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Abstract
Objective: Bacterial infections (BIs) are common, costly, and potentially life-threatening in critically ill patients. Patients with suspected BIs may
require empiric multidrug antibiotic regimens and therefore potentially be exposed to prolonged and unnecessary antibiotics. We previously
developed a BI risk model to augment practices and help shorten the duration of unnecessary antibiotics to improve patient outcomes. Here, we
have performed a transportability assessment of this BI risk model in 2 tertiary intensive care unit (ICU) settings and a community ICU setting.
We additionally explored how simple multisite learning techniques impacted model transportability.

Methods: Patients suspected of having a community-acquired BI were identified in 3 datasets: Medical Information Mart for Intensive Care III
(MIMIC), Northwestern Medicine Tertiary (NM-T) ICUs, and NM “community-based” ICUs. ICU encounters from MIMIC and NM-T datasets
were split into 70/30 train and test sets. Models developed on training data were evaluated against the NM-T and MIMIC test sets, as well as
NM community validation data.

Results: During internal validations, models achieved AUROCs of 0.78 (MIMIC) and 0.81 (NM-T) and were well calibrated. In the external com-
munity ICU validation, the NM-T model had robust transportability (AUROC 0.81) while the MIMIC model transported less favorably (AUROC
0.74), likely due to case-mix differences. Multisite learning provided no significant discrimination benefit in internal validation studies but offered
more stability during transport across all evaluation datasets.

Discussion: These results suggest that our BI risk models maintain predictive utility when transported to external cohorts.

Conclusion: Our findings highlight the importance of performing external model validation on myriad clinically relevant populations prior to
implementation.
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Introduction

For patients in the intensive care unit (ICU), bacterial infec-
tions (BIs) are a substantial driver of morbidity, mortality,
and cost. Repeated international point prevalence studies
have found that 51%-54% of patients in the ICU have sus-
pected or proven infections, with ICU mortality rates between
25% and 30%, more than twice that of patients without an
infection.1,2 As a result, physicians in the ICU have a low
threshold for initiating empiric antibiotic therapy (EAT).
They do so early and broadly, and typically de-escalate or
implement targeted therapies based on information collected
during follow-up.3,4 Navigating the difficult decision space
between failing to treat a serious BI against overzealous anti-
biotic regimens is compounded by a lack of consensus treat-
ment guidelines regarding EAT duration and protocol.
However, recent efforts have sought to address this by identi-
fying barriers, improving diagnostics, and enhancing antibi-
otic stewardship as a core competency of critical care.5–8 A
negative consequence of current practice is that patients with

low risk of BI are potentially exposed to prolonged and
unnecessary antibiotics. Prolonged antibiotic exposure is not
risk free and may result in increased antimicrobial resistance
in the community as well as a myriad of antibiotic-associated
adverse drug events such as gut microbiome dysbiosis and
hematologic abnormalities.9–12 Developing data-driven strat-
egies to help providers stratify patient-level BI risk shortly
after an ICU admission offers a promising avenue in antibiotic
stewardship.5,13

We previously proposed a model to predict BI risk in
patients at 24 h following ICU admission in a single-center
tertiary ICU setting that achieved an area under the receiver
operating curve (AUROC) of 0.8 and a negative predictive
value (NPV) >93% in an internal validation cohort.14 It is
widely acknowledged that the performance of any clinical
prediction model should be evaluated in different populations
using equivalent information prior to clinical implementa-
tion.15–20 For a classification model trained and tested in 2
independent populations, differences between the populations
in terms of predictor and/or outcome distributions can lead to
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variation in model class discrimination and calibration per-
formance.17,21–24 Although a prediction model that is both
valid and consistent across external populations is desirable,
there are many noteworthy examples that suggest this goal is
unrealistic. Studies such as the external validation of a
vendor-developed sepsis model presented in Wong et al25

demonstrated that even models developed with ample resour-
ces can demonstrate poor transportability to new settings and
generalize poorly to new patient populations. This poses
issues for community hospitals and organizations with limited
capacity to develop prediction models in-house who may
need to rely on models developed at larger institutions or
those provided by third parties.

The aim of this study was to assess the transportability of a
previously established model and modeling framework14 on 2
distinct but related cohorts. Specifically, we sought to assess
whether the previously published model developed in a terti-
ary ICU setting had external validity in both a new tertiary
ICU as well as a community ICU setting. Additionally, we
sought to answer whether retraining of the model with simple
multisite learning techniques (data pooling and model ensem-
bling) using data from the 2 tertiary ICUs would improve the
performance in the community ICU setting.

Methods
Datasets

Data were obtained from 2 sources, each representing distinct
healthcare systems and timeframes. The first dataset was
extracted from the Medical Information Mart for Intensive
Care III (MIMIC-III). MIMIC-III is a freely available and dei-
dentified dataset collected from over 40 000 patients who
received care at Beth Israel Deaconess Medical Center ICU
between 2001 and 2012.26,27 The second dataset was obtained
from the Northwestern Medicine (NM) Enterprise Data Ware-
house (EDW). The NMEDW is a comprehensive and inte-
grated repository of all clinical and research data sources
across the NM health system. NMEDW ICU encounter infor-
mation was sourced from a manually curated subset of 55 989
ICU encounters across 6 NM affiliated hospitals in Northeast-
ern Illinois (including several community hospitals) for patients
admitted between January 10, 2011 and January 1, 2020.

There exist both similarities and differences between
MIMIC-III and NMEDW. Both datasets contain administra-
tive, clinical, and physiological data for all ICU encounters.
They diverge in how and where their respective data arise from.
MIMIC-III predominantly comprised data collected during
patients’ ICU stays, while the NMEDW is more comprehensive,
containing information collected across the continuum of care
at NM. The data present in the NMEDW is less curated and
thus required more time investment in data cleaning and trans-
formation prior to modeling. Lastly, the NMEDW represents
patients seen in varied ICUs and hospital settings. ICU encoun-
ters from NMEDW were split into 2 datasets based upon hospi-
tal type and geography, where ICU encounters from NM
tertiary referral hospitals were labeled NM-T and encounters
from NM-affiliated community hospitals were labeled NM-C.
Encounters in NM-C represented the use case of community
ICUs with interest in implementing a prediction model devel-
oped using an external source, and thus served as an external
validation cohort (NM-Cval) for models developed using
MIMIC and NM-T data. For clarity, the unsplit datasets were

labeled MIMICD, NM-TD, and NM-Cval, and the models built
from training data were labeled MIMICM, NM-TM, PooledM,
and EnsembleM (details described below).

