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Abstract
Objective: Identifying sets of rare diseases with shared aspects of etiology and pathophysiology may enable drug repurposing. Toward that aim,
we utilized an integrative knowledge graph to construct clusters of rare diseases.

Materials and Methods: Data on 3242 rare diseases were extracted from the National Center for Advancing Translational Science Genetic and
Rare Diseases Information center internal data resources. The rare disease data enriched with additional biomedical data, including gene and
phenotype ontologies, biological pathway data, and small molecule-target activity data, to create a knowledge graph (KG). Node embeddings
were trained and clustered. We validated the disease clusters through semantic similarity and feature enrichment analysis.

Results: Thirty-seven disease clusters were created with a mean size of 87 diseases. We validate the clusters quantitatively via semantic similar-
ity based on the Orphanet Rare Disease Ontology. In addition, the clusters were analyzed for enrichment of associated genes, revealing that the
enriched genes within clusters are highly related.

Discussion: We demonstrate that node embeddings are an effective method for clustering diseases within a heterogenous KG. Semantically
similar diseases and relevant enriched genes have been uncovered within the clusters. Connections between disease clusters and drugs are
enumerated for follow-up efforts.

Conclusion: We lay out a method for clustering rare diseases using graph node embeddings. We develop an easy-to-maintain pipeline that can
be updated when new data on rare diseases emerges. The embeddings themselves can be paired with other representation learning methods
for other data types, such as drugs, to address other predictive modeling problems.
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Background and significance

Rare diseases affect up to 25-30 million people in the United
States1 and more than 300 million worldwide,2 making rare
diseases common as a collective. The burden of rare diseases
is disproportionately high because patients living with rare
diseases tend to incur high healthcare costs along the course
of long diagnostic odysseys and intensive treatment regi-
mens.3,4 Furthermore, the population of rare disease patients
is distributed across 5000-10 000 distinct diseases,5 yet the
vast majority have no approved therapeutics.

Methods enabling research and development efforts to
advance treatments for multiple diseases simultaneously may
offer a path forward. Some such methods are already in prac-
tice, including therapeutic platforms like gene therapies,6 bas-
ket clinical trials,7 and drug repurposing.8 Both basket clinical
trials and drug repurposing require knowledge of the connec-
tions between diseases through their underlying causal factors.

Following similar efforts in the broader biomedical com-
munity,9 data integration and harmonization efforts in the
rare disease space have emerged to support research and

development aimed at multiple diseases at once. For example,
the Encyclopedia of Rare Disease Annotations for Precision
Medicine (eRAM)10 was built using a text-mining approach
from the biomedical literature, as well as integration of vari-
ous data from open source databases (ie, Unified Medical
Language System, Human Phenotype Ontology [HPO],
Orphanet, Online Mendelian Inheritance in Man, and
genome-wide association studies), to connect and annotate
diseases, genes, and phenotypes. Another example is the
RDMap (a Rare Disease Map),11 which was constructed
based on only Orphanet12 data (which uses HPO and Gene
Ontology [GO] terms). Moreover, RDMap measures the phe-
notypic and genetic distance between diseases and multidi-
mensional scaling to convert the distance matrix into 2-
dimensional (2D) points for visualization and the k-means
clustering method to divide into several disease clusters. Both
eRAM and RDMap utilize methods for calculating the simi-
larity of rare diseases using phenotype and pathogenetic gene
annotations individually and then combining the similarity
scores. More specifically, eRAM and RDMap are helpful for
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researchers and clinicians who want to explore similarities
among diseases and seek clinical diagnosis assistance.

The National Center for Advancing Translational Sciences
(NCATS) supports the Genetic and Rare Diseases (GARD)
Information Center to maintain data on rare diseases within
the United States. A preliminary attempt was made to harmo-
nize data across the GARD diseases using multisource map-
pings across diseases and genes and phenotype annotations.13

Here, we follow up on that study and use the similarity
between diseases, with respect to their position within our
KG, to perform disease clustering. Three factors differentiate
our study from prior efforts: (1) the incorporation of explicit
biological pathway and small molecule activity data, (2) the
focus specifically on diseases tracked by GARD, and (3) the
use of graph node embeddings.

