National Center for Advancing Translational Sciences (NCATS) provided AWS

cloud environment and run against a synthetic dataset for technical validation (Stage 1). Once validated, images were pulled into the UW Medicine secure

infrastructure and run against the private EHR data. Model predictions were evaluated using area under the receiver operator curve (AUROC) and area

under the precision recall curve (AUPRC) which were returned to participants through Synapse.
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collected clinical data, testing a models ability to generalize
over shifting clinical practice and data collection.

Resplit data validation
During the challenge, we used the validation phase holdout
test set to build a final ranking of model performance. This
holdout set only contained patients who appeared in the UW
medical system between January and June of 2019. This left a
6-month longitudinal gap between the end date of the training
data and the start date of the holdout test data. We combined
all the datasets (training, validation, and holdout test) and
redivided the dataset into an 80/20 split between training and
testing data using the same prospective splitting method we
used to split the initial leaderboard data (details in the Supple-
mentary Material). We trained the models on the 80% train-
ing data and evaluated the trained models against the 20%
test data. This allowed us to compare the effect of the 6-
month gap on model performance.

Subpopulation accuracy comparison
For each model, we evaluated how well that model performed
across various subpopulations which were defined by differ-
ent demographic or clinical features including race, gender,
ethnicity, age, and type of last visit. Between each demo-
graphic strata, we calculated an empirical Bayes factor, K,
(bootstrapped distributions n¼ 10 000) to determine if a
model’s AUROCs between demographic strata were consis-
tently different. We ran this experiment on the prospectively
gathered validation phase data. Additionally, we evaluated
the impact of numerous clinical subcohorts on model accura-
cies (see Supplementary Material).

Model features
The top 4 highest scoring teams were asked to adjust their
dockerized models to output their trained features as a list of
codes/values with associated weights from their trained mod-
els. In order to compare features across models, these teams
reported which terms (SNOMED, RxNorm, LOINC, etc.)
were used during any feature engineering.

Results

The EHR DREAM Challenge on all-cause patient mortality
prediction was held between September 9, 2019 and February
23, 2020. Participants were asked to submit software pro-
grams that the Challenge organizers—acting as an honest
broker—applied to hidden EHR data for training and model
validation (Figure 1, Figure S2). Data was split into training,
validation, and holdout testing data sets that were used across
2 phases of the Challenge: a leaderboard phase and a final
validation phase. Within the final validation phase, 942 381
patients were available for model training and 168 708
patients were used for model validation, with mortality rates
of 0.90% and 1.32%, respectively (Table 1). The Challenge
received a total of 132 submissions from 25 teams that were
able to be successfully executed and produced valid
predictions.

During the leaderboard phase, of the 25 successfully vali-
dated models, 10 teams exceeded AUROC >0.9. AI4Life led
the leaderboard phase—achieving an AUROC¼ 0.979
(0.977-0.981) and AUPR¼ 0.614 (Table 2). In the final vali-
dation phase, 15 teams submitted successfully validated mod-
els, with 3 teams achieving an AUROC >0.9 (Table 2). The
top performing team, UW-biostat, achieved an
AUROC¼0.947 (0.924-0.952) and an AUPR¼0.478. Given
the tendency of models to overfit on the leaderboard data, we

Table 1. Demographic makeup as a percentage of the individual data sizes across the different versions of data used in the DREAM Challenge.

Demographic

Leaderboard phase Validation phase Postchallenge Resplit

Training
(n¼979 184)

Validation
(n¼284 883)

Training
(n¼942 381)

Validation
(n¼200 855)

Holdout test
(n¼168 708)

Training
(n¼1 067 084)

Validation
(n¼273 597)

Age (%)
0-17 6.12 6.38 6.18 7.31 6.04 5.62 9.42
18-34 23.77 22.18 23.84 24.61 20.98 22.07 29.2
35-64 46.82 45.31 46.68 44.84 45.58 47.36 41.12
65-99 22.86 26.03 22.85 23.13 27.33 24.55 20.09
100þ 0.35 0.09 0.37 0.1 0.06 0.34 0.1

Race (%)
White 54.42 64.05 54.39 62.76 66.74 58.07 53.83
Asian 8.36 10.29 8.36 10.59 9.57 8.9 8.44
Black 6.3 7.41 6.22 6.82 8.39 6.81 5.51
Other/Nan 30.93 18.25 31.03 19.83 15.30 26.22 32.22

