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Abstract
Apoptosis mediated by endoplasmic reticulum (ER) stress plays a crucial role in several neurovascular disorders, includ-
ing ischemia/reperfusion injury (I/R injury). Previous in vitro and in vivo studies have suggested that following I/R injury, 
ER stress is vital for mediating CCAT-enhancer-binding protein homologous protein (CHOP) and caspase-12-dependent 
apoptosis. However, its modulation in the presence of stem cells and the underlying mechanism of cytoprotection remains 
elusive. In vivo studies from our lab have reported that post-stroke endovascular administration of stem cells renders neu-
roprotection and regulates apoptosis mediated by ER stress. In the current study, a more robust in vitro validation has been 
undertaken to decipher the mechanism of stem cell-mediated cytoprotection. Results from our study have shown that oxy-
gen–glucose deprivation/reoxygenation (OGD/R) potentiated ER stress and apoptosis in the pheochromocytoma 12 (PC12) 
cell line as evident by the increase of protein kinase R (PKR)-like ER kinase (p-PERK), p-Eukaryotic initiation factor 2α 
subunit (EIF2α), activation transcription factor 4 (ATF4), CHOP, and caspase 12 expressions. Following the co-culture of 
PC12 cells with MSCs, ER stress was significantly reduced, possibly via modulating the brain-derived neurotrophic factor 
(BDNF) signaling. Furthermore, inhibition of BDNF by inhibitor K252a abolished the protective effects of BDNF secreted 
by MSCs following OGD/R. Our study suggests that inhibition of ER stress-associated apoptotic pathway with MSCs co-
culture following OGD/R may help to alleviate cellular injury and further substantiate the use of stem cells as a therapeutic 
modality toward neuroprotection following hypoxic injury or stroke in clinical settings.
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Introduction

Ischemia/reperfusion (I/R) injury takes place in both neu-
rovascular and cardiovascular diseases leading to cellular 
dysfunction (Bi et al. 2013; Kalogeris et al. 2012). The 
pathophysiology of I/R injury is intricate and multifaceted, 

culminating in excessive production of inflammatory 
mediators and reactive oxygen species (ROS), pushing 
cells toward apoptosis (Turer and Hill 2010; Vemula et al. 
2014). The endoplasmic reticulum (ER) is one of the impor-
tant organelles that play a critical role in secreting various 
proteins involved in membrane protein folding, transloca-
tion, and post-translational modifications (Sano and Reed 
2013; Schwarz and Blower 2016). ER stress leads to the 
impairment of its function resulting in the accumulation of 
unfolded proteins that induces apoptosis (Rausch and Sertil 
2015). Hypoxic injury in cells or stroke in animal models 
triggers various biochemical alterations, including elevated 
oxidative, nitrosative, and ER stress that contributes toward 
apoptosis (Kaur et al. 2021). ER stress markers like protein 
kinase R (PKR)-like ER kinase (p-PERK), p-Eukaryotic 
initiation factor 2α subunit (EIF2α), activation transcrip-
tion factor 4 (ATF4), CCAT enhancer-binding protein 
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homologous protein (CHOP), and caspase 12 are also ele-
vated following I/R injury (Zhao et al. 2018). As ER stress 
is one of the key components of the pro-apoptotic signaling 
pathway, attenuating ER stress may be one of the strategies 
to render neuroprotection (Rozpedek et al. 2017). Stem cell 
therapy is promising, and many studies have enumerated 
the benefits of stem cells for stroke intervention (Chrostek 
et al. 2019). Studies from our lab have also shown that 
post-stroke stem cell endovascular therapy protects neurons 
from apoptosis induced by ER stress through modulation 
of BDNF/TrkB signaling and reduces perifocal vasogenic 
edema by regulating the PKCδ/MMP9/AQP4 pathway (Kaur 
et al. 2021; Datta et al. 2022). Our other studies have also 
revealed that MSCs mediate sirtuin-1 (SIRT-1) regulation of 
inflammasome signaling to render neuroprotection (Sarmah 
et al. 2022).