Cohort

Cohort selection and computational phenotype labeling were
performed on all patients as detailed in our prior work.14

Briefly, patients 16 years or older suspected of having a BI
upon admission to an ICU were eligible for our study. Patients
matched this phenotype if they had: one or more antibiotic
doses administered in the ICU within 96 h of ICU admission
and a microbiology culture sampled from a sterile site within
24 h of the first antibiotic dose. Patients who matched these
cohort criteria were allocated to 1 of 3 groups based upon
their BI status: serious BI, nonserious BI/no BI, and unknown
BI status (Figure 1), detailed below. Due to the common
occurrence of occult BIs, a direct classification of BI status via
microbiology culture indication could result in false negative
BI labels. To adjust for this, we considered both duration of
antibacterial therapy and microbiology culture status when
assigning ICU encounters to the BI status groups.

Microbiology cultures

Microbiology cultures incorporated into cohort enrollment
and BI phenotyping were accepted from the following speci-
mens: blood, joint, cerebral spinal fluid, pleural cavity, perito-
neum, or bronchoalveolar lavage. Microbiology cultures were
assigned a binary classification for “BI indicated” based upon
the bacterial species and observed colony size. ICU encounter-
level microbiology culture status was considered positive if
any microbiology cultures were “BI indicated” in the 72 h fol-
lowing the first qualifying microbiology culture. Information
for this classification was sourced from the structured
MICROBIOLOGYEVENTS table in MIMIC-III and from
free text microbiology reports in the NMEDW. All free text
microbiology reports were analyzed using our previously pub-
lished Python package, MicrobEx.28 Briefly, MicrobEx is a
rule-based text parser that was developed and externally vali-
dated for extracting BI status and bacterial species informa-
tion from free text microbiology reports.28 Two consecutive
positive cultures were required for positive BI for coagulase-
negative Staphylococcus and other common contaminate spe-
cies to warrant inclusion.

Antibiotic prescriptions

All instances of prescriptions used for systemic, empiric, or
targeted antibacterial usage were considered for cohort enroll-
ment. In MIMIC-III, prescriptions tagged with Anatomical
Therapeutic Chemical (ATC) code J0129 were selected. In
NMEDW, the same was identified using regular expressions,
manual curation, and medical expert review.14 In both data-
sets, antibiotic duration was calculated as the number of con-
secutive antibiotic days starting with the first antibiotic dose
described above (t0). ICU encounters were classified as
“short” if consecutive antibiotic days were less than 96 h, oth-
erwise they were considered “prolonged.” Patients often
received antibiotic therapy prior to ICU admission and often
continue following discharge. To capture this, consecutive
antibiotic duration was permitted to start up to 24 h prior to
ICU admission and continue to accumulate up until hospital
discharge if the medication was also administered during the
patient’s ICU stay. Additionally, patients who died within
24 h of their final antibiotic dose were coded as having
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received prolonged antibiotic therapy (n¼MIMICD: 1266,
NM-TD: 1238, NM-Cval: n¼ 484).

Outcome

Patients with both a positive bacterial culture and prolonged
antibiotic therapy were classified as serious BI status (predic-
tion event) for the t0þ 24h prediction timepoint (Figure 1).
Patients with negative bacterial culture and a short antibiotic
timeline were considered to have no BI (prediction nonevent).
Patients with a positive BI culture but short antibiotic treatment
duration were considered to have nonserious BIs (prediction
nonevent). Finally, patients who received prolonged antibiotics
without a positive bacterial culture have less clear infection sta-
tuses due to the possibility of occult infections. We follow pre-
vious study14 to categorize these patients as unknown BI status
and exclude them from modeling for this study.

Data extraction, cleaning, and preprocessing

We follow our previous studies’ in-depth descriptions and
open-source code for the extraction, cleaning, and preprocess-
ing of static and longitudinal data from the MIMIC-III data-
base.14 Data preparations for both NM-TD and NM-Cval

followed the same framework and are detailed herein.
Static and longitudinal predictor data were extracted from

the NMEDW using structured SQL queries and data ware-
house expert support. The query code was adapted from
open-source code provided by the team responsible for the
MIMIC-III database. All raw longitudinal and categorical
variables were collected to reflect the 24-h window after the

first antibiotic dose (t0: t0þ24) (Table S1). Raw data were
cleaned using an iterative process of data harmonization,
quality assessments, and manual review with clinical domain
expert input. Disparate units were addressed using conversion
dictionaries. Variable density plots, missingness, and distribu-
tion parameters were compared across all 3 datasets and man-
ually reviewed (Table S1 and Figures S3-S12). Predictors
lacking values during the t0: t0þ 24 window were considered
missing and were imputed using the median values from the
associated training set. If issues were identified, conservative
thresholds paired with clinical expertise and reference value
ranges were used to remove erroneous values. Cleaned data
were then converted into median-based unit variances relative
to the median and interquartile ranges of patients with predic-
tion nonevents (eqn. 1). Finally, all continuous values within
the 24-h collection window were aggregated using functions
(minimum, maximum, or both), based on our previous
model.14 After 1-hot encoding categorical variables, our final
feature list included 55 variables.

Z ¼
X � ~X neg

shortð Þ
IQR neg

shortð Þ:
(1)

Modeling and statistical analyses

ICU encounters from MIMICD and NM-TD were split 70/30
into independent train (train) and test (test) sets, while encoun-
ters in NM-C were set aside for model validation (NM-Cval).

