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Abstract: Although numerous effective Simultaneous Localization and Mapping (SLAM) systems
have been developed, complex dynamic environments continue to present challenges, such as man-
aging moving objects and enabling robots to comprehend environments. This paper focuses on
a visual SLAM method specifically designed for complex dynamic environments. Our approach
proposes a dynamic feature removal module based on the tight coupling of instance segmentation
and multi-view geometric constraints (TSG). This method seamlessly integrates semantic informa-
tion with geometric constraint data, using the fundamental matrix as a connecting element. In
particular, instance segmentation is performed on frames to eliminate all dynamic and potentially
dynamic features, retaining only reliable static features for sequential feature matching and acquiring
a dependable fundamental matrix. Subsequently, based on this matrix, true dynamic features are
identified and removed by capitalizing on multi-view geometry constraints while preserving reliable
static features for further tracking and mapping. An instance-level semantic map of the global sce-
nario is constructed to enhance the perception and understanding of complex dynamic environments.
The proposed method is assessed on TUM datasets and in real-world scenarios, demonstrating that
TSG-SLAM exhibits superior performance in detecting and eliminating dynamic feature points and
obtains good localization accuracy in dynamic environments.

Keywords: SLAM; complex dynamic environment; fundamental matrix; semantic segmentation;
multi-view geometric constraint

1. Introduction

SLAM technology is a crucial element for mobile robots to achieve highly intelligent
tasks in unknown work environments. Visual SLAM, which relies on visual sensors to
perceive surroundings, can acquire images with rich semantic information about envi-
ronmental targets. Environmental semantic information is of significant importance to
intelligent robots as it can assist them in positioning, build environmental semantic maps,
and is the basis of human—computer interaction.

In 2007, Davison et al. [1] proposed Mono-SLAM, which achieved the realization
of monocular real-time SLAM and initiated research in the field of visual SLAM. Klein
et al. [2] proposed PTAM, which creatively divides the entire SLAM system into tracking
and mapping threads, successfully applying feature points. Leutenegger et al. [3] proposed
the OKVIS visual-inertial odometry framework, while Mur-Artal et al. proposed ORB-
SLAM [4], ORB-SLAM?2 [5], and ORB-SLAMB3 [6] based on feature points.

Most visual SLAM systems are built based on static scenarios, and when there are
moving objects in the scenario, the system’s localization and mapping accuracy is greatly
affected. In addition, the scene maps constructed by visual SLAM systems are usually
based on the geometric information of the scene, such as sparse landmark maps and sparse
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point cloud maps, which are insufficient to enable mobile robots to understand complex
working environments. Thus, it is necessary to process moving objects in complex environ-
ments, eliminate their interference in the visual SLAM system, and integrate environmental
semantic information to construct semantic maps.

Semantic maps include scene-oriented semantic maps and object-oriented semantic
maps. The former integrate semantic information into 3D point clouds to build a scene
semantic map, while the latter only retain the semantic information of some objects in the
scene semantic map, with most of the semantic information independent of the map in the
form of clustering. An object-oriented semantic map is more helpful for a robot to perceive
a scene and improve map practicality. McCormac et al. [7] proposed a voxel-based online
semantic SLAM system, Hoang et al. [8] proposed the Object-RPE system, and Hossein-
zadeh et al. [9] proposed a method to represent objects in the form of quadratic surfaces,
while Oberlander et al. [10] proposed a mapping method that combines topological, metric,
and semantic information. Hybrid map representation, which combines topological, metric,
and semantic information, has been an important direction in the field of mobile robotics
research for a long time [11]. Luo et al. [12] used object recognition algorithms to classify
scenes, fused the classification results with topological nodes, and assigned semantic in-
formation to each topological node. Lin et al. [13] proposed a novel closed-loop approach
based on object modeling and semantic graph matching. Object-level features in a scene are
modeled using voxels and cuboids, and the scene is further represented as a semantic graph
with topological information. Yang et al. [14] proposed a semantic and topological method
of automatically representing indoor spaces using floor-plan raster maps to reconstruct
indoor spaces with semantic and topological structures. The dynamic visual SLAM method
based on the semantic segmentation module proposed by Jin et al. [15] uses semantic labels
and depth images to create a 3D point cloud map with semantic information. In short, the
fusion of topological and semantic information generally only fuses semantic information
with topological nodes, ignoring many environmental details. Although it can help a
mobile robot to move to a certain scene quickly, it cannot allow the robot to intelligently
interact with the physical objects in the scene.

The rest of this paper is organized as follows: Section 2 provides an overview of
related works regarding SLAM methods in dynamic environments. Section 3 describes
the proposed system framework. Section 4 presents a dynamic feature removal method in
detail. Section 5 presents the semantic map construction module. Section 6 presents the
experimental results and performance analysis. Finally, Section 7 concludes the paper and
discusses future research directions.

2. Related Work

Semantic SLAM systems face challenges in accurately localizing and mapping com-
plex environments with a large number of dynamic objects. To address this issue, four
methods [16] have been proposed to eliminate dynamic features: multi-sensor informa-
tion compensation, an enhanced RANSAC algorithm, foreground /background model
construction, and semantic information integration.