Stem cell therapy is emerging as a promising modality 
making it an important candidate for stroke intervention 
and enhancing post-stroke recovery (Stonesifer et al. 2017). 
Mesenchymal stem cells derived from bone marrow (BM 
MSCs) were found to be more efficacious, having higher 
self-renewal ability and the capability to protect the damaged 
cells (Han et al. 2019; Li et al. 2019, 2021). MSCs exert 
their protective action via paracrine signaling actions that 
include the release of several trophic factors, chemokines, 
cytokines, and extracellular matrix protein into the neighbor-
ing environment, acting as immunomodulators, angiogenic 
factors, antioxidants, trophic factors, anti-apoptotic factors, 
and cellular chemotaxis-inducers (Baraniak and McDevitt 
2010; Cunningham et al. 2018; Fan et al. 2020; Hofer and 
Tuan 2016; Shabbir et al. 2010). Among neurotrophic fac-
tors, brain-derived neurotrophic factor (BDNF) holds great 
potential for promoting neuronal survival, decreasing apop-
tosis, reducing oxidative stress, and enhancing angiogenesis 
(Bathina and Das 2015; Cunningham et al. 2018; Jeong et al. 
2014). Recent research has also shown that BDNF‐overex-
pressing MSCs mediate increased neuronal protection and 
enhanced functional repair and recovery (Cunningham 
et al. 2018; Scheper et al. 2019). Furthermore, our previ-
ous study reported that post-stroke IA MSCs treatment 
renders neuroprotection and can modulate apoptosis medi-
ated by ER stress via the BDNF/TrkB signaling pathway 
(Kaur et al. 2021). Therefore, the present study investigates 
the MSCs-BDNF-mediated cytoprotection against OGD/R 
injury-induced oxidative and ER stress-mediated apopto-
sis in PC12 cells. To confirm the involvement of BDNF in 
MSCs-mediated cytoprotection, an inhibition study has been 
performed using, K252a, a non-selective Trk inhibitor (Gao 
et al. 2015; Jiang et al. 2015). However, K252a also inhibits 
TrkA and TrkC receptors, which is a major limitation of 
this study (Ogura et al. 2014). Nevertheless, as there are 
limited studies on the cytoprotective action of stem cells on 
hypoxic cells, our study aims to confirm the MSCs-BDNF 

mediated cytoprotection and related underlying mechanisms, 
to robustly validate the role of stem cells on hypoxic cells in 
alleviating ER stress mimicking cerebral ischemia in vitro.

Materials and methods

Reagents and chemicals

All chemicals and reagents were procured from Abcam and 
Sigma Aldrich unless specified otherwise.

PC12 cell culture and OGD/R model

PC12 cells (ATCC, CRL-1721) were cultured in RPMI 1640 
media (Invitrogen, 11,875) supplemented with 10% horse 
serum (Sigma, 30–2040), 5% FBS (Sigma, 30–2021), and 
1% Pen/Strep (Invitrogen, 15,070) at 37 °C in 5% CO2. PC12 
cells in passages 4–7 were cultured in a tissue culture flask 
(Falcon, USA). Rat BM MSCs (Merck) were cultured at 
37 °C in 5% CO2 in MSCs expansion medium. The culture 
medium was changed every other day. Briefly, the culture 
medium was removed, and PC12 cells were washed twice 
using RPMI 1640 medium (without glucose). PC12 cells 
were kept in a hypoxia incubator having conditions 1% O2, 
94% N2, and 5% CO2 at 37 °C (Don Whitley hypoxia work-
station) for 6 h (Mo et al. 2016). Next, cells were cultured 
in RPMI 1640 medium containing 10% horse serum and 
5% FBS at air/CO2 (95%/5%), the reoxygenation phase for 
24 h. PC12 cells in the control group were not treated with 
OGD/R. Twenty-four hours after, PC12 cells were co-cul-
tured with BMSCs using transwell chambers (Corning) in 
an equal ratio (1:1) to generate co-cultures with the OGD/R 
injured PC12 cells, and the cells treated in this manner 
were referred to as the hypoxia + MSCs group. For K252a 
treatment (a non-selective tyrosine kinase receptors (Trk) 
inhibitor, used as BDNF receptor TrkB inhibitor), cells 
were treated with 10 nm K252a (Sigma Aldrich) follow-
ing OGD/R, and cells were treated with an equal amount of 
phosphate-buffered saline (PBS), which served as the vehi-
cle group (Gao et al. 2015; Jiang et al. 2015).