Figure 1. BI status labeling and classification. Our phenotype for BI suspicion upon ICU admission requires that: (1) an antibiotic be administered within

96 h following ICU admission and (2) a microbiology culture be drawn within 24 h of (1). Clinical data were collected for 24 h after the first ICU antibiotic

(t0) and are used to predict binary BI status at t0þ24h (LEFT). Binary infection status was categorized as a function of continuous antibiotic duration and

bacterial infection status (RIGHT). BI status was classified as serious (prediction event) for patients who received a positive bacterial culture and

prolonged antibiotic therapy. Patients who received short antibiotic therapy with either positive culture (nonserious BI) or negative culture (no BI) were

labeled prediction nonevents.
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Individual patients with more than 1 eligible ICU encounter
were assigned to the same split. Missing values were imputed
using the median values from the associated training set. Poo-
ledtrain (n¼ 4637) and Pooledtest (n¼1989) were created by
pooling equal sized samples that maintained the respective BI
proportions from MIMIC and NM-T.

Random Forests classifiers were trained using Python 3 and
scikit-learn.30,31 Models (MIMICM, NM-TM, PooledM) were
trained on MIMICtrain, NM-Ttrain, and Pooledtrain. Model
hyperparameters were selected through a 10-fold cross valida-
tion process using a binary cross entropy loss function and a
consistent grid-search hyperparameters dictionary (number of
trees: [25, 50, 150, 250], max features: [3, 10, 20, ‘auto’],
max depth: [5, 7, 10, 15], minimum samples split: [2, 5, 10],
minimum samples leaf: [2, 5, 10]).

False negative BI classifications are particularly impactful.
Thus, steps were taken to calibrate each model to the associated
training data, and then measure the class discrimination thresh-
old. Models were fit and calibrated to their associated training
set using the CalibratedClassifierCV method in scikit-learn,
which uses 10-fold cross-validation to estimate classifier param-
eters and calibrate predicted probabilities using Platt scal-
ing.30,32 Fit models applied to test sets from differing
institutions (eg, MIMICM on NM-Ttest) were first recalibrated
on the associated training set (eg, NM-Ttrain). High sensitivity
(�0.9) class discrimination thresholds specific to each model
and training set were found using 10-fold cross validation. In
cases where models demonstrated poor calibration on a given
set of training data, a known characteristic of ensembled tree
models,33 the high-sensitivity threshold was instead determined
with a ridge regression model via 10-fold cross validation.
EnsembleM was a mean fusion ensemble (soft-voting) assembled
from MIMICM and NM-TM (both calibrated to the associated
training set) and was chosen due to its simplicity and compara-
ble class discrimination performance over other weighted and
stacked ensembling techniques.34 Class discrimination and pre-
diction performance among models were measured using
AUROC, F1 score, precision, recall, and NPV. Following our
main use case, the external validity and transportability of the
models were assessed based on class discrimination and calibra-
tion performance in the external community ICU cohort (NM-
Cval). Statistical differences between AUROCs were measured
using DeLong’s algorithm.35,36 Model feature importance were
calculated using permutation-based methods implemented in
scikit-learn based on the impact of shuffling single feature val-
ues on model performance. Model calibration was assessed
using mean calibration, cox regression, and calibration curves,
comparing predicted risk to observed risk.23,37,38 Case-mix
characteristics and relatedness between development cohorts
(MIMICD or NM-TD) and the validation cohort (NM-Cval)
were measured using the AUROC of respective membership
models (transportability c-statistic) as recommended in Ref.22

We set a¼ 0.005 by default, as previously recommended for
large datasets.39 In cases with more than 10 comparisons, a
Bonferroni correction was applied. Model fairness was assessed
using an equal opportunity fairness definition and was calcu-
lated as described in Hardt et al.40,41

Results
Cohort characteristics

We identified ICU encounters in MIMICD (n¼19 633;
37.7% of all ICU encounters), NM-TD (n¼ 11 076; 40.2% of

all ICU encounters), NM-Cval (n¼4059; 38.8% of all ICU
encounters) that met our study inclusion criteria. The demo-
graphics of patients in the 3 datasets used are presented in
Table 1. Table 2 shows the distribution of bacterial culture
results, antibiotic therapy duration, and BI status (prediction
variable) across each dataset. Notably, patients in the MIM-
ICD were found to have a BI prevalence of 24.8% while
patients in NM-TD and NM-Cval had BI prevalence of 44.2%
and 44.6%, respectively.

Model evaluation

In Table 3, we present the model evaluation results for the
models in the tertiary ICU settings (MIMIC and NM-T). On
both test sets (MIMICtest and NM-Ttest), the models trained
and tested on their respective training cohorts (eg, MIMICM

on MIMICtest) had significantly (P< .002) higher AUROC
than models trained on external development cohorts (eg,
MIMICM on NM-Ttest). Relatedness between MIMICtrain and
NM-Ttrain measured through the membership model AUROC
(case-mix c-statistic) was 0.97, suggesting large differences in
case-mix characteristics between both development cohorts.

Table 3 additionally summarizes the results of 2 multisite
learning approaches designed to improve overall model gener-
alizability of the models in the tertiary ICU setting. We com-
pared a soft-voting ensemble (EnsembleM) of models
(MIMICM and NM-TM), each calibrated to the evaluation
site, to a calibrated model trained on pooled training data
from each cohort. The AUROC generated by PooledM and
EnsembleM were each significantly different from those pro-
duced by NM-TM on NM-Ttest and MIMICM on MIMICtest

with a Bonferroni-adjusted P< .002. Similarly, the difference
between the AUROC of EnsembleM and PooledM was signifi-
cant on NM-Ttest (P¼ 2�10�4) but not on MIMICtest

(P¼ .037). The recall values observed for PooledM were nota-
bly lower than the desired recall of 0.9 on both MIMICtest

and NM-Ttest due to poor calibration (see below).
Table 4 and Figure 2 summarize model performances in the

community cohort (NM-Cval) where NM-TM showed better
or indistinguishable discrimination performance than the
other models. Compared to other models, MIMICM had a
significantly lower AUROC (P< .002) and achieved lower
precision and recall at a comparable classification threshold.
For the multisite models, the AUROC for PooledM was signif-
icantly different from NM-TM, however no difference was
observed between NM-TM and EnsembleM, or between
EnsembleM and PooledM. Case-mix characteristics between
development (MIMICD and NM-TD) and NM-Cval cohorts

Table 1. Demographics of BI positive and negative labeled patients

across hospital datasets.