Using information obtained from an IMU, a wheel odometer, and other sensors as
prior motion knowledge for a camera can assist a system in segmenting dynamic targets.
The SLAM system designed by Yao et al. [17] includes tracking threads, feature extraction
threads, and local mapping threads. One of the tasks of the tracking thread is to utilize
the transformation matrix obtained from an IMU and combine it with the reprojection
error to determine the dynamic nature of feature points. To avoid long-term drift in wheel
odometry calculations, Yang et al. [18] only used data between two adjacent frames to
estimate the initial pose over a short period of time. In order to speed up the detection
of dynamic regions, two optimization measures were adopted. First, the dynamic nature
of the image regions obtained via clustering was determined instead of individual pixels.
Second, when judging the clustered regions, only a subset of feature points was selected
instead of all feature points in the region. In addition, the object detection framework
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YOLOV3 [19] was integrated into the system. The data fusion and joint calibration resulting
from the use of multiple sensors pose challenges to the system'’s stability and accuracy,
while errors and noise are also issues that cannot be neglected.

For SLAM in dynamic environments, it is common to use the RANSAC algorithm to
obtain a rough transformation matrix result to determine the dynamic status of landmarks
in the environment. Sun et al. [20] used tthe RANSAC algorithm to compute a perspective
transformation. The calculated transformation matrix was applied to each pixel in the
previous frame image, resulting in a difference image. The moving object can be roughly
identified using the non-zero pixels in the differencing results. This process was used to
obtain segmentation results. Sun et al. [21] replaced the standard RANSAC algorithm
with a least-median-of-squares algorithm (LMedS) for their calculations. The Prior-based
Adaptive Random Sample Consensus (PARSAC) algorithm proposed by Tan et al. [22]
leveraged prior knowledge about the background, leading to a reduced proportion of
inliers in the estimation of the camera’s motion model. The major drawback of using the
RANSAC algorithm to eliminate dynamic objects is that as the number of dynamic objects
increases or they become closer to the camera, the static background area becomes too
small, leading to ineffective dynamic object removal.

Building a foreground model in advance is equivalent to directly segmenting out
moving objects. Then, the areas outside the foreground are used for the localization and
mapping of mobile robots. Wang et al. [23] first calculated optical flow trajectories between
consecutive image frames. They performed a clustering analysis on these trajectories,
merging regions with similar motion tendencies. Assuming that static regions dominate
the majority of the image, the largest area with merged regions could be used to compute
the corresponding fundamental matrix. This process further refined the dynamic regions,
forming the image foreground. In subsequent camera localization and dense mapping
using the Dense Visual Odometry (DVO) SLAM system [24], the foreground parts of
the images were discarded. The challenge in constructing foreground models lies in the
identification and removal of non-rigid bodies, such as pedestrians and animals.

Adding semantic information to the SLAM system in dynamic environments allows
for the preliminary assessment and segmentation of objects with high motion probability
based on prior knowledge. By removing these high-motion-probability target regions
from the images, estimating the camera’s motion and pose becomes much more reliable
compared to directly using the RANSAC algorithm to remove outliers. Yu et al. [25] intro-
duced the DS-SLAM system, which excluded the person area in the image and eliminated
dynamic matching points using motion consistency. Bescos et al. proposed DynaSLAM [26]
and DynaSLAM II [27]. DynaSLAM combined multi-view geometry and target masks to
remove predefined moving objects and proposed a background restoration method to fix oc-
cluded backgrounds. Dyna-SLAM II simultaneously estimated camera poses, sparse static
3D maps, and the trajectories of multiple moving objects using a new bundle adjustment
method. You et al. [28] proposed a multimodal semantic SLAM system (MISDSLAM) which
can reconstruct the static background with semantic information. Liu et al. [29] applied an
algorithm to obtain as the latest semantic information possible, thereby making it possible
to use segmentation methods with different speeds in a uniform way. Zhao et al. [30] pro-
posed KSF-SLAM, which added an efficient semantic tracking module to remove dynamic
objects in dynamic environments. Gonzalez et al. [31] introduced TwistSLAM, which cre-
ated point clusters based on semantic categories and modeled constraints between clusters
to remove dynamic features and improve motion estimation quality. Kuang et al. [32]
obtained potential motion areas through semantic segmentation, combined dynamic point
features to determine dynamic areas, and removed point and line features in dynamic
areas to enhance localization accuracy and stability. Runz et al. [33] presented the mask
fusion system, which used geometric segmentation to produce precise object boundaries
to overcome the limitations of imperfect boundaries provided by semantic segmentation.
Xu et al. [34] proposed the MID-Fusion system, which provided the geometric, semantic,
and motion attributes of objects in an environment. Li et al. [35] presented the DP-SLAM
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system, which tracked dynamic matching points in a Bayesian probability estimation frame-
work to overcome geometric constraints and semantic segmentation bias. Wu et al. [36]
proposed YOLO-SLAM, which combined object detection and geometric constraint meth-
ods to reduce the influence of dynamic objects. Li et al. [37] utilized semantic information
and global dense optical flow as constraints to generate dynamic-static masks and eliminate
dynamic objects. Xing et al. [38] presented DE-SLAM, which utilized a dynamic detection
and tracking module of semantic and metric information to improve localization accuracy
by eliminating features on dynamic objects.