Alamar Blue cell viability assay

5*104 PC12 cells were seeded on a 24-well plate. Following 
OGD/R (OGD for 6 h and reoxygenation for 24 h), media 
was removed, and 50 ng/ml BDNF (Gibco 10,908–010) was 
supplemented in serum-free media for 30 min (Sun et al. 
2012). Another panel of hypoxic PC12 cells was treated with 
MSCs at a 1:1 ratio. Following removal of treatment (BDNF 
and MSCs) media, cells were treated with resazurin (Sigma 
life science R7017) solution. After 3 h of incubation, fluo-
rescence was measured at an excitation/emission ratio of 
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560/590 nm (Eilenberger et al. 2018). Finally, cell viability 
(% untreated control) was represented in comparison to nor-
mal PC12 and normal MSCs (Supplementary 1).

Apoptosis assay by flow cytometry

Apoptosis assay was performed as per the manufacturer’s pro-
cedure by flow cytometry analysis using Annexin V-FITC/PI 
apoptosis detection kit (Life Technologies, Thermo Fischer). 
In brief, the cells were plated at a density of 105 cells/well in 
a 6-well plate (Alia et al. 2017). Treated cells were washed 
with cold PBS twice and resuspended in 1 × binding buffer. 
Annexin V 5 μl and PI 5 μl were then added to the resus-
pended cells and incubated for 30 min at room temperature in 
the dark. Apoptotic cells and necrotic cells were separated by 
a flow cytometer (Bio-Rad). Data were analyzed using FCS 
Express flow cytometry analysis software (Liu et al. 2016).

RNA extraction and quantitative real‑time 
polymerase chain reaction (qRT‑PCR)

RNA isolation and qPCR were carried out as per the previ-
ously reported methodology (Kaur et al. 2021). KiCqStart 
primers (18S, BDNF, ATF4, CHOP, and caspase 12; listed 
primer sequence in Table 1) were used. The relative expres-
sion change of targets was calculated using the 2−ΔΔCt 
method were used. 18S was used as the endogenous con-
trol. Relative expression changes were calculated using the 
2−ΔΔCt method (Kaur et al. 2021).

Tissue lysate preparation and biochemical 
estimations

The total proteins in cells were extracted using RIPA buffer, 
and protein content was estimated using a bicinchoninic acid 
assay (PierceTM BCA Protein Assay Kit) as per the pre-
viously mentioned methodology (Kaur et al. 2021; Datta 
et al. 2022). All biochemical methods were followed as per 

previously reported studies (Datta et al. 2022; Kaur et al. 
2021; Saraf et al. 2019). MDA levels were estimated by 
using the thiobarbituric acid (TBA) assay (Datta et al. 2022; 
Kaur et al. 2021; Pravalika et al. 2019; Saraf et al. 2019). 
For estimating nitrite levels, the Griess method was used 
(Datta et al. 2022; Kaur et al. 2021; Pravalika et al. 2019; 
Saraf et al. 2019). Reduced glutathione (GSH) was estimated 
by using DTNB assay (Datta et al. 2022; Kaur et al. 2021; 
Pravalika et al. 2019; Saraf et al. 2019).

Western blotting

Western blotting was performed as per the previously 
described methodology. A total of 30 µg cell lysates were 
tested for BDNF (1:5000; ab108319), eIF2α (1:1000; 
SAB4500729), p-eIF2α (1:500; ab32157), ATF4 (1 µg/ml; 
ab23760), DDIT3 (5 µg/ml; ab11419), caspase 12 (1:5000; 
ab62484), and beta-actin (1:5000; ab8227). ECL (chemi-
luminescence substrate) (Bio-Rad) was used to detect the 
respective protein bands, and images were digitized in a gel 
doc system (Bio-Rad). Beta-actin was used as a control for 
loading, and the values for band density were normalized to 
beta-actin. Data were quantified by assessing each band’s 
intensity with the help of ImageJ software (NIH, USA) 
(Datta et al. 2022; Kaur et al. 2021; Sarmah et al. 2022).