Variable MIMICD NM-TD NM-Cval

Gender—N, %
Female 5340 (47%) 3112 (47%) 1241 (50%)
Male 6013 (53%) 3514 (53%) 1244 (50%)

Age in years (SD) 65.3617.0 64.1617.1 66.7617.8
Race and ethnicity—N, %

Black/non-Hispanic 1294 (11%) 782 (12%) 151 (6%)
White/non-Hispanic 8218 (73%) 4586 (69%) 2040 (82%)
Hispanic 468 (4%) 606 (9%) 166 (7%)
Other 1373 (12%) 652 (10%) 128 (5%)

NM-T, NM tertiary referral hospitals; NM-C, NM community hospitals;
MIMIC, MIMIC-III.
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appear to be highly distinct based on the C-statistics presented
in Table 4 and cohort BI status distributions presented in
Table 2. Higher C-statistic values also appear to correspond
with lower AUROC values in NM-Cval, suggesting that model
discrimination performance is affected by the case-mix varia-
tion in our cohorts. Finally, a visual summary of the best per-
forming models across all evaluation sets is presented in
Figure 3. When comparing each model’s performance across
all evaluation sets, the range of AUC values for multisite
learning models were lower (more stable) compared to single
institution models.

Figure S15 presents a baseline characterization of NM-TM,
MIMICM, and EnsembleM predicted probabilities in the NM-
CVal unknown BI status cohort (prolonged antibiotics and
negative microbiologic culture). Overall, the 3 models agreed
on 79.8% of classifications, and 85.4% of negative classifica-
tions made by MIMICM were agreed upon by NM-TM. Table
S5 presents a chi-square contingency table analysis comparing
the all-cause in-hospital mortality, evaluated up to 28 days
following t0, versus predicted BI status. Across MIMICTest,
NM-TTest, and NM-CVal, we were able to reject the null
hypothesis that negative and positive BI risk prediction had
equivalent mortality rates at P< .005.

Predictor effects

Figure 4 displays the relative variable importance for each
model in NM-Cval. Maximum temperature was consistently
found to have �85% relative importance in all models. Hav-
ing a blood culture performed, leukocytes present in urine
and norepinephrine delivered were highly important in some
but not all models. These categorical variables also had rela-
tively high differences in distribution among sites, suggesting
site-specific predictor effects (Figures S3-S12). Blood urea
nitrogen (BUN), heartrate, white blood cell count (WBC),
ratio of arterial oxygen partial pressure to fractional inspired
oxygen (PaO2:FiO2), respiration rate, and systolic blood pres-
sure (SBP) were found to be moderately important among all
models. These continuous variables, along with Maximum
temperature, had relatively minor differences in distributions
between the sites (Figures S3-S12). Figure S13 displays the rel-
ative variable importance for the NM-Ttrain/MIMICtrain ver-
sus NM-Cval membership models. Minimum Glasgow coma
score and having blood bands measured were most important
to differentiate NM-Ttrain versus NM-Cval, while PaO2:FiO2,
having a urine culture performed, and receiving external ven-
tilation were most important to differentiate MIMICtrain ver-
sus NM-Cval.

Table 2. Cohort stratified by BI status and hospital datasets.

Microbiology
culture

Antibiotic
duration

BI status
classification

MIMIC N
(% cohort; % ICU)a

NM-T N
(% cohort; % ICU)a

NM-C N
(% cohort; % ICU)a

Positive Prolonged Positive 2829 (14.4%; 5.4%) 2926 (26.4%; 10.6%) 1109 (27.3%; 10.6%)
Negative Short Negative 6988 (35.6%; 13.4%) 2786 (25.1%; 10.1%) 987 (24.3%; 9.4%)
Positive Short Negative 1536 (7.8%; 2.9%) 914 (8.3%; 3.3%) 389 (9.6%; 3.7%)
Negative Prolonged Unknown 8280 (42.2%; 15.9%) 4450 (40.2%; 16.2%) 1574 (38.8%; 15.0%)

a Percentages are listed as percentage relative to patients meeting cohort criteria, and relative to all adult ICU encounters. Patients meeting cohort criteria
represented 36.77%, 29.00%, and 36.34% of all adult ICU encounters in MIMIC, NM-T, and NM-C, respectively.
NM-T, NM tertiary referral hospitals; NM-C, NM community hospitals; MIMIC, MIMIC-III.

Table 3. MIMICM, NM-TM, EnsembleM, and PooledM classification performance.

Modela Evaluation set Evaluation set BI (%) AUROC F1 NPV Precision Recall High sensitivity threshold

MIMICM MIMICtest 24.8 0.782 0.502 0.924 0.351 0.884 0.131
NM-TM MIMICtest 24.8 0.694 0.440 0.900 0.291 0.909 0.145
PooledM MIMICtest 24.8 0.774 0.538 0.878 0.436 0.703 0.131
EnsembleM MIMICtest 24.8 0.767 0.458 0.937 0.303 0.942 0.131
NM-TM NM-Ttest 44.3 0.810 0.715 0.867 0.594 0.898 0.267
MIMICM NM-Ttest 44.3 0.722 0.657 0.808 0.521 0.891 0.274
PooledM NM-Ttest 44.3 0.788 0.696 0.773 0.662 0.734 0.267
EnsembleM NM-Ttest 44.3 0.798 0.695 0.879 0.556 0.926 0.267

a All models are calibrated to the respective training set (eg, MIMICtrain) for a given testing set (eg, MIMICtest).
NM-T, NM tertiary referral hospitals; NM-C, NM community hospitals; MIMIC, MIMIC-III; PooledM, equal sized samples from MIMIC and NM-T
concatenated together; EnsembleM, soft-voting ensemble of NM-TM and MIMICM.

Table 4. Modeling classification discrimination and performance on NM-Cval.