In the aforementioned literature, most dynamic visual SLAM schemes adopted existing
mature object detection and semantic segmentation network frameworks to perform the
initial division of dynamic regions. The network architectures included SegNet [39], Mask
R-CNN [40], and the YOLO series. Similar to Mask R-CNN, SOLOv2 [41] is a simple,
fast, and accurate instance segmentation framework. It surpasses most current advanced
open-source instance segmentation methods in terms of segmentation speed and accuracy,
and it also performs well in segmenting moving targets. Hence, we chose SOLOvV2 to
complete the instance segmentation task. Based on instance-level semantic information, we
can acquire the prior motion information of objects. If the label corresponding to the object
feature is person, it is considered dynamic, and if the label is desk, it is considered static,
both with high confidence. However, when the label is chair, it is usually static, but there is
a significant likelihood it might move due to the influence of other moving objects (such as
human activity). Therefore, it is challenging to definitively categorize chairs as either static
or dynamic; these are potentially dynamic objects.

In conventional semantic segmentation-based dynamic SLAM systems, dynamic fea-
tures are removed, static features are preserved, and potentially dynamic features are
generally treated either as all static or as all dynamic. Treating all potentially dynamic
features as dynamic and removing them can reduce the accuracy of feature matching.
Conversely, treating all potentially dynamic features as static can lead to many incorrect
correspondences in feature matching. Both situations negatively affect the system’s localiza-
tion accuracy and mapping precision. In essence, while the SOLOv2 algorithm can segment
potential dynamic targets and provide semantic labels, it cannot accurately determine their
actual motion state. In addition, the unavoidable fuzziness in SOLOv2’s segmentation
results near object edges can lead to a small number of feature points being misjudged
at the edges where dynamic and static objects meet. Therefore, we cannot rely solely on
SOLOV2’s semantic information and need to combine it with other methods to jointly
determine the motion state of target features.

Instance segmentation methods are used in conjunction with other methods, such as
using a bundle adjustment with multi-view geometric constraints or optical flow fields.
When combined, a voting mechanism is typically employed to process dynamic objects.
Generally, there are two types of voting mechanism: the first is that if both judgment results
are dynamic, the final result is dynamic, and the second is that if any one result is dynamic,
the final result is dynamic. We consider both combination methods loosely coupled ap-
proaches, merely combining the results of the two methods through a simple mechanism.
In fact, this loosely coupled approach is unreliable and can lead to misjudgment.

This paper proposes a dynamic feature removal method that tightly couples instance
segmentation and multi-view geometric constraints to detect and remove dynamic feature
points and integrates instance semantic information into environment map construction to
generate global environment instance-level semantic point cloud maps. The main contribu-
tions of this paper are as follows. First, a system framework for the SLAM of mobile robots
in complex environments is constructed based on ORB-SLAM3. Second, a dynamic feature
removal method is designed which uses a tightly coupled method to closely combine
the instance segmentation SOLOV2 algorithm with multi-view geometric constraints to
accurately detect and remove dynamic feature points. Third, a semantic map construc-
tion module is designed, which extracts a 3D semantic point cloud using the semantic
information of the target obtained via the instance segmentation algorithm, generates the
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corresponding target semantic tag, and builds an instance-level target semantic tag library
to construct an environmental 3D semantic map.

3. System Overview

To eliminate the impact of dynamic targets on the SLAM system and create a map
containing environmental semantic information, this paper presents a mobile robot simul-
taneous localization and semantic mapping system based on the ORB-SLAM3 system. The
system’s overall framework is illustrated in Figure 1, and it can handle dynamic targets with
excellent anti-interference ability, extract the instance-level semantic information of various
objects, and support intelligent robots to perform tasks in complex indoor environments.

TRACKING
|| Extract Geometric || Dynamic Feature Points Initial Pose Estimation Ne
e ORB Constraints Removal by Tight o from Last Frame, Track Ke fr\:me
Motion Prior by SOLOV2 Coupling of Semantic and Relocalization or Local Map De};ision
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Figure 1. Overall SLAM system framework.

The TSG-SLAM system introduces two additional parallel threads to the classic
three threads of ORB-SLAM3: the dynamic feature removal thread and the semantic map
construction thread. The dynamic feature removal thread is responsible for eliminating the
dynamic features of objects, ensuring the system’s localization and mapping accuracy. The
semantic map construction thread constructs a 3D dense semantic map with instance-level
semantic information, which enables intelligent robots to navigate and interact intelligently
in complex environments.

4. Dynamic Feature Removal Method

A dynamic feature detection and removal method is proposed in this paper. The
method tightly integrates semantic information and multi-view geometric constraint infor-
mation, as shown in the algorithm framework in Figure 2.

Firstly, ORB features are extracted from the current frame image, and instance segmen-
tation results are obtained using SOLOvV2 on both the current and previous frames. This
allows for the removal of features belonging to dynamic targets and potential dynamic
targets. Subsequently, feature matching is performed based on the remaining static targets,
and the fundamental matrix is calculated. Finally, dynamic feature points in the current
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frame are precisely detected and removed with multi-view geometric constraints, leaving
only the static feature points.
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Figure 2. Framework of dynamic feature removal algorithm.

This method ensures accurate localization and mapping in complex environments by
removing the impact of dynamic targets and contributes to constructing a 3D dense seman-
tic map with instance-level semantic information for intelligent tasks such as navigation
and interaction in complex indoor environments.