DeepWalk14 and Node2Vec15 are notable graph node
embedding algorithms that convert graph nodes into vectors
by applying word2vec16 embedding models to random walks
taken from across the knowledge graph (or any graph-
structured dataset). OPA2Vec17 and, subsequently DL2Vec18

were developed for the specific application of graph node
embedding methods to the biomedical domain, with a partic-
ular emphasis on the use of semantic ontologies. A recent
study utilizes the structure of GO to create gene and disease
embeddings using only gene interaction data and gene-disease
annotations.19 In this study, we derive graph node embed-
dings for disease nodes within a KG containing diseases
directly connected to associated genes and phenotypes and
further enriched with small molecules (both drugs and metab-
olites), molecular pathway data, and biomedical ontologies.
Our embeddings were generated using DL2Vec, modified to
balance the probability of traversal from a disease node to
either a gene-node or a phenotype-node. By using a variant of
DL2Vec, we implicitly capture the semantic information con-
tained within the ontology structures alongside the direct con-
nections between diseases and genes/phenotypes.

The disease node embeddings are clustered, and the result-
ing clusters were analyzed for both validation and interpreta-
tion. We show that, indeed, graph node embeddings can be
used to generate coherent, as measured through both quanti-
tative and qualitative analyses, clusters of rare diseases within
a heterogeneous knowledge graph. Further, several of our
rare disease clusters show promising connections to drugs and
investigational compounds.

Materials and methods

Data sources

The GARD internal data resources20 were queried to obtain
the overlap between GARD and Orphanet disease lists. We
focused on GARD diseases to support additional efforts spon-
sored by NCATS and relied on Orphanet as an external
source of validity for the disease list. Gene and phenotype
annotations for each disease were obtained from Orphanet’s
ORPHADATA v4.0 resource.12. The Gene Ontology21,22

(GO release October 26, 2021) and The Human Phenotype
Ontology23 (HPO release October 10, 2021) were both
obtained from The OBO Foundry.24 GO annotations for
genes were obtained from NIH-NCBI (ftp://ftp.ncbi.nlm.nih.-
gov/gene/DATA/gene2go.gz; accessed on April 25, 2022).
Metabolic, gene regulatory, and physical interactions between
genes, gene products, and small molecules were obtained

from the Pathway Commons (PTC) v1225 database. Based on
published bioassay results, additional connections between
genes and small molecules were obtained from Pharos
v3.8.0,26,27 developed and sponsored by NCATS.

Rare disease network construction

HPO and GO ontologies were extended to include additional
logical connections with the ELK reasoned.28 The HPO class
of “HP: 0000005: Mode of Inheritance” and its subclasses
were pruned from the HPO ontology because it created an
overly connected network and is irrelevant to our use cases.
The PTC and Pharos data were ingested and harmonized
through the ChEMBL-ChEBI and ChEBI-PubChem mapping
files provided by UniChem (accessed on April 25, 2022).29 In
cases where a particular entity mapped to multiple HPO or
GO classes within a subtree of the ontology, eg, a gene
mapped to 2 GO terms that shared a parent-child relationship
such as protein binding (GO: 0005515) and kinase binding
(GO: 0019901), only the annotation to the lowest subclass,
eg, kinase binding, was kept.

Graph node embeddings

Random walks emanating from each disease node were gener-
ated following a modified DL2Vec approach. The random
walks were compiled into a corpus with each walk sequence.
The length of each random walk and the number of random
walks generated per disease were varied for sensitivity analy-
sis. Many diseases have far more HPO phenotype annotations
than gene associations, yet the gene associations provide a
very informative connection to the molecular processes
involved in the disease. Therefore, to give more weight to the
gene annotations, the probability of taking a random walk
step was balanced between the gene and HPO annotations for
diseases with both annotation types. In the absence of this
bias toward genes, the random walks are dominated by HPO
terms, and thus the clusters only reflect phenotypic similarity
among diseases (data not shown). Word2Vec was used to
ingest the random walks and generate word embedding mod-
els for various combinations of walk length and walk count.
We used the skip-gram Word2Vec architecture and varied the
vector embedding dimension and the context window size.

Because we do not have a gold standard–labeled dataset,
we relied on internal clustering metrics to tune random walk
and embedding model hyperparameters. We used 3 internal
clustering metrics, each capturing a different aspect of cluster-
ing quality: the silhouette score, which is defined as the differ-
ence between the mean intracluster distance and the mean
nearest-cluster distance divided by the larger of the 2 values;
the Davies-Bouldin index, which is defined as the average sim-
ilarity measure of each cluster with its most similar cluster,
where similarity is the ratio of within-cluster distances to
between-cluster distances; and the Calinksi-Harabasz index,
which is defined as the ratio of the sum of between-cluster dis-
persion and of within-cluster dispersion. Higher scores indi-
cate more coherent and separated clusters for the silhouette
score and the Calinksi-Harabasz index, while lower values
are superior for the Davies-Bouldin index.