Gender (%)
Female 52 54.2 51.92 53.82 54 52.59 51.6
Male 47.94 45.78 48.02 46.16 46 47.37 48.35
Other/Nan 0.05 0.01 0.05 0.02 0.01 0.04 0.05

Ethnicity (%)
Hispanic 5.79 6.45 5.78 6.47 7.09 5.80 7.03
Not Hispanic 50.17 77.13 49.90 75.42 80.09 56.09 63.71
Other/Nan 44.04 16.42 44.31 18.11 12.81 38.11 29.26

Mortality Status (%)
Passed 0.83 0.75 0.90 1.12 1.32 0.93 1.33
Alive 99.17 99.25 99.10 98.88 98.68 92.55 98.67

All values represent the percentage of the total number of patients in the dataset of interest. We include a 100þ category as a standalone age category because
that age range is of questionable quality. This gives some idea to the quality of the data made available.
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assessed performance degradation on the validation cohort
data. Between the leaderboard and validation phases, the
average decrease in AUROC was 0.069 with the top 5 models
decreasing by an average of 0.032 and the bottom 8 models
decreasing by an average of 0.10. The top 5 models from the
validation phase were ranked second, third, 11th, 10th, and
7th, respectively, at the end of the leaderboard phase but were
ranked in the top 5 due to having the lowest decrease in per-
formance. Of note, none of the models had impressive calibra-
tion curves (Figure S5), likely due to the challenge emphasis
on threshold-agnostic evaluation metrics like AUROC and
AUPR.

Teams used a variety of machine learning techniques in
their submitted models. Of the 15 validated models, 12 were
boosted methods (LightGBM,27 XGBoost,28 CatBoost,29

Generalized Boosted Regression30), 2 were logistic regression,
and 1 was a neural network (Table S4). Of the top 5 models,
2 were LightGBM, 1 was logistic regression, 1 was CatBoost,
and 1 was Generalized Boosted Regression. Each model used
a different feature selection method ranging from randomly
sampling all available concepts (Team IvanBrugere), carefully
selecting a few features from the literature (Team
LCSB_LUX), and using the structure of the concept ontolo-
gies to roll up low-level granular concepts into broad catego-
ries of disease and drugs as features (Team UW-biostat). We
developed an ensemble model with the top performing models
but observed that the ensemble did not meaningfully improve
prediction accuracy over the top models (see Supplementary
Material).

Top performing model

UW-biostat’s (University of Wisconsin-Madison, Biostatistics
and Medical Informatics) model achieved the highest AUROC
during the final validation phase. While they were not the
highest scoring model during the leaderboard phase, their
model had the smallest decrease in AUROC (0.025) of any
model between the leaderboard phase and the validation
phase (Table 2, Figure 2). The team used ontology-rollup to
reduce feature dimensionality and used time binning and

sample reweighting to capture longitudinal characteristics.
For model development, they trained and tuned a LightGBM
model to predict the mortality risk of each patient. To take
into account potential data drift in EHRs,4,31–33 the team
upweighted more recent patients during optimization and
training of their model. A more detailed description of this
model and of the top 5 models is provided in the Supplemen-
tary Material.

Demographic and clinical cohort evaluation

We evaluated whether models generalized across multiple
demographic and clinical groups including race, gender, age,
ethnicity, last visit type, and clinical condition cohort. Models
were consistently more accurate on Asian patients when com-
pared to any other racial group (Figure 3, Table S2), despite
Asian patients only making up 8.4% of the validation data
and 9.6% of the validation phase training data (Table 2).
Methods varied in their accuracies for other races with some
models (eg, UW-biostat, IvanBrugere, Proacta, AMbeRland,
DMIS_EHR) scoring higher on White patients compared to
Black patients, and others scoring higher on Black patients
than White patients (PnP_India, HELM, Georgetown-ESAC,
AI4Life) (Figure 3, Table S2).

Without exception, models were more accurate on female
patients than on male patients with Bayes factors greater than
10 (strong evidence) for 9 of the top 15 models (Figure S5).
As the challenge asked participants to predict mortality status
180 days from the last visit, we examined whether there were
differences in model performances based on whether the last
visit was inpatient, outpatient, or an emergency room visit.
Most models had lower accuracy when the last visit was an
outpatient visit, with the exception of 3 models (ultraman-
god671, Georgetown—ESAC, AI4Life in Figure S9). On
patients where the last visit was an emergency room visit,
models showed a wide variety of accuracies. In a few cases,
models that had an overall lower model accuracy had higher
accuracies on patients in the emergency room (compare Pro-
Acta to PnP_India in Figure S9). The results of evaluating

Table 2. Top 15 teams and the metrics for their highest performing models.