Model AUROC F1 NPV Precision Recall High sensitivity threshold Case-mix C-statistic

MIMICM 0.741 0.671 0.835 0.529 0.915 0.274 0.98
NM-TM 0.807 0.712 0.877 0.582 0.919 0.267 0.82
PooledM 0.795 0.711 0.795 0.644 0.794 0.267 0.87
EnsembleM 0.798 0.697 0.896 0.552 0.945 0.267 N/A

NM-Cval BI prevalence: 44.6%. All models calibrated on NM-Ttrain. NM-T, NM tertiary referral hospitals; NM-C, NM community hospitals; MIMIC,
MIMIC-III; PooledM, equal sized samples from MIMIC and NM-T concatenated together; EnsembleM, soft-voting ensemble of NM-TM and MIMICM; Case-
mix C-Statistic, C-statistic from membership model for model’s development data and NM-Cval.

102 Journal of the American Medical Informatics Association, 2024, Vol. 31, No. 1

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad174#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad174#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad174#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad174#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad174#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad174#supplementary-data


Model calibration

Overall, average BI predictions for each model closely
matched the BI prevalence in NM-Ttest and NM-Cval, how-
ever standard deviations were large across all models and
datasets, especially for PooledM (Table S2). The reliability dia-
gram for patients in NM-Cval (Figure 5) and calibration statis-
tics presented in Table S3 suggest NM-TM, MIMICM, and
EnsembleM achieve comparable and acceptable calibration on
NM-Cval. PooledM demonstrated poor calibration on patients
in NM-Cval across all calibration statistics (Table S3) and all
BI prevalence patient bins (Figure 5), likely contributing to

the mismatch between observed recall and desired recall in
Table 4. Table S4 presents results from the NM-CVal fairness
analysis, where equality of opportunity and AUROC differen-
ces observed between advantaged and disadvantaged groups
are less than 0.11 (NM-TM) and 0.09 (MIMICM).

Discussion

We previously developed and validated a variety of tools and
frameworks to help identify patients at low risk of BI who are
likely to benefit from discontinuing EAT within 24 h of

Figure 2. NM-Cval A. Receiver operating characteristic curves (ROC). B Precision recall curves (PRC). The ROC generated by NM-TM was the highest of

any model on NM-Cval and was significantly different than PooledM and MIMICM but not significantly different than EnsembleM at adjusted P� .002 via

DeLong’s test. However, there was no difference observed between the ROC of EnsembleM and PooledM. Finally, MIMICM’s ROC was significantly

different from all other models at P� .002. All significant differences observed in ROC were additionally observed in PRC.

Figure 3. AUROC heatmap between models and evaluation sites. Gold rings indicate the best-performing model on each evaluation cohort while gold

numbers present the AUROC delta relative to the gold ring model. *Denotes significant difference from gold ring model using DeLong test at P< .002.

Although NM-TM and MIMICM performed best in each of the individual evaluation sets, the difference between their highest and lowest AUROC across

all evaluation cohorts was larger (0.012, 0.06, respectively) compared to PooledM and EnsembleM (0.03 and 0.03, respectively).
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Figure 4. Relative variable importance across models for top 10 important variables. All models are calibrated and permuted on NM-Ttrain. Variable

importance values for each model were scaled relative to each model’s most important variable. pCO2, carbon dioxide partial pressure; blood culture,

indication for microbiology culture performed on blood sample; leukocyte, indication for leukocytes in urine; BUN, blood urea nitrogen; WBC, white blood

cell count; PaO2:FiO2, ratio of arterial oxygen partial pressure to fractional inspired oxygen; norepinephrine, indication for having received norepinephrine;

respirate, max respiration rate; SBP, systolic blood pressure.

Figure 5. Model calibration plot for NM-Cval. All models were calibrated or recalibrated to NM-Ttrain using Platt scaling. MIMICM (Platt scaled), NM-TM
and EnsembleM all achieved adequate calibration despite some deviations from perfect calibration on the lowest and highest BI fractions. Our Pooled

RandomForests model demonstrated poor model calibration across a range of BI fractions and was resistant to Platt scaling.
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initiation.14,28 In the current study, we carried out an in-
depth transportability assessment of the previously developed
BI prediction model architecture on 2 distinct cohorts—terti-
ary and community ICUs. We additionally explored how
model transportability was affected by employing multisite
learning (data pooling and model ensembling) with data from
each development cohort. In line with a variety of model
development and validation recommendations, we placed
particular emphasis on: (1) analyzing/correcting for both
model discrimination and calibration, (2) examining model
performance across different populations, (3) reporting simi-
larity between development and validation cohort, and (4)
testing strategies to improve model transportability.15,18,20,22

Our main findings are as follows: A BI model developed in a
historical tertiary ICU (MIMIC) transported adequately to an
unaffiliated community ICU (NM-C) with a highly different
case-mix, whereas a BI model developed in an affiliated terti-
ary ICU setting (NM-T) with more similar case-mix and
extract-transform-load (ETL) processes transported well.
Additionally, learning on information from both tertiary ICU
settings (MIMIC, NM-T) offered no significant improvement
in model discrimination in the community setting, however
multisite models offered more stable transportability across
all evaluation datasets. The results from this study demon-
strate that while the architecture of a clinical prediction model
(ie, electronic phenotype, predictor input, etc.) may be trans-
portable between different sites, the models themselves may
not translate with the same performance. Furthermore, model
transportability can be affected by numerous factors relating
to the case-mix profiles, predictor effects, and ETL processes
and thus should be addressed on a case-by-case basis. Our
results highlight the importance of performing external model
validation on a variety of clinically relevant populations prior
to model implementation.