Embedding models of different dimensions are not directly
comparable with these internal clustering metrics. Therefore,
we relied on the heuristic rule as guidance coupled with
empirical analysis of the complexity of the feature space cap-
tured in the embedding model. We started by assessing the
fourth root of the total number of words in our corpus. In our
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case, the number of words is the total number of unique nodes
and unique edges traversed in the random walks and results
in a suggested embedding dimension of 26. Using this heuris-
tic, we selected a range of embedding dimensions between 4
and 128 to test.

We then performed a sensitivity analysis with the other 3
parameters (the number of walks, the length of the walks, and
the embedding context window size) within each embedding
dimension. The number of walks per disease varied between 5
and 250. The length of each walk varied between 25 and 250.
The embedding context window varied between 6 and 20.
We used the word2vec as embedding model architecture with
the skip-gram algorithm, no minimum word count, and Gen-
sim default values for all other parameters; the models were
trained for 15 epochs. Final model parameters were chosen
based on the visual observation that increasing model com-
plexity, eg, longer walks, more walks, larger context window,
lead to diminishing returns with respect to improvement of
the internal clustering metrics.

Rare disease node clustering

The disease node embedding vectors were extracted from the
Word2Vec models and concatenated to form a matrix where
each row represents a disease, and each column is treated as a
feature. We then applied K-means clustering, with Euclidean
distance metric, using the Python package scikit-learn30 to
cluster diseases. The number of clusters was selected using a
variant of the elbow method entitled the kneedle algorithm31

as implemented in the kneed v0.8.1 Python package, using
polynomial interpolation setting.

Feature enrichment analysis

The node embedding process captures complex information
regarding the local context surrounding a disease node within
the KG, including phenotypes, genes, small molecules (includ-
ing drugs and metabolites), and more. Unfortunately, this
approach makes it difficult to interpret in detail why a partic-
ular set of diseases ended up in a cluster together, yet this
information is key for understanding the results and determin-
ing the next steps. Therefore, we pursued 2 different forms of
feature enrichment analysis.

First, we tested for gene enrichment within each cluster,
with the aim of determining which genes were represented
more frequently than expected by chance in each cluster. We
counted the number of diseases associated with each gene
within each disease cluster. To test against the null hypothesis
that diseases were assigned to clusters independently of their
gene annotations, the disease-to-cluster assignments were per-
muted 500 000 times, keeping the gene-to-disease annotations
the same (noting that those are derived from the graph anno-
tations and not our embeddings). The distribution of the
counts of gene-to-cluster assignments for each gene within
each cluster in the permuted data represents the null hypothe-
sis of random grouping of genes within the clusters. A P value
was calculated based on the number of permutations in which
the counts of each gene within each cluster were greater than
observed. A false discovery rate threshold of .01 was then
applied by adjusting the permuted P values using the
Benjamini-Hochberg procedure. The resulting cluster gene
enrichment table was used for downstream drug repurposing
applications.

Random walk feature importance was estimated by calcu-
lating the term frequency-inverse document frequency

(TF-IDF)32 of each feature within windows surrounding the
occurrence of each disease within the random walk corpus.
The window size was selected to be consistent with the win-
dow size used in training the vector embedding model. The
feature occurrences for each disease were summed within
each cluster to obtain the term frequency. The presence or
absence of each feature within each cluster was treated as the
“document” frequency. An empirical cumulative distribution
function was constructed from the TF-IDF values, and various
percentile cutoffs were used to summarize how informative
each feature type was for each cluster.

We sought to further interpret the known relationships
among clustered diseases with respect to their enriched gene
annotations. We, therefore, used STRINGDB v11.533 to (1)
assess whether the enriched genes within each cluster have
more connections than expected by chance and (2) identify
enriched GO terms first for each set of genes.

Assessment of disease cluster separation

We created shuffled random walk corpuses that contained no
real information about the structure of the graph. Each ran-
dom walk was simply represented by a sequence of graph
nodes and edges selected completely at random from the origi-
nal graph. The shuffled random walk corpuses were then
used to build embedding and clustering models as described
above.

The 3 internal clustering metrics described above
(Silhouette_Euclidean, Davies-Bouldin, and Calinksi-
Harabarz) were calculated for each clustering model built off
the shuffled walk corpuses. The metrics calculated on the
randomized graphs were then compared to those obtained
from the original dataset to assess the clarity of separation in
the original clusters.