Team Leaderboard phase Validation phase Postchallenge Resplit

AUROC AUROC
95% CI

AUPR AUROC AUROC
95% CI

Delong
P-value

AUPR AUROC AUROC
95% CI

AUPR

UW-biostat 0.972 (0.969-0.975) 0.524 0.947 (0.942-0.951) 1.70E-04 0.478 0.964 (0.961-0.967) 0.43
Ivanbrugere 0.968 (0.964-0.971) 0.474 0.938 (0.933-0.942) 1.96E-07 0.3 0.956 (0.953-0.96) 0.409
ProActa 0.943 (0.937-0.948) 0.458 0.91 (0.903-0.918) 2.84E-03 0.383 0.904 (0.898-0.91) 0.43
AMbeRland 0.942 (0.937-0.947) 0.288 0.897 (0.89-0.903) 4.18E-02 0.163 0.929 (0.924-0.934) 0.284
DMIS_EHR 0.915 (0.91-0.92) 0.111 0.887 (0.88-0.89) 5.95E-02 0.093 0.939 (0.936-0.943) 0.347
PnP_India 0.958 (0.954-0.963) 0.449 0.876 (0.87-0.883) 1.26E-01 0.182 — — —
ultramangod671 0.882 (0.874-0.891) 0.289 0.865 (0.856-0.875) 2.45E-03 0.264 0.868 (0.86-0.876) 0.37
HELM 0.951 (0.948-0.955) 0.323 0.842 (0.834-0.85) 5.65E-01 0.135 — — —
AI4Life 0.979 (0.977-0.981) 0.614 0.831 (0.82-0.841) 5.28E-01 0.302 0.971 (0.969-0.974) 0.63
Georgetown—

ESAC
0.938 (0.933-0.942) 0.168 0.839 (0.832-0.848) 1.64E-02 0.073 0.938 (0.933-0.941) 0.272

LCSB_LUX 0.956 (0.952-0.959) 0.307 0.82 (0.81-0.829) 8.41E-01 0.116 0.936 (0.932-0.94) 0.201
QiaoHezhe 0.925 (0.92-0.93) 0.16 0.819 (0.81-0.827) 2.92E-01 0.073 — — —
chk 0.903 (0.896-0.908) 0.159 0.808 (0.8-0.817) 1.38E-05 0.062 0.811 (0.804-0.818) 0.061
moore 0.955 (0.951-0.958) 0.313 0.771 (0.757-0.784) 9.51E-45 0.122 0.947 (0.943-0.95) 0.377
tgaudelet 0.904 (0.898-0.91) 0.278 0.807 (0.798-0.817) 0.201 0.158 (0.151-0.166) 0.007

95% confidence intervals were calculated using bootstrapped (n¼ 1000) distributions. The Delong test P-value was generated by comparing each team’s
model with the team’s model ranked below them. Leaderboard phase scores were generated using the models submitted during the final validation phase.
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model accuracy across clinical condition cohorts can be found
in the Supplementary Material.

Assessment of important features

Table 3 reports the top 10 features of each model, including
engineered features (ie, presence or absence of a category of
diagnosis or drug) and raw concepts from the data (ie, granu-
lar SNOMED or LOINC codes). Some of the highly weighted
features included the age of the patient at their last visit, sys-
tolic and diastolic blood pressure, heart rate, and a code for
Do Not Resuscitate (see Table S4 for the full feature lists).

Discussion

Machine learning models are increasingly regarded as founda-
tional to any precision medicine strategy. The assessment of
model accuracy and utility in a healthcare environment is
challenged by limited data availability, concerns about breach
of protected health information confidentiality, and lack of
technical infrastructure, domain expertise and process to sys-
tematically manage model evaluations. We implemented an
architecture for an unbiased and transparent assessment of
methods that overcomes these limitations, and in doing so
were able to improve existing methodology. We demonstrated
how community challenges can provide an inclusive and rig-
orous environment for hosting a machine learning clinical
trial.

