Skip to main content
. 2023 Dec 13;12(24):4151. doi: 10.3390/plants12244151

Table 4.

Machine learning algorithm goodness-of-fit criteria for predicting callus induction (CI), embryogenic callus induction (EC), and regeneration efficiency (RE).

Traits ML Criteria SVM RF XGBoost KNN GP
Train Test Train Test Train Test Train Test Train Test
CI 1 R2 0.281 0.098 0.402 0.244 0.551 0.515 0.076 0.068 0.539 0.443
MSE 10.462 16.620 9.545 15.217 8.273 12.190 11.859 16.890 8.379 13.055
MAPE 10.438 21.635 10.267 19.753 8.607 16.248 12.025 21.691 9.028 17.425
MAD 7.761 12.118 7.876 11.287 6.677 9.523 9.298 12.172 7.006 10.332
EC R2 0.383 0.574 0.436 0.719 0.648 0.393 0.144 0.432 0.595 0.706
MSE 13.324 9.326 12.739 7.577 10.069 11.130 15.694 10.768 10.798 7.743
MAPE 15.835 9.899 20.133 9.329 14.870 16.650 24.518 15.233 15.825 10.389
MAD 8.665 6.923 10.472 6.165 8.334 9.983 12.547 9.169 8.522 6.916
RE R2 0.526 0.505 0.502 0.422 0.671 0.461 0.145 0.236 0.659 0.525
MSE 0.185 0.173 0.190 0.186 0.155 0.180 0.249 0.214 0.157 0.169
MAPE 37.895 55.642 56.053 59.253 34.188 54.184 72.593 69.556 36.623 48.638
MAD 0.131 0.154 0.161 0.167 0.121 0.159 0.201 0.191 0.126 0.138

1 CI: callus induction (%); EC: embryogenic callus induction (%); and RE: regeneration efficiency (number).