Semantic similarity validation

The Orphanet Rare Disease Ontology (ORDO v4.0)34 was
used to calculate pairwise semantic similarity among diseases
based on the Sanchez information criteria.35 We sampled 100
random sets of diseases of size 87 (the average number of dis-
eases per cluster) to obtain a sampling distribution of average
pairwise semantic similarity. We then performed a one-
sample Student t-test to assess the difference in the mean aver-
age semantic similarity between the disease clusters and the
random samples by assuming that the mean and variance
parameters from the random samples represent the sampling
distribution under the null hypothesis.

Drug-target association cross-validation

We mapped putative targets to disease association and/or
indication data for targets JAK2 and MPL through their
approved drugs using Pharos and cross-referencing with
Inxight.36

Pathway enrichment analysis

We used EnrichR37 for cross-validation pathway enrichment
analyses. We extracted gene sets from our cluster gene enrich-
ment table results and ran them through the user interface
provided by EnrichR for each cluster. After an input gene set
is submitted, the analysis is divided into different categories of
enrichment. We focused on the KEGG 2021 Pathway enrich-
ment results. By clicking on the column header, we can sort
the table or clustergram by the term, P value, z score, or com-
bined score.
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Results

Exploratory analysis of the rare disease network

The node degree distribution of the knowledge graph is
shown in Supplemental Figure S1. The overall degree distribu-
tion of the knowledge graph is nearly linear on a log-log scale,
indicative of a power-law distribution. The degree distribu-
tion is largely determined by the preponderance of small mol-
ecule nodes (N¼ 348 395). To evaluate the connectivity
between diseases in the graph, we calculated the distribution
of shortest path lengths between every pair of disease nodes,
and the results are shown in Supplemental Figure S2. The
most common path lengths were 4 and 2 corresponding to
having 3 and 1 intermediate nodes, respectively. The hierarch-
ical tree structure of the ontologies included in the network
results in an increase in the frequency of paths of length 4
compared to paths of length 3 or 5. For example, a common
type of path between diseases goes as follows: disease, HPO
phenotype, HPO class, HPO phenotype, disease; this type of
path has an edge length of 4. The longest path between any 2
disease nodes in the graph was 6.

Optimization of embedding dimension

We performed principal component analysis on the disease
embedding vectors from models with different embedding
dimensions. By plotting the explained variance as a function
of the number of principal components, we can visually
inspect the degree to which the dimensionality of the embed-
ding space can be reduced. We built models with embedding
dimensions of 4, 8, 16, 32, 64, and 128. We observed that for
models with embedding dimensions of 4, 8, or 16, there was
no drop-off in variance explained by successive PCs indicating
that these feature spaces could not be significantly reduced. In
contrast, models with a dimension of 32 or higher showed a
large decrease in variance explained by higher PCs, suggesting

that those feature spaces could be reduced (Supplemental Fig-
ure S3). Therefore, an embedding dimension of 32 was
selected for the final analysis. It is useful to note that this
embedding dimension is roughly consistent with that recom-
mended by the fourth root heuristic.

Disease clusters

A total of 3242 diseases were used to construct a rare disease
network that included data on genes, phenotypes, small mole-
cules, biological pathways, and biomedical ontologies. The
rare disease network contained 439 691 nodes and 2 716 895
edges (see the Supplemental Material for an exploratory data
analysis of the network). Figure 1 illustrates our workflow.

Several random walk and embedding model parameters,
including the number of walks, the length of the walks, the
embedding context window size, and the overall embedding
dimension, were systematically varied to optimize the quality
of the disease clusters produced. Supplemental Figure S4
shows several internal clustering metrics as a function of the
number of walks per disease, across the various walk lengths
and context window sizes for an embedding dimension of 32.
The number of walks per disease had the largest effect on all
clustering metrics. Performance increased with the number of
walks with a plateau reached beyond 250 walks per disease.
Based on this sensitivity analysis, we selected the following
model parameters: 250 walks, walk length of 250, and con-
text size of 20.

Final disease clustering model and its evaluation
Our final disease cluster model contained 37 clusters, with an
average of 87 and a median of 83 diseases per cluster. The dis-
tribution of cluster sizes is shown in Supplemental Figure S5.
In Figure 2, the disease embedding values are plotted as a
heatmap with diseases sorted either randomly or by cluster

Figure 1. Rare disease clustering workflow. Input data resources are integrated into a single rare disease-focused network. Random walks are performed

to create a corpus of surveying the local context around each disease. Node embeddings are created and clustered. Post hoc analyses are conducted to

interpret and utilize the disease clusters.
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assignment, which shows that diseases with similar patterns
across the embedding values tend to group together into clus-
ters. To assess the degree of separation between the disease
clusters, we projected the disease clusters into a 2D t-SNE
map. The t-SNE projection of the disease clusters, colored by
their cluster assignments, is depicted in Figure 3A. The t-SNE
map shows apparent separation among the disease clusters,
especially when compared to an equivalent t-SNE map of
embeddings constructed based on randomly shuffled walks
(Supplemental Figure S6a).