Using the MTD framework, 25 international teams submit-
ted machine learning models to a private clinical dataset that
otherwise would have remained inaccessible to these research-
ers. This was enabled by leveraging a common data model, in
this case OMOP, a synthetic dataset for technical develop-
ment and validation, a cloud environment hosting the syn-
thetic data for pipeline and execution evaluation, standard
containerization software, and a secure environment hosting
the private clinical data. Docker images and descriptions for
all (untrained) models have been made available.

Assessing a wide variety of methods from teams allowed us
to evaluate the best approaches and assess intermethod varia-
bility when holding the evaluation data constant. Interest-
ingly, even though models were trained and evaluated on the
same data, there was variance in model accuracy across differ-
ent demographic groups. White, Black, and other racial
groups showed differences across models, with some models
scoring higher on Black patients than White patients and vice
versa, while Asian patients were consistently more accurate
across nearly all models (Figure 3). This may have to do with
the cause of death, as prevalence of different causes of death
may vary between different populations. Unfortunately, we
did not have access to cause of death data at the time of this
analysis. With the exception of the 0-17 age group, method
accuracy was inversely correlated with age (Figure S7). One
hypothesis for this trend is that younger patients who pass
away in 180 days and are coming into the hospital are more
likely to have extreme conditions with a higher risk of death,

Figure 2. Comparison of model performance between the leaderboard phase and the validation phase (Data in Table 2). All models decreased in AUROC

and AUPRC. The top 5 teams’ AUROCs decreased the least between the 2 phases. Only the top 5 team’s performances are colored. The error bars for

the AUROCs represent the 95% confidence interval.
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while older patients are simply more likely to have diseases
and health problems in general, making it more difficult to
predict risk of death. Models also had varied accuracies from
the last visit type, highlighting the need to develop context-
specific clinical prediction algorithms (Figure S9). In other
cases, models were aligned in their bias, universally scoring
higher on females than males (Figure S5). We found no mean-
ingful difference in model accuracy between Hispanic and
Non-Hispanic ethnicity (Figure S5). This evaluation provided
UW Medicine with insights into statistical heterogeneity of

these methods since each method is trained on the same data,
solving the same problem and was validated on the same
data.

Evaluating models in a pseudoprospective manner allowed
us to assess how models would perform over time in the UW
environment. We found that most models decreased in per-
formance in the validation phase when compared to the lead-
erboard phase (Table 2, Figure 2). This is in line with the
literature, as previous studies have shown that the utility of
clinical data can have a half-life of as little as 3 months.4 As

Figure 3. Bootstrapped distributions (n¼ 10 000) of the top 10 model AUROCs broken down by race. Model predictions were randomly sampled with

replacement and scored against the benchmark gold standard. Box-plot center lines represent the median AUROC, box limits represent the upper and

lower quartiles, whiskers represent the 1.5� interquartile ranges, and the points represent the outliers. Comparisons were made between each category

of race and Bayes values calculated to assess the level of evidence for the model having a higher accuracy on racial category compared to another

category. The heat maps represent the log of the calculated Bayes factors when comparing racial groups within each model. The darker the red, the

stronger the evidence for the racial category being higher than the comparison category. Bayes factor values range from 10 000 to 0.0001. The darker the

blue, the stronger the evidence for the racial category being lower than the comparison category. The color scale is normalized across all comparisons.

Raw Bayes factor values can be found in Table S2.
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an example from the UW data, 19.5% of patients with a con-
dition record in 2018 had the concept code for “malignant
tumor of prostate” while in 2019, only 1.5% of patients with
a condition record had that code. Comparing results from the
postchallenge resplit data to the validation phase final results,
the majority of models performed better when the training
data was longitudinally closer to the test data (Table 2). UW-
biostat explicitly down-weighted older data and relied more
heavily on the most recent 6 months of data in the training
dataset resulting in their model having the lowest decrease in
performance of any model. By combining this technique with
their “roll up” feature engineering, UW-biostat’s model
proved to be the most robust against longitudinal changes,
covariate shift, and cohort changes. In contrast, some models
dropped by a significant margin. For instance, AI4Life’s
model was among the most accurate during the leaderboard
phase, but dropped to tenth in the validation phase (Table 2).
While it is difficult to completely account for their drop, one
possible explanation is their overall lower accuracy on first
time visiting patients (Figure S8) combined with the increase
of first-time visitors in the validation data (leaderboard phase
data—13.8% compared to the validation phase data—
19.7%). AI4Life’s model had a high score on the resplit data,
indicating that their model was susceptible to covariate drift
as well. Evaluating models prospectively or pseudoprospec-
tively brings us closer to understanding how the models will
perform in a live clinical setting.