Immunofluorescence

104 PC12 cells were plated in a culture dish. Following 
OGD/R, the media was removed, and cells were rinsed 
3 × with PBS followed by 4% paraformaldehyde (PFA) fixa-
tion for 10 min at room temperature. 0.1% Triton X-100 was 
used for cell permeabilization for 2 min at room tempera-
ture. Cells were blocked with 1% BSA for 30 min, followed 
by incubation with primary antibodies for BDNF (1:100; 
ab108319) and CHOP (1:500; ab11419) at 4 °C overnight. 
Following overnight incubation, the cells were washed 
3 × with PBS and incubated with Alexa Fluor 647 (goat anti-
rabbit/mouse; ab150079; ab150115; 1:1000) in the dark for 
1 h at 37 °C and then washed with TBS-T three times. After 
washing, cells were counterstained with DAPI for 5 min at 
room temperature. Final images were taken by a confocal 
laser scanning microscope (Leica TCS SP8 Microsystem) 
(Kaur et al. 2021; Yang et al. 2020).

Statistical analysis

Data are presented as mean ± standard error of the mean 
(SEM). Data were analyzed by one-way ANOVA followed 
by Tukey’s post-test using GraphPad Prism version 5 (San 
Diego, CA, USA). A level of p < 0.05 was considered sta-
tistically significant ('Lenth, R.V (2006), Java Applets for 
power and sample size computer software, http://​www.​stat.​

Table 1   Primer sequences

Primer Sequence

BDNF F: GGA​GAC​GAG​ATT​TAA​GAC​AC
R: CCA​TAG​TAA​GGA​AAA​GGA​TGG​

ATF4 F: AAA​CCT​CAT​GGG​TTC​TCC​
R: CTT​TCA​GGT​CCA​TTT​TCT​CC

Caspase 12 F: CTT​CTA​CCC​CAC​ATA​ACA​TTTC​
R: AGC​GTG​TCA​TAG​ATA​CTC​TC

CHOP F: GGA​AAC​GAA​GAG​GAA​GAA​TC
R: ATA​GAA​CTC​TGA​CTG​GAA​TCTG​

18S F: 5’-ATC​GGG​GAT​TGC​AAT​TAT​TC-3’
R: 5’-CTC​ACT​AAA​CCA​TCC​AAT​CG-3’

http://www.stat.uiowa.edu/~rlenth/power
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uiowa.​edu/​~rlenth/​power) (Datta et al. 2022; Kaur et al. 
2021; Sarmah et al. 2022).

Results

Co‑culture of PC12 cells with MSCs reduces OGD/
R‑induced apoptosis

Apoptosis following OGD/R is one of the crucial pathways 
leading toward the process of cell death. We studied the 
anti-apoptotic effects of MSCs using Annexin V-FITC/PI 
staining assay, which allows both quantitative determina-
tion and differentiation among viable, early/late apoptotic, 
and necrotic cells by flow cytometry. Herein, we have found 
that viable cells were more in the control group. However, 
the hypoxia and hypoxia + vehicle group showed a higher 
apoptosis rate when compared to the control group. Inter-
estingly, the hypoxia + MSCs group demonstrated a signifi-
cant reduction in apoptosis as compared to the hypoxia and 
hypoxia + vehicle groups. Groups treated with inhibitors 
showed a substantial increase in apoptosis compared to the 
hypoxia + MSCs group. The results show that MSCs protect 
the damaged cells from apoptosis. However, K252a limited 
the anti-apoptotic effects of MSCs (Fig. 1A and B).

Co‑culture with MSCs normalizes biochemical 
parameters

Following OGD/R, there was a significant increase in MDA 
and nitrite levels and a decrease in endogenous antioxidants 
compared to the control group. Co-culture with MSCs sig-
nificantly increased the GSH levels and reduced MDA and 
nitrite levels. Following treatment with K252a, GSH levels 
were reduced, while MDA and nitrite levels were elevated 
in hypoxia + MSCs + K252a and hypoxia + K252a groups. 
These outcomes suggest that MSCs can alleviate lipid per-
oxidation and nitrosative stress while K252a inhibits these 
protective effects of MSCs (Fig. 2A–C).