Model performance variation in a new population can be
influenced both by the model fit parameters and population
case-mix (eg, distribution of predictor variables and setting
characteristics).18,20,21,24,25,42 In the external validation, we
observed a relatively strong agreement in variable importance
among models. We also observed that model performance
was higher in an external validation cohort when the c-statis-
tic comparing case-mix differences between development and
validation cohort was lower. These results suggest that case-
mix differences between cohorts are a plausible source for the
model performance discrepancies observed in the external val-
idation cohort (NM-Cval). One potential driver of case-mix
variation between cohorts is likely to come from differences
in BI prevalence. The higher prevalence of BI in the NM
cohorts compared to MIMIC cohort suggest that patients in
NM cohorts had either a higher baseline risk for BI or that
clinicians at NM sites had a higher threshold of BI suspicion
needed to trigger microbiology cultures and empiric antibiot-
ics. This latter interpretation is aligned with the microbiology
culture and antibiotic prescribing practice changes expected
from recent antibiotic stewardship efforts given that the NM
cohorts represent a more contemporary population and prac-
tice pattern than the MIMIC cohort.8,10,43–45 Additionally,
differences in BI prevalence between MIMIC and NM cohorts
could also be impacted by upstream factors relating to data
warehousing, such as availability of information on antibiotic
prescriptions and or microbiology cultures performed outside
of the ICU. Furthermore, relatively low differences were
observed between model performances across demographic

subgroups, suggesting cross-site model performance is not
driven by equal opportunity disparities. Finally, high levels of
semantic and syntactic variability have been shown to exist
between data derived from different EHR systems, but the rel-
ative effects of these differences on the resulting cohorts
remain unclear.46,47

While there are no other prediction models that seek to spe-
cifically identify patients at low risk of BI, our classification
results are in line with previously published models designed
for similar prediction tasks. For instance, previous studies
reported AUROCs ranging from 0.78 to 0.85 for predicting
sepsis and septic shock in the emergency department and ICU
setting during the 8-24 h prior to diagnosis48,49 and AUROCs
in the 0.65 to 0.80 range for predicting mortality in septic
patients.50–52 The most important variables in these studies
(SBP, BUN, respiratory rate, and temperature) were also
among the top 10 most important variables in all 4 of our
models. Next, several related publications have reported
improvements in model performance after employing multi-
site learning techniques such as federated and transfer learn-
ing.34,48,53 Wardi et al48 presented a pretrained deep learning
model for sepsis detection that observed significant perform-
ance increases after using transfer learning to task specific
fine-tuning. While a similar approach could have offered
model performance improvements, we chose to use a Random
Forests model with simple multisite learning techniques to
balance model performance with model simplicity, parsi-
mony, and usability. We found that models trained using 2
simple multisite learning methods (data pooling and ensem-
bling) had indistinguishable or reduced discrimination per-
formance compared to models trained on data from a single
institution with a similar case-mix. However, when looking at
model discrimination across all evaluation datasets, our mul-
tisite learning models offered more stable transportability
than single institution models. These mirror the findings of
Reps et al,34 who found that across 5 datasets and 21 out-
comes, weighted fusion ensembles produced more stable class
discrimination when transported to new databases compared
to single database models. Encouragingly, our results suggest
that for some multisite learning tasks, model ensembling can
offer similar performance to centralized data pooling while
also avoiding complicated data sharing processes. These
results warrant further study to compare the performance
dynamics of data pooling and model ensembling.

Our study has several limitations. First, the observational
design of our study required us to use a computational pheno-
type to infer patient information such as BI status and antibi-
otic days. Furthermore, due to the free-text nature of
microbiology culture notes, we used a previously validated
software package that we developed to infer the BI status of
patients, but it is possible that patients may have been misclas-
sified in some cases.28 We addressed both limitations by
employing extensive manual case review through the data
extraction, preprocessing, and modeling phases of our study
for each dataset. A manual review was carried out on 10 false
negative patients for EnsembleM and NM-TM (Supplementary
Data S1 and S2). In this chart review, we identified that in 7
out of the 10 cases, urinary tract infections were the sole infec-
tion identified and were often a secondary issue in the encoun-
ter. These results highlight the challenge associated with
dichotomizing the results from nuanced microbiology reports,
where significant variability exists in reporting and
interpretation.54,55
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The intended use-case of our model is to output a data-
driven metric that critical care providers can consider when
making antibiotic de-escalation treatment decisions starting
1 day after starting antibiotics empirically. In the current
paradigm of treating suspected BIs in the ICU, there exist
many cases where clinical gestalt and existing methods of
characterizing BI risk guide effective antibiotic treatment
practices. However, there also exist numerous opportunities
where clinical guidelines and existing practices provide less
clear guidance on how to proceed. It is for these such cases
that our model provides the most utility by reducing the num-
ber of unnecessary or inappropriate antibiotic days given to
patients who are at low risk of BI. Patients with unclear BI
status are arguably those who stand to benefit from our
model predictions the most. Figure S15 and Table S5 present
a preliminary, but limited, characterization of model perform-
ance in patients in this population. To better assess the clinical
effectiveness and safety of the model, a cluster-randomized
clinical trial, randomizing at the provider or unit level would
be warranted.

Conclusion

We evaluated the external validity and transportability of a
previously established BI risk prediction model developed in a
tertiary ICU setting in both a new tertiary ICU and a com-
munity ICU setting. Additionally, we examined whether uti-
lizing simple multisite learning techniques with data from the
2 tertiary ICUs improved model performance in the commun-
ity ICU setting. Overall, our results suggest that our BI risk
models maintain predictive utility when transported to exter-
nal cohorts. Echoing published guidelines, we recommend
that institutions seeking to implement an externally developed
prediction model: (1) chose model(s) developed on data with
similar case-mix and predictor effects and (2) evaluate and
recalibrate the chosen model(s) in the cohort(s) where the
model(s) will be used prior to implementation. Furthermore,
while models developed with multisite learning have the
potential to improve class discrimination and performance
stability, these improvements are not guaranteed and should
therefore be evaluated on a case-by-case basis.

Acknowledgments

This research was made possible by the ample support pro-
vided by Anna Pawlowski, Prasanth Nannapaneni, and Dan-
iel Schneider in the NMEDW Information Technology team.

Author contributions

All authors contributed to study design and funding acquisi-
tion. G.E. performed all software development, manuscript
writing, data wrangling, data analysis, and model develop-
ment. A.S.K. assisted in statistical analysis, figure generation,
manuscript edits. L.N.S.-P. and Y.L. are co-corresponding
authors and were involved in data curation, project adminis-
tration, and manuscript edits.

Supplementary material

Supplementary material is available at Journal of the Ameri-
can Medical Informatics Association online.

Funding

This work was supported by the National Institutes of Health
(grant numbers U01TR003528 and R01LM013337), the
National Library of Medicine (grant number
5T32LM01220304), and the National Institute of Child
Health & Human Development (grant number
R01HD105939).

Conflicts of interest

None declared.