Study limitations

There were several notable limitations of this study. First,
mortality prediction is not immune to censoring, and is sus-
ceptible to an open world limitation as some patients may die
out of state or outside UW clinical care without the ability to
map their death to UW clinical records.34 Improper record
keeping, mismatched information, and delayed record entry
to the state death records can limit the capture and sensitivity
of the state death record mapping process, leading to
improper true negative attribution (ie, patients are designated
as still alive but have actually passed away). Second, all-cause
mortality is not a clinically actionable question, as these mod-
els are not specific enough for clinical action. Future EHR

challenges will focus on clinically actionable prediction ques-
tions. Third, we set a model runtime limit of 10 hours to limit
the burden to the University of Washington secure servers;
however, this also limited the types of models participants
were able to build and excluded models like deep learning.
However, this limit forced participants to carefully consider
the efficiency of their algorithms. Fourth, while we did pro-
spectively evaluate models on a future holdout set to control
for overfitting, evaluation on data from one site does not fully
assess model generalizability. For future assessments, we hope
to partner with other hospitals to externally validate models.
Finally, we acknowledge that the framework described in this
article does not fully address all the complexities associated
with AI implementation within a healthcare system. Addi-
tional considerations not addressed here include: clinical util-
ity, model interpretability, integration into clinical workflows
and decision-making processes, and clinical adoption. None-
theless, a systematic, rigorous assessment of models’ perform-
ance over time is an integral step, and the framework
described in this manuscript is likely to accelerate the deploy-
ment of AI into clinical practice for the benefit of patients.

Conclusion

Machine learning promises to enhance patient care and
improve health outcomes; however, if not properly vetted and
evaluated, risks and negative effects may be introduced. These
risks include breach of privacy in the development and assess-
ment of methods, inaccuracy or methodological bias when
deployed, and the gradual loss of accuracy over time as data
and business practices change. This study highlights these
challenges by showing that while highly accurate methods are
possible, even methods from world-class scientists have con-
siderable variability and that variability (such as differences in
accuracy based on race or gender) may not be detectable from
high-level measures such as population-level AUCs or accu-
racy. Our framework enables this assessment and also brings
the community challenge culture to private datasets, in this
case data that is subject to the HIPAA privacy rule. Further,
machine learning methods may be able to address some
causes of treatment disparities but may cause others for
patients without rich longitudinal data, patients of certain

Table 3. The top 10 weighted features as reported from the top 4 performing teams.

Rank UW-biostat IvanBrugere ProActa AMbeRand

1 Age Not for resuscitation Age Age
2 Average pulse Temperature Creatinine in serum Not for resuscitation
3 Average diastolic blood pressure Albumin in plasma Heart rate Antineoplastic chemotherapy

regimen
4 Average systolic blood pressure History of clinical finding in

subject
Inpatient visit Lactate dehydrogenase (LD),

(LDH)
5 Latest systolic blood pressure

value
Natriuretic peptide B [Mass/vol-

ume] in serum or plasma
Blood typing, serologic; ABO Administration of antineoplastic

agent
6 Year of last visit Racial variable (White) Palliative care Patient encounter procedure
7 Latest pulse measurement Antineoplastic chemotherapy

regimen
Albumin in plasma Secondary malignant neoplasm

of lung
8 Latest diastolic blood pressure

value
Protein in plasma Hematocrit of blood by auto-

mated count
Disorder of lung

9 Latest glucose measurement Heart rate Neutrophils/100 leukocytes in
blood by automated count

Dexamethasone

10 Indicator: unknown conditions Essential hypertension Cholecalciferol Bacterial culture

Features were ordered by their model weight and assigned a rank out of all available features. Feature names were either reported by the teams or were
mapped using the OMOP concept table from the reported concept ids.
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races, gender, or age. Based on these results, we believe that
multisite standardized architecture and independent oversight
is required to truly assess new methods.
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who wish to access the raw, row-level data will need to
directly collaborate with the University of Washington. An
Institutional Review Board approval letter and a Data Use
Agreement for external collaborators will be necessary. Data
access requests can be made through this web page: https://
www.iths.org/investigators/services/bmi/clinical-data-extrac-
tion/. We have included the aggregate demographic and mor-
tality status distributions of the patient cohorts (Table 1).
Figure 2 visualizes Table 2. The bootstrapped distributions
used to generate the box plots in Figure 3 are included as

Source Data, and the raw Bayes factors used to generate the
heatmaps in Figure 3 are provided in Table S2.