Evaluation of disease cluster separation
We evaluated the extent of our original cluster separation in 2
ways. First, we calculated a within-cluster semantic similarity
index and compared that with randomly sampled disease sets.
Specifically, we utilized the ORDO to calculate the Sanchez
intrinsic information criterion within each disease cluster (see
“Methods”). Figure 3D shows the distribution of the average
semantic similarity both within each disease cluster and across
a set of 100 randomly sampled diseases of size 87 (the average
number of diseases per cluster). The t-test results suggest that
the clustered diseases are significantly more semantically simi-
lar than a random selection of diseases (P¼ .00024). Second,
we compared internal clustering metrics calculated on clusters
derived from randomized graphs to those calculated from the
original data (see summary in Supplemental Table S2).
Figure 3C clearly shows that the real clustering model metrics
fall outside the range of metrics generated on the randomized
graphs. Together, these results indicate that the disease clus-
tering model has captured information contained within the
knowledge graph that is useful for assessing similarity among
diseases.

Cluster feature enrichment

Our first feature enrichment analysis focused strictly on direct
gene annotations. By permuting the disease cluster assign-
ments, we identified 585 genes enriched in at least one cluster
at an FDR (Benjamini-Hochberg) q-value cutoff of 0.01; all
cluster gene enrichment results are presented in Table S1. We
found that 12 genes were enriched within more than one

cluster. The genes enriched in more than one cluster include
genes associated with some major classes of diseases, such as
(1) oncogenes: KRAS, PTEN, TP53, KIT, and FGFR1; (2)
genes associated with musculoskeletal phenotypes: COL1A1,
FKTN, GMPPB, POMT1, and POMT2; and (3) genes associ-
ated with blood disorders: HBB, NPM1. The remaining 573
genes were enriched within only one cluster each (totaling 33
clusters with at least one enriched gene).

Second, we analyzed the random walks to identify context
features (eg, genes, HPO terms, etc.) that comprise each dis-
ease cluster. Figure 4 shows the number of nodes of each type
as a function of the TF-IDF percentile threshold for a set of
clusters selected to be exemplary of different cluster arche-
types. The cluster archetypes we identified include those
almost exclusively dominated by HPO terms (clusters 16 and
19), those where the highest end of the TF-IDF distribution is
dominated by genes (clusters 22 and 24), clusters with impor-
tant GO terms and genes (cluster 7) and clusters with no fea-
tures among the higher TF-IDF percentiles (cluster 30).

Interpreting the disease clusters

The sets of enriched gene annotations within each cluster
were queried against STRINGDB. The enriched gene sets
from 27 of the 33 clusters having at least one enriched gene
had significantly more connections within STRINGDB than
expected by chance. We manually reviewed the diseases,
enriched genes, and enriched GO terms within each cluster
with the goal of constructing concise descriptions of each clus-
ter. Table 1 describes 3 clusters (3, 7, and 28), 2 of which
group diseases with globally similar clinical manifestations.
To see all cluster-enriched gene sets to enriched GO (biologi-
cal processes) terms, see Supplemental Figure S7.

For example, cluster 7 (Figure 3B) is primarily composed of
ocular diseases, such as Cone-Rod Dystrophy and Leber Con-
genital Amaurosis. Cluster 28 contains several cardiac and
electrophysiological diseases caused by ion channel mutations
(ie, channelopathies).

Cluster 3 though contains a mix of neurological, skeletal,
and genetic disorders. More specifically, Charcot-Marie
Tooth disease type 2C is a nerve damage disorder, while

Figure 2. Disease embedding vectors are plotted in heatmaps (A) randomly sorted and (B) sorted by cluster. Each column in the heatmap corresponds to

a dimension within the embedding vector space, and each row corresponds to a disease. (B) The clusters are demarcated with horizontal black lines.
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parastremmatic dwarfism and metatropic dysplasia are
dwarfism-related diseases. This cluster also includes other
skeletal and muscle degeneration disorders such as Duchenne
Muscular Dystrophy and brachyolmia type. We note that
many of these diseases are genetic disorders, and our
approach correctly pulled out disease-causing genes such as
TRPV4, which cause Charcot-Marie Tooth disease type 2C,38

metatropic dysplasia,39 brachyolmia type 3,40 and parastrem-
matic dwarfism.41 Others, like aggregate tubular myopathies,
lack a clear genetic cause, yet a recent study42 pointed to the
involvement of potentially causative genes related to calcium
signaling pathway. Notably, the calcium signaling pathway is
highlighted as an enriched GO term for this cluster, and 2
other potential causative genes, ORAI1 and STIM1, are also
strongly linked to this cluster, but not with sufficient causal

evidence to have appeared in our original knowledge graph
(Table 1).