4.1. SOLOv2 Instance Segmentation

The SOLOv2 network architecture is shown in Figure 3, and it mainly comprises Fully
Convolutional Network (FCN) feature extraction, a kernel branch, and a feature branch.
The convolution kernel matrix is denoted as G, while the mask feature matrix is represented
by E. SOLOv2 divides the image into S x S grids, treating each grid as a potential target
instance. After the original image is passed through the FCN, the feature map is obtained,
which then enters both the kernel branch and the feature branch. The kernel branch predicts
the dynamic kernel to obtain different kernels for different inputs, while the feature branch
predicts the features for each point on the feature map. Finally, the outputs of the kernel
branch and feature branch are convolved to obtain the mask of the target in the image.

The COCO dataset [42] is used for pre-training to obtain network parameters, which
include most moving objects that may appear in real-life scenarios, making it very suitable
for the application scenario of this article.

i G: SxSxD

kernel T G2 12)

branch
————————— >

g
” feature

branch

F: Hx WxE

Figure 3. Framework of SOLOv2 network.
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4.2. Dynamic Feature Detection

The multi-view geometry constraints utilizing epipolar geometry characteristics can
be used to detect the motion state of target feature points in the environment. The features
that satisfy the epipolar constraints are static features, while the features that do not satisfy
the epipolar constraints are dynamic features. These constraints can be used to identify the
position and motion of feature points in a given environment.

Figure 4a shows the relationship between static object points and their corresponding
feature points in two frames. P is a static target point which is imaged in two consecutive
image frames corresponding to feature points p; and p; in frame I; and frame I, respec-
tively. P? represents the possible position of point P in the presence of uncertain factors.
O1 and O, are the camera centers corresponding to frame I; and frame I, respectively.
Polar plane 7t intersects image planes I; and I, at polar lines /; and I, respectively, and

baseline O 0, intersects image planes I and I, at poles ¢; and ey, respectively. P lies on
— —

rays Oqp1 and O, p,, and p; lies on epipolar line I. The multi-view geometric constraint
describes the corresponding epipolar mapping from the points on frame I; and frame I,
and the mapping relationship can be described by the fundamental matrix F,.

p3 Fup1 =0 1)

0,
(b) Epipolar Geometric Constraints with

(a) Ideal Epipolar Geometric Constraints -
Uncertain Factors

Figure 4. Multi-view epipolar geometry constraints.

Given p; in frame I; and the fundamental matrix F;;, Equation (1) provides the con-
straints that p, must satisfy when P is a static target point. Therefore, we can use this
constraint to judge whether the target point corresponding to the ORB feature point is
dynamic. Due to the uncertainty in the process of extracting features and estimating F,,
there is a high probability that the two image points in the static map do not strictly satisfy
Equation (1), that is, p, in Figure 4b should be located on I;. If the distance d between
p2 and I is smaller than a predetermined threshold, the motion state of the target point
corresponding to the image point is regarded as static; otherwise, it is regarded as dynamic.

Use the classic eight-point algorithm to estimate the fundamental matrix Fy. Let

fi 2 f3
Fu=|fis f5 fol|,p1=[u1,01,1) p2 = [u,v2,1]", where (11, v1) and (1, v;) are the
fr fs fo
pixel coordinates of p; and p,, respectively. According to Equation (1), we can obtain
fi f2 f3\ [
(u2,02, 1) fa fs fo||v1] =0 2
fr fo fo/ \1

Let f,, denote the vector containing all elements of F,.

fm = Uf1 fo o fus f5, for f7, foo fol " €)
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Equation (2) can be written as a linear equation about f,.
[uz1i1, U901, Uz, V211, V2V, U2, U1, 01, 1] - firn = 0 (4)

When there are eight pairs of corresponding image points between two consecutive
frames, we can solve Equation (4) to calculate F,,. Once F), is obtained, we can use
Equation (2) to determine the state of the target feature.

While using multi-view epipolar geometry constraints to detect dynamic features
is a useful approach, it presents a fundamental contradiction. In order to calculate the
fundamental matrix F;, required to detect dynamic feature points, correspondences of static
feature points are needed as the target features in the keyframes used for feature matching
must be static. This means that dynamic feature points must be removed before F;; can
be calculated. In the general feature-matching process, the Random Sample Consensus
(RANSAC) algorithm is often used to filter out dynamic feature points and reduce the
impact of incorrect correspondences. However, RANSAC is limited in its ability to remove a
large number of dynamic feature points, which can negatively affect its overall performance.

4.3. Dynamic Feature Removal

We propose a tight-coupling approach that utilizes the fundamental matrix F;, as a
bridge between semantic information and geometric constraint information. Firstly, we
employ SOLOV2 to perform instance segmentation on frames of the scenario to obtain
motion priors, which identify all moving and potential moving targets. We then use the
instance segmentation results as a mask to remove the correspondences of dynamic and
potential dynamic features, retaining only reliable static feature correspondences. Based
on these static feature correspondences, we perform feature matching and compute the
reliable fundamental matrix. Finally, we use multi-view geometry constraints to detect and
remove true dynamic features, retaining only static feature points for subsequent tracking
and mapping. When judging the motion state of a feature point, we use a threshold value
of d. If d exceeds one pixel size, the feature point is judged as dynamic and removed, and if
d is smaller than a pixel size, it is judged as static and retained.