Code availability

The individual docker models evaluated in this challenge are
available on Synapse at https://doi.org/10.7303/
syn26433349. You must have a Synapse account and agree to
the Terms of Use in order to download the docker images.
The code used to generate the figures and tables can be found
at https://github.com/Sage-Bionetworks-Challenges/EHR-
DREAM-Challenge-Patient-Mortality-Prediction. Figure
S10b was generated using the VEDx tool (https://github.com/
UWMooneyLab/VEDx).

Authors of the Patient Mortality Prediction
DREAM Challenge Consortium

Aaron Lee14, Ali Salehzadeh-Yazdi15, Alidivinas Prusokas10,
Anand Basu16, Anas Belouali17, Ann-Kristin Becker18, Ariel
Israel19, Augustinas Prusokas20, B. Winter21, Carlos Vega
Moreno22, Christoph Kurz23,24, Dagmar Waltemath21,
Darius Schweinoch18, Enrico Glaab22, Gang Luo25, Guanhua
Chen5, Helena U. Zacharias26, Hezhe Qiao27, Inggeol Lee12,
Ivan Brugere8, Jaewoo Kang12, Jifan Gao28, Julia Truth-
mann21, JunSeok Choe12, Kari A. Stephens29, Lars Kader-
ali18, Lav R. Varshney30,31, Marcus Vollmer18,32, Maria-
Theodora Pandi33, Martin L. Gunn34, Meliha Yetisgen25,
Neetika Nath35, Noah Hammarlund25, Oliver Müller-
Stricker18, Panagiotis Togias36, Patrick J. Heagerty37, Peter
Muir16,38, Peter Banda22, Renata Retkute9, Ron Henkel21,
Sagar Madgi39, Samir Gupta17, Sanghoon Lee12, Sean
Mooney2, Shabeeb Kannattikuni17, Shamim Sarhadi40, Shi-
khar Omar39, Shuo Wang41, Soumyabrata Ghosh22, Stefan
Neumann35, Stefan Simm18, Subha Madhavan41, Sunkyu
Kim42, Thomas Von Yu1, Venkata Satagopam22, Vikas Peja-
ver25, Yachee Gupta21, Yonghwa Choi12, Zofia Nawalany6,
Łukasz Charzewski6,7

14Department of Ophthalmology, University of Washing-
ton, 15Department of Systems Biology and Bioinformatics,
University of Rostock, Rostock, Germany, 16ESAC Inc.,
Rockville, United States, 17Innovation Center for Biomedical
Informatics, Georgetown University, Washington DC, United
States, 18Institute of Bioinformatics, University Medicine
Greifswald, Greifswald, Germany, 19Department of Research
and Data, Division of Planning and Strategy, Clalit Health
Services, Tel-Aviv, Israel, 20Department of Life Sciences,
Imperial College London, London, UK, 21Institute for Com-
munity Medicine, University Medicine Greifswald, Greifs-
wald, Germany, 22Bioinformatics Core, Luxembourg Centre
for Systems Biomedicine, University of Luxembourg, Esch-
sur-Alzette, Luxembourg, 23Helmholtz Zentrum München,
Institute of Health Economics and Health Care Management,
Neuherberg, Germany, 24Munich School of Management and
Munich Center of Health Sciences, Ludwig-Maximilians-Uni-
versit€at München, Munich, Germany, 25Department of Bio-
medical Informatics and Medical Education, University of
Washington, 26Department of Psychiatry and Psychotherapy,
University Medicine Greifswald, Greifswald, Germany,
27Chongqing Institute of Green and Intelligent Technology,
Chinese Academy of Sciences, Chongqing, China, 28School of
Medicine and Public Health, University of Wisconsin-
Madison, Madison, United States, 29Department of