Co‑culture with MSCs reduces mRNA levels of ER 
stress markers following OGD/R in PC12 cells

The mRNA levels of ER stress markers were significantly 
upregulated in the hypoxia and hypoxia + vehicle groups. 
Interestingly, treatment with MSCs significantly decreases 
the mRNA levels of these markers. Upregulation of BDNF 
was seen in the hypoxia + MSCs group compared to the 
hypoxia and hypoxia + vehicle groups. However, treatment 
with K252a significantly downregulated the levels of BDNF 
and upregulated the ER stress markers levels. The results 
hint that the protective effect of MSCs was inhibited by 
K252a (Fig. 3A–D).
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Co‑culture with MSCs reduces protein levels of ER 
stress markers following OGD/R in PC12 cells

Protein levels of ER stress markers (p-PERK, p-EIF2α, CHOP, 
ATF4, and caspase 12) in hypoxia and hypoxia + vehicle groups 
were upregulated as compared to the control group. Co-culture 
with MSCs significantly decreased these markers’ expression, 
respectively, compared to the control group. However, protein 
levels of BDNF were found to be increased following MSCs 
treatment compared to the hypoxia and hypoxia + vehicle 
group. K252a treatment upregulated the levels of ER stress 
proteins, and no significant difference was observed between 
the hypoxia + MSCs + K252a and hypoxia + K252a group. Also, 
BDNF levels were found to be downregulated in K252a treated 

groups. These results hint that K252a treatment limited the 
protective effects of MSCs in the hypoxia group. These results 
show that MSCs provide a protective effect following OGD/R by 
decreasing ER stress via BDNF signaling (Fig. 4A–G).

Co‑culture with MSCs increases BDNF levels 
following OGD/R in PC12 cells

In our study, the expression of BDNF significantly reduced 
following OGD/R. Interestingly, MSCs treatment signifi-
cantly increases the levels of BDNF compared to hypoxia 
and hypoxia + vehicle group. However, K252a treat-
ment significantly reduces the expression of BDNF in 
hypoxia + MSCs + K252a and hypoxia + K252a group. 
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hypoxia + MSCs group; $p < 0.05, $$$p < 0.001 vs hypoxia + MSCs 
(n = 3)
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However, no significant difference was observed between 
these two groups. Therefore, these results indicate that MSCs 
modulate the apoptosis-mediated ER stress by regulating the 
BDNF signaling (Fig. 5).

BDNF significantly increases cell viability 
following OGD/R in PC12 cells

The viability of PC12 cells following OGD/R was significantly 
increased by the BDNF treatment as compared to OGD/R 
PC12 cells. While co-culture with MSCs has also increased 
cell viability compared to OGD/R treated PC12 cells, the 
difference between BDNF treated group and MSCs treated 
group per se was non-significant. However, an additive effect 
has been observed following a combined treatment of BDNF 
and MSCs as compared to OGD/R treated PC12 cells, BDNF 
treated group and MSCs treated group (Supplementary file 1).

Co‑culture with MSCs decreases CHOP levels 
following OGD/R in PC12 cells

Following co-culture with MSCs significantly reduced the 
expression of CHOP, indicating that MSCs were able to 
protect the damaged cell from ER stress-induced apoptosis. 
However, treatment with K252a significantly increased the 

expression of CHOP following OGD/R, indicating that the 
protective action of MSCs was inhibited by blocking BDNF 
signaling (Fig. 6).

Discussion

Studies suggest that the pathophysiology of I/R injury is 
complex, involving multiple signaling pathways that include 
ROS generation, intracellular calcium overload, inflamma-
tory response, ER stress, mitochondrial dysfunction, and 
autophagy (Granger and Kvietys 2015; Han et al. 2021; 
Kalogeris et al. 2012; Vongsfak et al. 2021). Increasing evi-
dence also revealed that ER stress is a key phenomenon of 
I/R injury exacerbation that plays a crucial role in the pro-
gression of hypoxia and stroke pathologies (Cao and Kauf-
man 2014; Lin 2015; Lin et al. 2008; Wang et al. 2022). The 
present study explores how co-culturing PC12 cells with 
MSCs following OGD/R alleviates ER stress-induced apop-
tosis via BDNF signaling.