Utility for drug repurposing

Drug repurposing is one important use case of our rare dis-
ease clusters. Identifying legitimate drug repurposing candi-
dates will require an in-depth analysis of the clustered
diseases and their connections to drugs. Here, we sought to
describe the connections between known drugs (from Chembl
database), gene targets (GO annotations), and disease clusters
(GARD database).

Utilizing data from Pharos, Figure 5A shows the distribu-
tion of the number of gene targets by cluster and broken
down by target druggability level (TDL). The TDL (consisting
of 4 categories: Tclin, Tchem, Tbio, and Tdark) is a

Figure 3. Visualizing and quantifying similarity within disease clusters. (A) t-SNE projections of the disease embedding vectors were created and plotted,

points are colored according to their cluster membership. (B) The same t-SNE projections as in (A) are plotted, but modifying the color coding to highlight

a single cluster, in this case, cluster 7. To find all individual t-SNE single clusters highlighted, go to https://doi.org/10.6084/m9.figshare.23748846. (C) t-

SNE map of embeddings constructed based on randomly shuffled walks. (D) The distribution of three clustering metrics (Silhouette, Davies-Bouldin, and

Calinski-Harabasz) derived from the randomly shuffled embedding models with the real clustering model metrics plotted as single points.
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qualitative label assigned to targets based on what is known
about their chemistry, biology, and whether an approved
drug is available.26,27 Moreover, Tclin targets have Food and
Drug Administration (FDA)–approved drugs with known
mechanisms of action that target them. Tchem targets have at
least one compound with an activity cutoff of <30 nM and
have been shown to have one or more active ligands. Tbio tar-
gets have published literature characterizing the target; how-
ever, no known drug or active ligands have been published.
Lastly, Tdark targets are considered understudied targets.

At the time of writing this paper, the overall distribution of
TDL values in Pharos was 11 867 Tbio, 5932 Tdark, 1930
Tchem, and 685 Tclin, totaling 20 412 proteins. Figure 5A
shows that Tbio is the largest category of gene targets in every
cluster. In contrast to the overall TDL, relatively few targets
with associations to the clustered rare diseases are rated
Tdark. Thirty-one out of 37 clusters have at least 1 gene tar-
get with a Tclin or Tchem rating, indicating that many of the
clusters have putative drug repurposing candidates that could
be mined in a more detailed analysis. Therefore, to explore
the space of drug connections to our disease clusters, we fil-
tered the original data from Pharos to include only approved
drugs, ie, Tclin targets, in each cluster (Figure 5B). Among
clusters with direct connections to drugs, the number of
unique drugs per cluster ranged from 356 drugs in cluster 28
to just a single drug in cluster 6. In addition, clusters 2, 16,
and 19 had no known drug connections.

We then examined a randomly selected cluster, 35, to
find potential insights for drug repurposing via our disease
cluster gene enrichment results.43 Cluster 35 contains 29
Tclin targets, with CTLA4, JAK2, and MPL being the top 3
significantly enriched genes (see Supplemental Table S1).
Interestingly, JAK2 and/or MPL mutations are well associ-
ated with myeloproliferative neoplasms, also known as mye-
loproliferative disorder (MPD).44 Within cluster 35, JAK2

and MPL share an association with GARD-labeled diseases:
polycythemia vera, essential thrombocythemia, and primary
myelofibrosis. Notably, JAK2 and MPL are known to have
direct protein-protein interactions34 (Supplemental Figure
S8). Further, JAK2 is known to participate in the JAK2/
STAT cellular signaling cascade, which is important for the
regulation of gene expression involved in basic cell
processes.45