Journal of the American Medical Informatics Association, 2024, Vol. 31, No. 1 43

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad159#supplementary-data
https://www.iths.org/investigators/services/bmi/clinical-data-extraction/
https://www.iths.org/investigators/services/bmi/clinical-data-extraction/
https://www.iths.org/investigators/services/bmi/clinical-data-extraction/
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad159#supplementary-data
https://doi.org/10.7303/syn26433349
https://doi.org/10.7303/syn26433349
https://github.com/Sage-Bionetworks-Challenges/EHR-DREAM-Challenge-Patient-Mortality-Prediction
https://github.com/Sage-Bionetworks-Challenges/EHR-DREAM-Challenge-Patient-Mortality-Prediction
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad159#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad159#supplementary-data
https://github.com/UWMooneyLab/VEDx
https://github.com/UWMooneyLab/VEDx


Psychiatry and Behavioral Sciences, University of Washing-
ton, 30Salesforce Research, Palo Alto, United States, 31Univer-
sity of Illinois at Urbana-Champaign, Urbana, United States,
32German Centre for Cardiovascular Research: DZHK,
Greifswald, Germany, 33School of Health Sciences, University
of Patras, Rion, Greece, 34Department of Radiology, Univer-
sity of Washington, 35Department of Bioinformatics, Univer-
sity Medicine Greifswald, Greifswald, Germany, 36School of
Health Sciences, University of Patras, Rion, Greece, 37Depart-
ment of Biostatistics, University of Washington, 38PJM Con-
sulting LLC, San Diego, United States, 39ZS Associates,
Bengaluru, Karnataka, India, 40Department of Medical Bio-
technology, Tabriz University of Medical Sciences, Tabriz,
Iran, 41Georgetown University, Washington DC, United
States, 42Department of Computer science, College of Infor-
matics, Korea University, Seoul, South Korea

References

1. Goldstein BA, Navar AM, Pencina MJ, Ioannidis, JPA. Opportuni-
ties and challenges in developing risk prediction models with elec-
tronic health records data: a systematic review. J Am Med Inform
Assoc. 2017;24(1):198-208.

2. Jauk S, Kramer D, Großauer B, et al. Risk prediction of delirium in
hospitalized patients using machine learning: an implementation
and prospective evaluation study. J Am Med Inform Assoc.
2020;27(9):1383-1392.

3. Norel R, Rice JJ, Stolovitzky G. The self-assessment trap: can we
all be better than average? Mol Syst Biol. 2011;7(1):537.

4. Chen JH, Alagappan M, Goldstein MK, Asch SM, Altman RB.
Decaying relevance of clinical data towards future decisions in
data-driven inpatient clinical order sets. Int J Med Inform.
2017;102:71-79.

5. Hammarlund N. Racial treatment disparities after machine learn-
ing surgical risk-adjustment. Health Serv Outcomes Res Method.
2021;21(2):248-286.

6. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting
racial bias in an algorithm used to manage the health of popula-
tions. Science. 2019;366(6464):447-453.

7. Saez-Rodriguez J, Costello JC, Friend SH, et al. Crowdsourcing
biomedical research: leveraging communities as innovation
engines. Nat Rev Genet. 2016;17(8):470-486.

8. Cai B, Li B, Kiga N, et al. Matching phenotypes to whole genomes:
lessons learned from four iterations of the personal genome project
community challenges. Hum Mutat. 2017;38(9):1266-1276.

9. Daneshjou R, Wang Y, Bromberg Y, et al. Working toward preci-
sion medicine: predicting phenotypes from exomes in the Critical
Assessment of Genome Interpretation (CAGI) challenges. Hum
Mutat. 2017;38(9):1182-1192.

10. Andreoletti G, Pal LR, Moult J, Brenner SE. Reports from the fifth
edition of CAGI: the critical assessment of genome interpretation.
Hum Mutat. 2019;40(9):1197-1201.

11. Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J. Critical
assessment of methods of protein structure prediction (CASP)-
Round XIV. Proteins. 2021;89(12):1607-1617.

12. Zhou N, Jiang Y, Bergquist TR, et al. The CAFA challenge reports
improved protein function prediction and new functional annota-
tions for hundreds of genes through experimental screens. Genome
Biol. 2019;20(1):244.

13. Guinney J, Saez-Rodriguez J. Alternative models for sharing confi-
dential biomedical data. Nat Biotechnol. 2018;36(5):391-392.