The neuronal activity requires an uninterrupted supply 
of oxygen and glucose. However, any interruption in this 
supply exacerbates the pathological consequences (Chua 
and Lim 2021). OGD/R injury in cells mimics the model of 
cerebral ischemia in vivo (Yang et al. 2020). Interestingly, 

ATF4

CHOP

ββ-Actin

p-PERK

p-eIf2αα

Caspase 12

BDNF

A)

Control Hypoxia Hypoxia 
+ 

vehicle

Hypoxia 
+ MSCs

Hypoxia 
+ MSCs+ 

K252a

Hypoxia 
+ 

K252a

B) D)C)

E) G)F)

Contro
l

Hyp
oxia

Hyp
oxia

+ ve
hicl

e

Hyp
oxia

+ MSCs

Hyp
oxia

+ MSCs + K25
2A

Hyp
oxia

+ K25
2A

0.0

0.5

1.0

1.5

R
el

at
iv

e
ex

pr
es

si
on

of
B

D
N

F/
β β-

ac
tin

*

@@

##

* $

Contro
l

Hyp
oxia

Hyp
oxia

+ ve
hicl

e

Hyp
oxia

+ MSCs

Hyp
oxia

+ MSCs + K25
2A

Hyp
oxia

+ K25
2A

0.0

0.5

1.0

1.5

R
el

at
iv

e
ex

pr
es

si
on

of
p-

PE
R

K
/ ββ

-a
ct

in

***
***

@@

###
$

Co
ntr
ol

Hy
po
xia

Hy
po
xia

+ v
eh
icl
e

Hy
po
xia

+ M
SC
s

Hy
po
xia

+ M
SC
s +

K2
52
A

Hy
po
xia

+ K
25
2A

0.0

0.5

1.0

1.5

R
el
at
iv
e
ex

pr
es

si
on

of
p-
EI
F2

αα
/ ββ
-a
ct
in ***

@@@

##

$***

Co
ntr
ol

Hy
po
xia

Hy
po
xia

+ v
eh
icl
e

Hy
po
xia

+ M
SC
s

Hy
po
xia

+ M
SC
s +

K2
52
A

Hy
po
xia

+ K
25
2A

0.0

0.5

1.0

1.5

Re
la
tiv

e
ex

pr
es

si
on

of
AT

F4
/ββ
-a
ct
in

**
**

@

#
$

Co
ntr
ol

Hy
po
xia

Hy
po
xia

+ v
eh
icl
e

Hy
po
xia

+ M
SC
s

Hy
po
xia

+ M
SC
s +

K2
52
A

Hy
po
xia

+ K
25
2A

0.0

0.5

1.0

1.5

R
el
at
iv
e
ex

pr
es

si
on

of
C
H
O
P/

ββ
-a
ct
in

**

@

#
**

$

Co
ntr
ol

Hy
po
xia

Hy
po
xia

+ v
eh
icl
e

Hy
po
xia

+ M
SC

s

Hy
po
xia

+ M
SC
s +

K2
52
A

Hy
po
xia

+ K
25
2A

0.0

0.5

1.0

1.5

2.0

Re
la
tiv

e
ex

pr
es

si
on

of
Ca

sp
as

e
12

/ββ
-a
ct
in ***

@@@

##

$***

Fig. 4   Effect of MSCs treatment on the protein expression of various 
ER stress markers following I/R injury. A Representative western blot 
images. B BDNF. C p-PERK. D p-eIF2α. E ATF4. F CHOP. G Cas-
pase 12. Data are expressed as mean ± SEM and analyzed for statisti-
cal significance using one-way ANOVA with Tukey’s multiple com-

parison test, *p < 0.05, **p < 0.01, ***p < 0.001 vs control; @p < 0.05, 
@@p < 0.01, @@@p < 0.001 vs hypoxia group; #p < 0.05, ##p < 0.01, 
###p < 0.001 vs hypoxia + MSCs group; $p < 0.05 vs hypoxia + MSCs 
(n = 3)
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OGD/R injury in the cell has made it possible to identify 
potential therapeutic targets and agents to explore the molec-
ular mechanisms associated with different pathologies (Chua 
and Lim 2021). PC12 cells that are derived from the rodent 
tumor found in the adrenal medulla with catecholaminergic 