5. Instance-Level Semantic Map Construction

Figure 5 illustrates the framework of our scenario semantic map construction algo-
rithm. The algorithm constructs the semantic map using keyframe images with dynamic
feature points removed. Firstly, we generate a single-frame point cloud containing only
static feature points from the keyframe images. Then, we stitch and filter the generated
single-frame point clouds to obtain the scene point cloud map. Next, we use the semantic
information and masks provided by SOLOV2 to extract the 3D semantic tags of the targets
from the point clouds, establishing and updating an instance-level semantic tag library.
Finally, we integrate the semantic information of the targets into the point cloud map to
generate a 3D semantic point cloud map. To accommodate larger scenes and conserve
storage space, we construct an octree semantic map.

An RGB-D camera captures both color and depth information for each pixel in the
scene. By modeling the camera and using its intrinsic and extrinsic parameters, we can map
the 2D pixels in the image to their corresponding 3D points in space, creating a point cloud.
For a given frame, let (x, y) be the 2D coordinates of a pixel p, (X, Y, Z) be the 3D coordinates
of the corresponding spatial point P, and s be the depth value of p. The transformation
relationship between p and P can be expressed as follows:

X fx 0 o Ly

Y| =10 f ¢ y ©)
z 0 0 1 s
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The coordinates of P are
X =s(x—cx)/fx
Y =s(y—cy)/fy, (6)
Z=s

where f; and fy are the focal length of the RGB-D camera, and ¢y and ¢y are the offsets of
the image origin relative to the imaging point of the camera’s optical center. By applying
this transformation to the pixels in the key image frames, we can obtain the corresponding
point cloud.

Keyframes without Target Semantic
Dynamic Feature Points Information

\ 4

Point Cloud Generation

A 4
A 4 -
; Construction and
Point Cloud Map by Update of Instance-
Point Cloud Stitching > level Semantic Ta
and Filtering Library &

3D Semantic Point
> Cloud Map
Construction

v

Octree Semantic Map
Construction

A

Figure 5. Framework of scenario semantic map construction algorithm.

To match and stitch point clouds, we utilize the PCL (Point Cloud Library) [43] and
follow a three-step process. First, we find the point cloud that corresponds to a certain
frame and match them. Second, we calculate the transformation matrix between the two
point clouds. Finally, we transform the matched point clouds into the same coordinate
system and stitch them together, resulting in a complete point cloud map of the scene.

The mathematical expression for point cloud stitching can be described as follows:

m = ;'1:0 Ticir (7)

where m is the local point cloud map obtained by generating and stitching the first n image
frames. C; represents the point cloud obtained from the i-th keyframe, and T; represents
the position and orientation of the camera corresponding to the i-th keyframe.

To remove outlier noise points from the point cloud map, a statistical filter is em-
ployed to filter the point cloud map to remove these outlier noise points. To address
the issue of overlapping points obtained from different viewing angles while preserving
the shape characteristics of the point cloud map, a voxel filter is used to remove these
overlapping points.

Although we have generated a global 3D point cloud map of the scene through single-
frame point cloud generation, point cloud stitching, and filtering, this point cloud map is
simply geometry-based and does not incorporate the semantic information of targets. As
a result, it cannot provide a deeper understanding of the scene for mobile robots. Therefore,
we designed an algorithm for constructing and updating an instance-level Semantic Tag
Library (STL), presented in Algorithm 1. Firstly, we extract and optimize the 3D point
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cloud corresponding to each target to generate the corresponding 3D semantic tag. Then,
we match and fuse the semantic tags corresponding to the 3D point clouds extracted from
the same target in different perspectives. Finally, we construct and update the global static
target semantic tag library of the scene.

Algorithm 1 Algorithm of instance-level STL.

Input: semantic information and 3D point cloud of targets
Output: instance-level STL

1 for each 3D point cloud do

2 if an unprocessed point cloud exists then

3 extract & optimize point cloud for semantic tag
4 if semantic tag exists in tag library then

5 calculate spatial consistency of point cloud
6 if dmin < dw then

7 fuse & update STL

8 go to step 18

9 else

10 insert the tag into STL

11 go to step 18

12 end

13 else

14 insert the tag into STL

15 go to step 18

16 end

17 else

18 save STL

19 end

20  end for

Since the SOLOV2 instance segmentation algorithm can accurately segment the target
area, the resulting target mask area is highly precise and contains only pixels corresponding
to the target. This makes it possible to map the target semantic information obtained from
the segmentation directly to the 3D point cloud, resulting in a 3D point cloud corresponding
to each target. The detailed process involves locating the region of each segmented target
instance using the 2D mask, recording the index of the corresponding point cloud for
each pixel in the mask area that matches the semantic mask category, calculating the
average depth of the point cloud in the target mask area, removing outlier points, and
performing statistical and voxel filtering on the point cloud index corresponding to each
target. Instance-level semantic tags are then generated based on the semantic information
and corresponding 3D point clouds.

To update the target semantic tag library, the target semantic tags generated from
the segmentation are compared with existing tags in the library. If a tag with the same
category does not exist, it is added to the library. If it does exist, a spatial consistency
calculation is performed on the 3D point cloud, and if the minimum Euclidean distance
dmin between the centers of the point clouds is less than the average width d,, of the
two candidate boxes, they are considered the same target, and the target semantic tag
library is fused and updated. Otherwise, the target semantic tag is inserted into the
library. The library updating process involves merging similar targets’ point clouds and
recalculating their center, maximum, and minimum point coordinates.

After constructing and updating the semantic tag library, the 3D point cloud map
contains the instance-level semantic information of each target in the scenario. However, it
also contains invalid information, such as textures on the ground and shadows in shadowed
areas, which could overload the computing resources. Therefore, to achieve the localization
and mapping of larger-scale scenes, a visual 3D octree semantic map is established by
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performing point cloud semantic extraction on each keyframe and matching and fusing
target point clouds generated from different observations at different positions.