14. Bergquist T, Yan Y, Schaffter T, et al. Piloting a model-to-data
approach to enable predictive analytics in health care through

patient mortality prediction. J Am Med Inform Assoc.
2020;27(9):1393-1400. https://doi.org/10.1093/jamia/ocaa083

15. Radivojac P, Clark WT, Oron TR, et al. A large-scale evaluation of
computational protein function prediction. Nat Methods.
2013;10(3):221-227.

16. Jiang Y, Oron TR, Clark WT, et al. An expanded evaluation of
protein function prediction methods shows an improvement in
accuracy. Genome Biol. 2016;17(1):184.

17. Moult J. A decade of CASP: progress, bottlenecks and prognosis in
protein structure prediction. Curr Opin Struct Biol.
2005;15(3):285-289.

18. Weng SF, Vaz L, Qureshi N, Kai J. Prediction of premature all-
cause mortality: a prospective general population cohort study
comparing machine-learning and standard epidemiological
approaches. PLoS One. 2019;14(3):e0214365.

19. Fahey M, Rudd A, B�ejot Y, Wolfe C, Douiri A. Development and
validation of clinical prediction models for mortality, functional
outcome and cognitive impairment after stroke: a study protocol.
BMJ Open. 2017;7(8):e014607.

20. Smolin B, Levy Y, Sabbach-Cohen E, Levi L, Mashiach T. Predict-
ing mortality of elderly patients acutely admitted to the Department
of Internal Medicine. Int J Clin Pract. 2015;69(4):501-508.

21. Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep
learning with electronic health records. NPJ Digit Med. 2018;1:18.

22. Hripcsak G, Duke JD, Shah NH, et al. Observational Health Data
Sciences and Informatics (OHDSI): opportunities for observational
researchers. Stud Health Technol Inform. 2015;216:574-578.

23. Enterprise Container Platform j Docker. Docker. https://www.
docker.com/. Accessed August 8, 2023.

24. Omberg L, Ellrott K, Yuan Y, et al. Enabling transparent and col-
laborative computational analysis of 12 tumor types within The
Cancer Genome Atlas. Nat Genet. 2013;45(10):1121-1126.

25. Lambert CG, Amritansh, Kumar P. Transforming the 2.33M-
patient Medicare synthetic public use files to the OMOP CDMv5:
ETL-CMS software and processed data available and feature-
complete. 2016.

26. Hanley JA, McNeil BJ. The meaning and use of the area under a
receiver operating characteristic (ROC) curve. Radiology.
1982;143(1):29-36.

27. Ke G, Meng Q, Finley T, et al. LightGBM: a highly efficient gra-
dient boosting decision tree. In: Guyon I, ed. Advances in Neural
Information Processing Systems 30. Curran Associates, Inc.;
2017:3146-3154.

28. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In:
Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. Association for Com-
puting Machinery; 2016:785-794.

29. Prokhorenkova L, Gusev G, Vorobev A, et al. CatBoost: unbiased
boosting with categorical features. In: Bengio S, ed. Advances in
Neural Information Processing Systems 31. Curran Associates,
Inc.; 2018:6638-6648.

30. Ridgeway G. Generalized Boosted Models: A guide to the gbm
package. https://cran.r-project.org/web/packages/gbm/vignettes/
gbm.pdf. Accessed August 9, 2023.

31. Ghassemi M, Naumann T, Schulam P, et al. A review of challenges
and opportunities in machine learning for health. AMIA Jt Sum-
mits Transl Sci Proc. 2020;2020:191-200.

32. Davis SE, Lasko TA, Chen G, Siew ED, Matheny ME. Calibration
drift in regression and machine learning models for acute kidney
injury. J Am Med Inform Assoc. 2017;24(6):1052-1061.

33. Davis SE, Lasko TA, Chen G, Siew ED, Matheny ME. Calibration
drift in regression and machine learning models for acute kidney
injury. J Am Med Inform Assoc. 2017;24(6):1052-1061.

34. Dessimoz C, �Skunca N, Thomas PD. CAFA and the open world of
protein function predictions. Trends Genet. 2013;29(11):609-610.

44 Journal of the American Medical Informatics Association, 2024, Vol. 31, No. 1

https://doi.org/10.1093/jamia/ocaa083
https://www.docker.com/
https://www.docker.com/
https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf
https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf

	Active Content List
	Introduction
	Methods
	Results
	Discussion
	Conclusion
	Authors of the Patient Mortality Prediction DREAM Challenge Consortium
	References