To cross-reference our results for drug use/indications,
some examples of FDA-approved drugs for targeting JAK2
were queried from Inxight36 (access date: July 24, 2023).
Three of 5 approved drugs have indications for myelofibro-
sis, polycythemia vera, and MPD, all of which are present
in our cluster 35 (Supplemental Figure S6). Whereas drugs
that target MPL are indicated for immune thrombocytope-
nia and severe aplastic anemia indications, both of which
are also in our cluster 35. It is worth noting that these
drugs are used to treat nonrare diseases as well (eg, rheu-
matoid arthritis, atopic dermatitis, and chronic liver dis-
ease). Another approach for identifying drug repurposing
candidates within these clusters is to look into pathway sim-
ilarities between diseases within clusters. The top KEGG-
enriched pathways derived from the entire target set for
cluster 35 include, in order of statistical significance, pri-
mary immunodeficiency, cytokine-cytokine receptor interac-
tion, inflammatory bowel disease, leishmaniasis, Th17 cell
differentiation, tuberculosis, and JAK-STAT signaling path-
way (Supplemental Figure S7). However, when inputting
Tclin targets only, the most enriched pathway is JAK-STAT
signaling, further supporting the relevance of JAK2/MPL
targeting for other diseases in cluster 35 (Supplemental Fig-
ure S8). Overall, these results demonstrate how starting
from a disease cluster and associated Tclin target genes,
new insights for drug repurposing via adjacent diseases can
readily be extracted using public resources.

Figure 4. Counts by annotation feature type as a function of TF-IDF percentile threshold for a selected set of exemplary clusters.
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Discussion

We constructed a knowledge graph based on the overlap
between rare diseases tracked by GARD and Orphanet. The
graph is enriched with additional information on small mole-
cules and biological pathways. We used this enriched network
to construct graph node embedding vectors for each disease.
Those embedding vectors were used as a feature matrix in k-
means clustering analysis. Hyperparameters of the embedding
model and the k-means model were selected by a combination
of heuristics, sensitivity analyses, and explicit tuning. Our
method identified 37 disease clusters with an average of 87 dis-
eases each. The quality of the resulting disease clustering model
was validated by comparing semantic similarity within clusters
to randomly selected disease sets based on the ORDO, which
was not part of our disease network. The semantic similarity of
the clustered diseases combined with a visual inspection of the
cluster-sorted embedding vectors and feature enrichment analy-
sis suggests that our method has identified groups of diseases
with features in common. Furthermore, an in-depth review of
clustered diseases, enriched genes, and enriched GO terms

showed that many clusters are clearly composed of related dis-
eases based on their causal gene and pathophysiology.

The use of semantic similarity within clusters as a form
of validation begs the question: Why was semantic similar-
ity not the primary basis for clustering the diseases in the
first place? Our aim was to expand beyond the semantic
ontological organization of diseases by (1) directly using
data related to the diseases and (2) using higher-order rela-
tionships between the diseases across data modalities. The
former justification was taken up by both eRAM10 and the
RDMap11 projects, which developed similarity scores using
both Phenotype-HPO and Gene-GO linkages to rare dis-
eases. Our approach expands upon those methods by inte-
grating the Phenotype-HPO, Gene-GO, Pathway Commons,
and Pharos datasets into a single network. We capture
higher-order relationships among diseases by building graph
node embeddings. The graph node embeddings provided an
integrated representation of the network context of each
disease across the heterogeneous data types present in the
network. However, our results are only as comprehensive

Table 1. Example disease clusters with enriched genes and gene ontology terms.

Cluster Exemplary diseases Genes Exemplary GO terms

3 Charcot-Marie-Tooth disease type 2C; Meta-
tropic dysplasia; Brachyolmia type 3; Para-
stremmatic dwarfism; Spondylometaphyseal
dysplasia; Centronuclear myopathy; King
Denborough syndrome; Myopathy congeni-
tal; Cap myopathy; Congenital fiber type
disproportion; Freeman-Sheldon syndrome;
Distal arthrogryposis type 1; Spinocerebellar
ataxia 15/29; Tubular aggregate myopathy;
Rigid spine syndrome; Dysferlinopathy;
Becker muscular dystrophy; Duchenne mus-
cular dystrophy

TRPV4; RYR1; TPM3; NALCN; ITPR1;
NEB; MYH3; TTN; AK9; CHRNA1;
CHRNE; CHRNB1; CACNA1S;
CHRNG; ORAI1; BIN1; TPM2;
ACTA1; KLHL41; TCAP; CHRND;
MYPN; STIM1; MYH7; SELENON;
DYSF; DMD; LMOD3; RAPSN

Muscle filament sliding; Muscle organ
development; Myofibril assembly; Synap-
tic transmission, cholinergic; Skeletal
muscle tissue development; Neuromuscu-
lar synaptic transmission; Skeletal muscle
thin filament assembly; Sarcomere organ-
ization; Regulation of heart contraction;
Calcium ion transport; Regulation of
membrane potential; Ligand-gated cation
channel activity