Suppose a certain node in the map is denoted as #, its observed value is z, and the
probability log value of the node from the beginning to the time ¢ is L(n|z1, ); then, the
probability log value at the time t + 1 is

L(n|zyp41) = L(n|z14-1) + L(n|zt), (8)
written in probabilistic form as

1—P(n|zt) 1-P(njz;4—1) P(n) !

P(n|z14) = |1+ P(n|z) P(n|z14-1) '1—P(n)

)

With the help of log probabilities, we can effectively combine and enhance the entire
octree map using RGB-D data. When the depth information of each pixel is converted into
point cloud data, the 3D point cloud representing the target will be contained within the
limits of the corresponding octree sub-node. By increasing the occupancy probability of
that node, we can obtain the occupancy information of the node. Furthermore, by assigning
target semantic RGB color values to each node of the octree, we can create a highly visual
octree semantic map.

6. Experiment and Discussion
6.1. Test of Dynamic Feature Removal Method

To analyze the effectiveness of the dynamic feature removal method, we selected the
fr3/walking_xyz dataset from the TUM dataset [44] for testing. This dataset scenario is
similar to our daily work environment, as shown in Figure 6a, with static objects such
as tables and monitors, dynamic targets such as people, and potential dynamic targets
such as chairs. Two monitors are static, two people are dynamic, and the chair on the left
moves due to the movement of the person and is dynamic, while the chair on the right
has not been moved and is static. Figure 6b presents the ORB feature extraction results,
with feature points marked with green dots distributed throughout the scenario. Many
features are extracted from objects with distinctive features such as people, chairs, and
monitors, which contain numerous dynamic features, such as people. In Figure 6¢, we show
the results of removing dynamic features only with the SOLOv2 instance segmentation
method. Although most of the ORB dynamic features on the two people are removed, a few
feature points remain at the contact edge between the people and the chair, limited by the
accuracy of the instance segmentation algorithm. It is difficult to perfectly segment features
at a contact edge, and the SOLOV2 algorithm used in this paper, despite having high
segmentation accuracy for object edges, still has some unavoidable errors. Additionally,
the feature points on the two chairs are not removed since the real state of the potential
dynamic target cannot be accurately distinguished only based on instance segmentation.
Therefore, the two chairs are simply judged as static targets. Figure 6d illustrates the results
of our tightly coupled method for removing dynamic features. Compared to Figure 6c,
almost all the features of the two moving people are removed, indicating that our method
is more effective at reducing the segmentation error of the instance segmentation algorithm.
The features of the chair on the right are judged as static features and preserved, while
the features of the chair on the left are judged to be dynamic and removed, indicating that
our method accurately removes the features of all dynamic objects in the scenario. This is
consistent with the motion state of each target in the test dataset. Table 1 lists the number
of different types of feature points obtained by different methods.

Our findings confirm the effectiveness of our method in accurately eliminating dy-
namic features and minimizing segmentation errors in instance segmentation algorithms.
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Figure 6. Comparison of dynamic feature removal method. (a) Original grayscale image. (b) ORB
feature extraction. (c) Dynamic feature removal based on instance segmentation. (d) Dynamic feature
removal based on tightly coupled method.

Table 1. Comparison of the number of different types of feature points.

Type of Feature Points

Dynamic Feature Removal Method

Static Dynamic Potentially Dynamic
ORB feature extraction 144 54 15
Instance segmentation 144 0 15
Tightly coupled method 144 0 0

6.2. Test of Semantic Map Construction Algorithm

We utilized the partial sequence located in the fr1/room of the TUM dataset to conduct
our local semantic mapping evaluation. This dataset provides us with RGB images, depth
images, and the precise position and orientation of the camera. For our mapping test, we
selected five consecutive frames of images. Figure 7a shows the RGB images of the selected
frames, while Figure 7b displays the corresponding depth images.

(a) RGB image

(b) depth image

Figure 7. Selected image frame sequence diagram.
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To create our point cloud map, we stitched and filtered all of the single-frame point
clouds generated from extraction. The point cloud map before and after filtering is depicted
in Figure 8, where Figure 8a,b illustrate the point cloud map before and after filtering,
respectively. Prior to filtering, the point cloud map exhibited a significant amount of
overlap between point clouds and contained numerous outlier noise points. However, after
filtering, the quality of the point cloud map was significantly enhanced. Our experimental
statistical analysis revealed that the numbers of point clouds generated before and after
filtering were 1,118,657 and 634,787, respectively, representing a reduction of almost half
of the total number of point clouds. This highlights how filtering can effectively improve
mapping outcomes and greatly conserve computing resources.

(a) Before filtering (b) After filtering

Figure 8. Comparison of point cloud map before and after filtering.

Figures 9 and 10 display the reconstruction results of the octree maps before and after
integrating target semantic color information. In Figure 9, the octree map is annotated with
a gradient color scheme without a specific pattern. In Figure 10, the octree map with the
added target semantic color information contains visualized semantic information of the
scenario’s targets in Figure 8b, which significantly enhances the scenario reconstruction
and produces a visually compelling result. Additionally, Figures 9 and 10 demonstrate the
impact of the octree map at varying resolutions. In our testing, we used a default depth
of 16 layers, with an edge length of each small square measuring 0.05 m. As the depth
decreases by one layer, the leaf nodes of the octree move up one layer, and the edge length
of each small square doubles.

e g

3

0.05m resolution 0.1m resolution 0.2m resolution

Figure 9. Octree map before integrating target semantic color information.

el L.