neuronal properties are one of the commonly used cell lines 
for in vitro ischemia studies and have proven to be benefi-
cial for the initial screening of neuroprotective compounds 
(Chua and Lim 2021; Shi et al. 2021; Poulain et al. 2000; 
Westerink and Ewing 2008). Induction of ER stress in PC12 
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treated PC12 cells. A Representative images of BDNF immunofluo-
rescence staining (nucleus stained blue with DAPI and BDNF stained 
red). B Statistical results of BDNF immunofluorescence intensity 
(IF intensity). Data are expressed as mean ± SEM and analyzed for 

statistical significance using one-way ANOVA with Tukey’s test, 
***p < 0.001 vs control; @@p < 0.01 vs hypoxia and hypoxia + vehi-
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hypoxia + MSCs group. Magnification 63 × ; scale bar 10 µm (n = 3)
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Fig. 6   Co-culture with MSCs reduces CHOP levels in OGD/R treated 
PC12 cells. A Representative images of CHOP immunofluores-
cence staining (nucleus stained blue with DAPI and CHOP stained 
green). B Statistical results of CHOP immunofluorescence intensity 
(IF intensity). Data are expressed as mean ± SEM and analyzed for 

statistical significance using one-way ANOVA with Tukey’s test, 
***p < 0.001 vs control; @@p < 0.01 vs hypoxia and hypoxia + vehi-
cle group; #p < 0.05 vs hypoxia + MSCs group, $p < 0.05 vs 
hypoxia + MSCs group. Magnification 20 × ; scale bar 50 and 10 µm 
(n = 3)
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cells has been well demonstrated previously, and reduction 
of ER stress significantly diminished apoptosis induced by 
ER stress (Gao et al. 2016; Krizanova et al. 2014; Zou et al. 
2009). The importance of MSCs in reducing post-stroke 
ER stress has been studied limitedly in the past (Jiao et al. 
2020; Li et al. 2019). However, the neuroprotective activity 
of MSCs has been attributed to the attenuation of apoptosis 
toward neuroprotection (Nair et al. 2021; Zhang et al. 2019). 
Reports also suggest that MSCs release trophic factors that 
aid neuroprotection following I/R injury (Joyce et al. 2010).

Oxidative stress and ROS generation serve a key role in 
neuronal injury following I/R injury (Kalogeris et al. 2012). 
Excessive ROS production causes lipid, protein, and DNA 
damage leading to cellular dysfunctioning and interruption 
of vital cellular processes (Sharifi-Rad et al. 2020). In the 
present study, we have shown that following OGD/R injury, 
there is a significant reduction in the levels of antioxidant 
enzyme glutathione. As ER stress is a potent oxidative 
and nitrosative stress inducer, we also found a significant 
increase in the nitrite and malondialdehyde levels (Cao and 
Kaufman 2014). Interestingly, co-culture with MSCs signifi-
cantly increased the levels of GSH and normalized the levels 
of nitrite and MDA. Therefore, the results infer that MSCs 
could reduce oxidative stress after OGD/R by promoting 
the endogenous antioxidant defense mechanism following 
co-culture.

Following I/R injury, ER stress triggers the activation of 
PERK, responsible for the phosphorylation of eIF2α, and 
suppresses global protein synthesis (Mei et al. 2013). Once 
eIF2α gets phosphorylated, it further activates ATF4 and 
CHOP, promoting cell death via multiple pathologies (Mei 
et al. 2013). Previous studies have reported that following 
OGD/R, there is an increase in the expression of CHOP (Sun 
et al. 2018). In the current study, the mRNA of different ER 
stress markers was found to be upregulated, which is con-
current with previous findings (Kaur et al. 2021). Studies 
have reported that OGD/R injury elicits persistent ER stress, 
thereby leading to apoptosis (Oyadomari and Mori 2004; 
Sun et al. 2018). Among ER stress markers, CHOP and cas-
pase-12 are one of the key mediators of apoptosis induced 
by ER stress as shown in animal models of ischemic stroke 
(Oyadomari and Mori 2004; Szegezdi et al. 2003). Similar to 
previous studies, our results also demonstrated an increased 
expression of caspase 12 and CHOP mRNA levels following 
OGD/R injury. We have also observed a significant decline in 
the expression of these markers, indicating that MSCs were 
able to protect the injured cells from ER stress-induced apop-
tosis. At the genetic level, we observed increased mRNA lev-
els of p-PERK, p-eIF2α, ATF4, and CHOP, while co-culture 
with MSCs significantly reduced the mRNA expression of 
these markers. Thus, we can infer that the co-culture of MSCs 
with PC12 could provide a neuroprotective effect following 
OGD/R by downregulating ER stress.