Data availability

The benchmark MIMIC-III dataset that supports the findings
of this study are available from the official website: https://
physionet.org/content/mimiciii/1.4/. The EHR data associated
with Northwestern Medicine contain protected health infor-
mation and are not able to be shared.

Code availability

Python code used to train and evaluate the models in this
study can be assessed at GitHub (https://github.com/geickelb/
BI_Model_ExValidation).

References

1. Vincent J-L, Rello J, Marshall J, et al.; EPIC II Group of
Investigators. International study of the prevalence and out-
comes of infection in intensive care units. JAMA 2009;
302(21):2323-2329.

2. Vincent J-L, Sakr Y, Singer M, et al.; EPIC III Investigators. Preva-
lence and outcomes of infection among patients in intensive care
units in 2017. JAMA 2020;323(15):1478-1487.

3. Goff DA, File TM. The risk of prescribing antibiotics “just-in-
case” there is infection. Semin Colon Rectal Surg. 2018;29(1):
44-48.

4. Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign:
international guidelines for management of sepsis and septic shock
2021. Crit Care Med. 2021;49(11):e1063-e1143.

5. Wunderink RG, Srinivasan A, Barie PS, et al. Antibiotic steward-
ship in the intensive care unit. An Official American Thoracic Soci-
ety Workshop Report in collaboration with the AACN, CHEST,
CDC, and SCCM. Ann Am Thorac Soc. 2020;17(5):531-540.

6. Core Elements of Hospital Antibiotic Stewardship Programs. Anti-
biotic Use. CDC; 2019.

7. Campion M, Scully G. Antibiotic use in the intensive care unit:
optimization and de-escalation. J Intensive Care Med.
2018;33(12):647-655.

8. Luyt C-E, Br�echot N, Trouillet J-L, Chastre J. Antibiotic steward-
ship in the intensive care unit. Crit Care. 2014;18(5):480.

9. Tamma PD, Avdic E, Li DX, Dzintars K, Cosgrove SE. Association
of adverse events with antibiotic use in hospitalized patients. JAMA
Intern Med. 2017;177(9):1308-1315.

10. Claridge JA, Pang P, Leukhardt WH, Golob JF, Carter JW, Fadlalla
AM. Critical analysis of empiric antibiotic utilization: establishing
benchmarks. Surg Infect (Larchmt). 2010;11(2):125-131.

11. Francino MP. Antibiotics and the human gut microbiome: dysbio-
ses and accumulation of resistances. Front Microbiol.
2015;6:1543.

12. Thomas Z, Bandali F, Sankaranarayanan J, Reardon T, Olsen KM;
Critical Care Pharmacotherapy Trials Network. A multicenter

106 Journal of the American Medical Informatics Association, 2024, Vol. 31, No. 1

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad174#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad174#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad174#supplementary-data
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://github.com/geickelb/BI_Model_ExValidation
https://github.com/geickelb/BI_Model_ExValidation


evaluation of prolonged empiric antibiotic therapy in adult ICUs in
the United States. Crit Care Med. 2015;43(12):2527-2534.

13. Zimmerman JJ. Society of critical care medicine presidential
address � 47th Annual Congress, February 2018, San Antonio,
Texas. Crit Care Med. 2018;46(6):839-842.

14. Eickelberg G, Sanchez-Pinto LN, Luo Y. Predictive modeling of
bacterial infections and antibiotic therapy needs in critically ill
adults. J Biomed Inform. 2020;109:103540.

15. Moons KGM, Altman DG, Reitsma JB, et al. Transparent Report-
ing of a multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD): explanation and elaboration. Ann Intern
Med. 2015;162(1):W1-W73.

16. Klann JG, Estiri H, Weber GM, et al.; Consortium for Clinical
Characterization of COVID-19 by EHR (4CE) (CONSORTIA
AUTHOR). Validation of an internationally derived patient
severity phenotype to support COVID-19 analytics from electronic
health record data. J Am Med Inform Assoc.
2021;28(7):1411-1420.

17. Collins GS, de Groot JA, Dutton S, et al. External validation of
multivariable prediction models: a systematic review of methodo-
logical conduct and reporting. BMC Med Res Methodol.
2014;14(1):40.

18. Ramspek CL, Jager KJ, Dekker FW, Zoccali C, van Diepen M.
External validation of prognostic models: what, why, how, when
and where? Clin Kidney J. 2021;14(1):49-58.

19. Sanchez-Pinto N, Stroup E, Pendergrast T, Pinto N, Luo Y. Deriva-
tion and validation of novel phenotypes of multiple organ dysfunc-
tion syndrome in critically ill children. JAMA Netw Open.
2020;3(8):e209271.

20. Riley RD, Ensor J, Snell KIE, et al. External validation of
clinical prediction models using big datasets from e-health records
or IPD meta-analysis: opportunities and challenges. BMJ
2016;353:i3140.

21. Debray TP, Vergouwe Y, Koffijberg H, Nieboer D, Steyerberg EW,
Moons KG. A new framework to enhance the interpretation of
external validation studies of clinical prediction models. J Clin Epi-
demiol. 2015;68(3):279-289.

22. Luo Y, Wunderink RG, Lloyd-Jones D. Proactive vs reactive
machine learning in health care: lessons from the COVID-19 pan-
demic. JAMA 2022;327(7):623-624.

23. Van Calster B, McLernon DJ, van Smeden M, et al.; Topic Group
‘Evaluating Diagnostic Tests and Prediction Models’ of the STRA-
TOS Initiative. Calibration: the Achilles heel of predictive analytics.
BMC Med. 2019;17(1):230.

24. Vergouwe Y, Moons KG, Steyerberg EW. External validity of risk
models: use of benchmark values to disentangle a case-mix effect
from incorrect coefficients. Am J Epidemiol. 2010;172(8):971-980.

25. Wong A, Otles E, Donnelly JP, et al. External validation of a widely
implemented proprietary sepsis prediction model in hospitalized
patients. JAMA Intern Med. 2021;181(8):1065-1070.

26. Johnson AEW, Pollard TJ. The MIMIC-III Clinical Database. ver-
sion 1.4. PhysioNet; 2016. https://doi.org/10.13026/C2XW26.