0.05m resolution 0.1m resolution 0.2m resolution

Figure 10. Octree map after integrating target semantic color information.
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Moreover, the file sizes of the point cloud map and the octree map are 10.2 megabytes and
217.8 kilobytes, respectively. This represents a significant reduction in storage space of nearly
fifty times, highlighting the benefits of using an octree map for reconstructing larger scenarios.

6.3. Experimental Platform and Evaluation Index

To test the feasibility and effectiveness of our SLAM system in complex environments
with dynamic objects, we conducted experiments in static, low-dynamic, and high-dynamic
public datasets, as well as in real laboratory scenarios. In order to simplify subsequent
discussions, we gave our improved SLAM system a name: TSG-SLAM.

An experimental platform for mobile robots was developed to meet the demands of
complex environments. It includes a Mecanum wheel mobile robot, a Kinect V2 depth
camera (Microsoft Inc., Redmond, WA, USA), a computer, and a vehicle-mounted power
supply, among other components. This platform is depicted in Figure 11.

.l .
, .

Figure 11. Experimental platform.

The software system is built on Ubuntu 16.04 and utilizes the ROS system for managing
the entire system. The program is primarily written in the C++ language and utilizes
various open-source libraries, including OpenCV for processing keyframe images, Eigen
for matrix operations, Keras for instance segmentation, Ceres for solving least squares
problems during optimization, g2o for graph optimization, PCL for generating point clouds,
and octomap [45] for constructing octree maps.

To assess the localization accuracy of a SLAM system, the absolute trajectory error
(ATE) and the relative pose error (RPE) are used as evaluation metrics to evaluate the
motion trajectory estimation. ATE is employed to assess the overall accuracy of the SLAM
system. The formula for calculating ATE is as follows:

1Y _
ATE = NE [ tmns(Tg,ilTe,i) 15, (10)
=

where N is the number of frames, and T, ; and T, ; are the true position value and evaluated
position value of the i-th frame.

The RPE metric is utilized to assess the local accuracy of the trajectory estimation and
the position estimation drift of the SLAM system within a certain fixed time. Within a fixed
time interval ¢, RPE can be obtained as follows:

1 N—-At . 1, )
N _ At || trans((Tg,i Tg,l+At) (Tg/i TE,i+At)) ||2 (11)
i=1

1

RPE =

where At represents the number of frames within t.
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6.4. Public Dataset Experiments

To test the system, static, low-dynamic, and high-dynamic scenarios were chosen
from the TUM dataset. The selected static scenarios were frl/desk and frl/room. The
fr1/desk sequence had a smaller camera movement range, capturing mainly indoor local
scenarios focused on the table and items on it. The fr1/room sequence, on the other hand,
had a larger camera movement range and included most indoor spatial scenarios. To better
analyze the impact of dynamic objects on localization and mapping, dynamic datasets
were selected with dynamic targets as the primary subject. The low-dynamic scenarios
were fr3_sitting_static and fr3_sitting_xyz, which depicted two people sitting in chairs and
talking, accompanied by small movements such as waving and turning their heads. The
fr3_sitting_static camera had a small range of motion, while the fr3_sitting_xyz camera
had a large range of motion around the dynamic subject in the x-y-z direction. The high-
dynamic scenarios were fr3_walking_static and fr3_walking_ xyz, depicting two people
with fast and large-scale movements. The camera movements in fr3_walking_static and
fr3_walking_xyz were similar to those in fr3_sitting_static and fr3_sitting_xyz, respectively.

To compare TSG-SLAM'’s performance with ORB-SLAM3, we conducted an analysis
of ATE and RPE data, including the mean, median, root mean square error (RMSE), and
standard deviation (STD). The RMSE measures the precision of the observed values, which
reflects the accuracy of the system, while the STD measures the dispersion of the observed
values, which reflects the robustness of the system. Moreover, we also calculated the
improvement rate of TSG-SLAM'’s localization performance relative to ORB-SLAMS3 by

using the formula below:
n= G -dr 100%, (12)
o1
where 7 is the improvement rate (IR) and dr and 4; are the error of TSG-SLAM and
ORB-SLAMS3, respectively.

Table 2 illustrates a comparison of ATE and RPE in static scenarios. As can be observed
from the table, both systems have small errors in all aspects for the local scenario frl/desk.
In the global scenario fr1/room, ATE increases significantly but still within an acceptable
range, and the errors of the two systems are very close, with some errors being lower than
ORB-SLAM3. ORB-SLAM3 is presently one of the most mature visual SLAM algorithms
known for its high localization accuracy in static scenarios. TSG-SLAM introduces a
dynamic feature removal module based on ORB-SLAM3, and its effect is not significant
in static scenarios. Thus, the localization accuracy of both systems in static scenarios
is quite similar.

Table 2. Comparison of ATE and RPE in static scenarios.