BDNF is one of the important neurotrophic factors released 
by MSCs, which effectively delays neuronal death, stimulates 
neurogenesis, and has an antioxidant effect following ischemic 
stroke (Liu et al. 2020; Wu et al. 2016). Supporting studies 
also suggest that following OGD/R, the levels of BDNF are 
reduced in vitro (Zhang et al. 2020). To further confirm the 
involvement of BDNF signaling in apoptosis mediated by ER 
stress following ODG/R, an inhibition study using K252a (the 
inhibitor of Trk receptors) was performed. K252a treatment 
increased ER stress protein markers expression, enhanced 
apoptosis, and abolished the protective effects of BDNF sign-
aling. Taken together, results support that BDNF signaling 
mediates the protective effects of MSCs via a reduction in 
apoptosis mediated by ER stress in PC12 cells after OGD/R 
injury. Expression of apoptotic markers was also elevated 
after K252a administration, which was not altered by MSCs 
co-culture. These results support that MSCs co-culture mod-
ulates apoptosis mediated by ER stress through regulation 
of BDNF signaling. We have also observed that following 
OGD/R, BDNF mRNA levels were downregulated. However, 
following co-culture with MSCs, the levels of BDNF were 
upregulated. From this, we can infer that MSCs co-culture 
with PC12 could provide a neuroprotective effect following 
OGD/R by upregulating BDNF (Fig. 7). Earlier studies by 
Wilkins et al. have used BDNF-neutralizing antibodies to 
block BDNF signaling; however, several other recent studies 
have confirmed successful inhibition of BDNF-TrkB signaling 
following K252a treatment (Wilkins et al. 2009). Although 
K252a is a non-specific tyrosine kinase inhibitor, which is 
a limitation of this study, minimum protein expression of 
BDNF following K252a treatment confirms the blockade of 
the particular signaling pathway. BDNF, in the PC12 cell line, 
can act via p75NTR receptor, which in association with other 
Trk receptors may confer neuroprotection (Ogura et al. 2014; 
Bothwell 2019). Hence, complete blockade of all protein 
kinases as well as tyrosine kinase receptors was solicited. To 
further validate the hypothesis, we have performed an exper-
iment to observe if commercially available purified BDNF 
can render protection to PC12 cells following OGD/R. As 
there are no significant differences in the protein sequence of 
mature BDNF between human and rat, we have used human 
recombinant purified BDNF in our study (Radka et al. 1996). 
We observed that BDNF treatment in PC 12 cells per se could 
also render cellular protection; however, the cytoprotective 
effect is non-significant as compared to the effect of MSCs. 
Moreover, we also observed an additive effect following the 
combination treatment of BDNF and MSCs in comparison 
to MSCs treatment in singlet. Earlier, Ogura et al. reported 
that the induction of BDNF signaling through subtoxic lev-
els of hydrogen peroxide contributes to cellular protection in 
PC12 cells (Ogura et al. 2014). BDNF/TrkB pathway can also 
ameliorate formaldehyde-induced toxicity and corticosterone 
toxicity in PC12 cells (Gao et al. 2015; Jiang et al. 2015; 
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Ogura et al. 2014). Concurrent to the reported studies, we also 
observed that the modulation of BDNF/TrkB pathway has 
cytoprotective effect on PC12 cells following OGD/R. These 
studies potentiates our hypothesis that MSCs may alleviate 
apoptosis following OGD/R via modulation of BDNF signal-
ing toward ameliorating the ER stress.

Conclusion

Our results from the study show that following co-culture 
with MSCs, OGD/R reduces cellular apoptosis induced 
by ER stress by modulation of the BDNF signaling. These 
outcomes provide a deeper insight into the neuroprotective 
mechanism conferred by MSCs post-I/R, which can help use 
stem cell therapy in clinical settings.
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