27. Johnson AEW, Pollard TJ, Shen L, et al. MIMIC-III, a freely acces-
sible critical care database. Sci Data. 2016;3(1):160035.

28. Eickelberg G, Luo Y, Sanchez-Pinto LN. Development and valida-
tion of MicrobEx: an open-source package for microbiology cul-
ture concept extraction. JAMIA Open 2022;5(2):ooac026.

29. Methodology WCCfDS. ATC Classification Index with DDDs.
World Health Organization; 2019.

30. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn:
machine learning in Python. J Mach Learn Res.
2011;12:2825-2830.

31. Breiman L. Random forests. Mach Learn. 2001;45(1):5-32.
32. Platt J. Probabilistic outputs for support vector machines and com-

parisons to regularized likelihood methods. Adv Large Margin
Classif. 2000;10:3-6.

33. Niculescu-Mizil A, Caruana R. Predicting good probabilities with
supervised learning. In: Proceedings of the 22nd International

Conference on Machine Learning. Association for Computing
Machinery; 2005:625-632.

34. Reps JM, Williams RD, Schuemie MJ, Ryan PB, Rijnbeek PR.
Learning patient-level prediction models across multiple health-
care databases: evaluation of ensembles for increasing model
transportability. BMC Med Inform Decis Mak. 2022;
22(1):142.

35. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the
areas under two or more correlated receiver operating characteris-
tic curves: a nonparametric approach. Biometrics 1988;
44(3):837-845.

36. Sun X, Xu W. Fast implementation of DeLong’s algorithm for com-
paring the areas under correlated receiver operating characteristic
curves. IEEE Signal Process Lett. 2014;21(11):1389-1393.

37. Huang Y, Li W, Macheret F, Gabriel RA, Ohno-Machado L. A
tutorial on calibration measurements and calibration models for
clinical prediction models. J Am Med Inform Assoc.
2020;27(4):621-633.

38. Van Calster B, Nieboer D, Vergouwe Y, De Cock B, Pencina MJ,
Steyerberg EW. A calibration hierarchy for risk models was
defined: from utopia to empirical data. J Clin Epidemiol.
2016;74:167-176.

39. Ioannidis JPA. The proposal to lower P value thresholds to.005.
JAMA 2018;319(14):1429-1430.

40. Zafar MB, Valera I, Rodriguez MG, Gummadi KP. Fairness
beyond disparate treatment & disparate impact: learning classifica-
tion without disparate mistreatment. In: Proceedings of the 26th
International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee;
2017:1171-1180.

41. Hardt M, Price E, Srebro N. Equality of opportunity in supervised
learning. In: Proceedings of the 30th International Conference on
Neural Information Processing Systems. Curran Associates Inc.;
2016:3323-3331.

42. Nieboer D, van der Ploeg T, Steyerberg EW. Assessing discrimina-
tive performance at external validation of clinical prediction mod-
els. PLoS One 2016;11(2):e0148820.

43. Khilnani GC, Zirpe K, Hadda V, et al. Guidelines for antibiotic pre-
scription in intensive care unit. Indian J Crit Care Med.
2019;23(Suppl 1):S1-S63.

44. Singh N, Yu VL. Rational empiric antibiotic prescription in the
ICU. Chest 2000;117(5):1496-1499.

45. Dellinger RP, Levy MM, Rhodes A, et al.; Surviving Sepsis Cam-
paign Guidelines Committee including the Pediatric Subgroup. Sur-
viving sepsis campaign: international guidelines for management of
severe sepsis and septic shock: 2012. Crit Care Med.
2013;41(2):580-637.

46. Fu S, Wen A, Schaeferle GM, Wilson PM, Demuth G, Ruan X, et
al. Assessment of data quality variability across two EHR systems
through a case study of post-surgical complications. AMIA Annu
Symp Proc. 2022;2022:196-205.

47. Paxton C, Niculescu-Mizil A, Saria S. Developing predictive mod-
els using electronic medical records: challenges and pitfalls. AMIA
Annu Symp Proc. 2013;2013:1109-1115.

48. Wardi G, Carlile M, Holder A, Shashikumar S, Hayden SR, Nem-
ati S. Predicting progression to septic shock in the emergency
department using an externally generalizable machine-learning
algorithm. Ann Emerg Med. 2021;77(4):395-406.

49. Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD,
Buchman TG. An interpretable machine learning model for
accurate prediction of sepsis in the ICU. Crit Care Med.
2018;46(4):547-553.

50. Ding M, Luo Y. Unsupervised phenotyping of sepsis using nonneg-
ative matrix factorization of temporal trends from a multivariate
panel of physiological measurements. BMC Med Inform Decis
Mak. 2021;21(Suppl 5):1-15.

51. Shin J, Li Y, Luo Y, editors. Early prediction of mortality in
critical care setting in sepsis patients using structured

Journal of the American Medical Informatics Association, 2024, Vol. 31, No. 1 107

https://doi.org/10.13026/C2XW26


features and unstructured clinical notes. In: 2021 IEEE Interna-
tional Conference on Bioinformatics and Biomedicine (BIBM).
IEEE; 2021.

52. Wang H, Li Y, Naidech A, Luo Y. Comparison between machine
learning methods for mortality prediction for sepsis patients with
different social determinants. BMC Med Inform Decis Mak.
2022;22(Suppl 2):1-13.

53. Corey KM, Lorenzi E, Balu S, Sendak M, editors. Model ensem-
bling vs data pooling: alternative ways to merge hospital

information across sites. In: Machine Learning for Healthcare. Uni-
versity of Michigan; 2019.

54. Ashley EA, Dance DAB, Turner P. Grading antimicrobial suscepti-
bility data quality: room for improvement. Lancet Infect Dis.
2018;18(6):603-604.

55. Turner P, Fox-Lewis A, Shrestha P, et al. Microbiology Investiga-
tion Criteria for Reporting Objectively (MICRO): a framework for
the reporting and interpretation of clinical microbiology data.
BMC Med. 2019;17(1):70.

108 Journal of the American Medical Informatics Association, 2024, Vol. 31, No. 1


	Active Content List
	Introduction
	Methods
	Results
	Discussion
	Acknowledgments
	Code availability
	References