17 Leber congenital amaurosis; Cone-rod dystro-
phy; Achromatopsia 2/3; Stargardt disease;
Usher syndrome type 1/2A/3A; Corneal dys-
trophy; Coats disease; Norrie disease; Reti-
nal cone dystrophy 1

NMNAT1; SAG; RPGR; SPATA7;
ZNF408; CDHR1; RHO; PDE6B;
RPE65; CRX; TULP1; ABCA4; BEST1;
USH2A; PROM1; TGFBI; IMPG2; NDP;
OPN1MW; GUCA1A; PDE6H; GNAT2;
CNGA3; PDE6C; CNGB3; ATF6;
AIPL1; TIMP3; RDH12; IMPDH1;
GNAQ; GRK1; PRPH2; LRAT; CLRN1;
LRP5; CACNA1F; MYO7A; GUCY2D;
TYR; CACNA2D4; FZD4; ADCY5;
OPN1LW

Visual perception; Retina homeostasis; Pho-
totransduction, visible light; Photorecep-
tor cell maintenance; Regulation of
rhodopsin mediated signaling pathway

28 Autosomal recessive pseudohypoaldosteron-
ism type 1; Liddle syndrome; Brugada syn-
drome; Thomsen and Becker disease;
Familial hemiplegic migraine; Familial
infantile convulsions and paroxysmal chor-
eoathetosis; Benign familial infantile epi-
lepsy; Paroxysmal kinesigenic
choreoathetosis; Early Infantile Epileptic
Encephalopathy; West syndrome; Familial
primary hypomagnesemia; Dravet syn-
drome; Familial atrial fibrillation; Long QT
syndrome 1; Progressive familial heart block
type 1B/1A/2; Andersen-Tawil syndrome;
Hyperkalemic periodic paralysis; Potassium
aggravated myotonia; Rapid-onset dystonia-
parkinsonism; Congenital insensitivity to
pain; Paroxysmal extreme pain disorder;
Erythromelalgia

SCNN1A; CLCN1; PRRT2; CACNA1A;
SCNN1G; SIK1; KCNA1; SCN2A;
SCN2B; SCN4B; SCN3B; EEF1A2;
SCN1B; KCNJ2; SCN4A; PLCB1;
TRPM4; ATP1A3; KCNE2; KCNQ2;
SCN5A; SCN11A; NKX2-5; SCNN1B;
ATP1A2; KCNQ3; SCN1A; KCNT1;
SCN8A; SCN9A; SCN10A; AKAP9;
ABCC9; DNM1; GRIN1; GRIN2B;
KCND3; SYNGAP1; KCNJ8; KCNQ1;
GABRA1; KCNJ10; GRIN2A;
SLC25A22; KCNE3; CHD2; GABRG2;
KCNE1; SLC4A11

Sodium ion transmembrane transport; Car-
diac muscle contraction; Transmission of
nerve impulse; Blood circulation; Regula-
tion of ventricular cardiac muscle cell
membrane repolarization; Ventricular
cardiac muscle cell action potential; Sen-
sory perception of pain; Ion channel
binding; Ligand-gated cation channel
activity; Potassium channel regulator
activity; Calmodulin binding; Glutamate-
gated calcium ion channel activity

Note: For list of all disease clusters and their (biological processes) gene-to-GO enrichment terms to go:
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as the underlying input data. Various sources of bias,
including publication bias toward more prevalent diseases,
limit the generalizability of our results.

Another key limitation of our study is the absence of com-
mon diseases. Most of the biomedical data pertain to com-
mon diseases. Therefore, expanding our knowledge graph to
incorporate common disease information would greatly
increase the scope and translational relevance of the work.
However, expanding the graph would also create challenges
surrounding data source selection and the overwhelming
rare disease signal. Nevertheless, one goal for future work
will be the incorporation of common disease data into the
analysis.

Our analysis creates an additional layer of structure onto
the large pool of rare diseases. This structure will help
strengthen drug repurposing efforts by enabling focus on
smaller disease sets. Yet it must be recognized that our analy-
sis on its own does not directly yield translatable results. In-
depth follow-ups, such as detailed subnetwork analysis or lit-
erature review, will be required to take full advantage of our
work—a task that will be taken up in a related manuscript.

Conclusion

Our approach expands upon prior efforts to identify similar-
ities of rare diseases by integrating multiple data types and
considering the higher-order structure of the rare disease net-
work simultaneously. We show that diseases in the clusters
are enriched for similar gene annotations and that there are
many possible connections to approved and investigational

drugs. Future work will focus on expanding the knowledge
graph with common disease data and detailed subnetwork
analysis of the most promising clusters.
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