Evaluation fr1/Desk fr1/Room
Index ORB-SLAM3 TSG-SLAM IR ORB-SLAM3 TSG-SLAM IR

Mean 0.0178 0.0160 10.11% 0.0579 0.0512 11.57%

ATE Median 0.0144 0.0132 8.33% 0.0468 0.0415 11.32%

(m) RMSE 0.0212 0.0191 9.91% 0.0660 0.0589 10.76%
STD 0.0114 0.0105 7.90% 0.0318 0.0297 6.60%
Mean 0.0144 0.0140 2.78% 0.0146 0.0149 —2.05%

RPE Median 0.0097 0.0102 —5.15% 0.0113 0.0117 —3.54%

(m) RMSE 0.0196 0.0192 2.04% 0.0189 0.0192 —1.59%
STD 0.0134 0.0131 2.24% 0.0119 0.0123 —3.36%

Figures 12 and 13 show a comparison of estimated trajectories and true trajectories for
the fr1/desk and fr1/room sequences, respectively. The estimated trajectory closely follows
the true trajectory. Therefore, in static scenarios, TSG-SLAM does not have a significant
advantage in localization performance, and both systems exhibit high localization accuracy.
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---- groundtruth
—— ORB-SLAM3
— TSG-SLAM

Figure 12. Estimated trajectory vs. true trajectory for frl/desk.

---- groundtruth
—— ORB-SLAM3
—— TSG-SLAM
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Figure 13. Estimated trajectory vs. true trajectory for frl/room.

Table 3 compares ATE and RPE in low-dynamic scenarios. In the fr3/sitting_static
sequence that focuses on dynamic targets, TSG-SLAM has smaller errors compared to
ORB-SLAM3, with RMSE improvement rates of 45.45% and 34.05% for ATE and RPE,
respectively. Similarly, in the fr3/sitting_xyz sequence with a larger field of view, the RMSE
improvement rates also reach 39.2% and 20.71% for ATE and RPE, respectively. Figures 14
and 15 show a comparison of estimated and true trajectories for the fr3/sitting_static and
fr3/sitting_xyz sequences, respectively. ORB-SLAMS3 exhibits a certain deviation between
the estimated and true trajectories, especially for the fr3/sitting_static sequence, while
TSG-SLAM'’s estimated trajectory is much closer to the true trajectory. Therefore, in low-
dynamic scenarios, TSG-SLAM has a definite advantage in localization, and its localization
accuracy is significantly improved.
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Table 3. Comparison of ATE and RPE in low dynamic scenarios.

Evaluation fr3/sitting_static fr3/sitting_xyz
Index ORB-SLAM3  TSG-SLAM IR ORB-SLAM3  TSG-SLAM IR

Mean 0.0143 0.0074 48.25% 0.0105 0.0064 39.06%

ATE Median 0.0133 0.0060 54.89% 0.0088 0.0046 47.73%
(m) RMSE 0.0154 0.0084 45.45% 0.0125 0.0076 39.2%
STD 0.0058 0.0039 32.76% 0.0067 0.0049 26.86%
Mean 0.0174 0.0105 39.66% 0.0161 0.0129 19.88%

RPE  Median 0.0168 0.0087 48.21% 0.0125 0.0096 23.2%
(m) RMSE 0.0185 0.0122 34.05% 0.0198 0.0157 20.71%
STD 0.0161 0.0112 30.43% 0.0116 0.009 22.41%

——=- groundtruth
—— ORB-SLAM3
—— TSG-SLAM

Figure 14. Estimated trajectory vs. true trajectory for fr3/sitting_static.

=== groundtruth
—— ORB-SLAM3
—— TSG-SLAM
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Figure 15. Estimated trajectory vs. true trajectory for fr3/sitting_xyz.
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Table 4 compares ATE and RPE in high-dynamic scenarios. The errors of ORB-SLAM3
are significant, especially the RMSE of ATE, reaching 0.3832 m and 0.7123 m for the
fr3/sitting_static and fr3/sitting_xyz sequences, respectively. In contrast, TSG-SLAM
controls the errors well, with both the RMSE and STD improvement rates of ATE exceeding
96%. This indicates that TSG-SLAM has greatly improved global localization accuracy and
stability in high dynamic scenarios, and the RMSE and STD improvement rates of RPE also
exceed 55%. Figures 16 and 17 show a comparison of estimated and true trajectories for
the fr3/sitting_static and fr3/sitting_xyz sequences, respectively. The estimated trajectory
of ORB-SLAMS3 exhibits significant deviation from the true trajectory, while the estimated
trajectory of TSG-SLAM has some deviation from the true trajectory, but they are still
relatively close overall. Therefore, in high-dynamic scenarios, ORB-SLAM3 is unable
to function effectively, while TSG-SLAM can still function stably and has significantly
improved localization accuracy.

=== groundtruth
—— ORB-SLAM3
—— TSG-SLAM

-0.80
-0.78

-0.76

X m) -0.74

Figure 16. Estimated trajectory vs. true trajectory for fr3/walking_static.

=== groundtruth
—— ORB-SLAM3
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Figure 17. Estimated trajectory vs. true trajectory for fr3/walking_xyz.
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Table 4. Comparison of ATE and RPE in high-dynamic scenarios.

Evaluation fr3/walking_static fr3/walking_ xyz

Index ORB-SLAM3  TSG-SLAM IR ORB-SLAM3  TSG-SLAM IR
Mean 0.3697 0.0054 98.54% 0.5975 0.0228 96.18%
ATE Median 0.3534 0.0046 98.70% 0.5835 0.0171 97.07%
(m) RMSE 0.3832 0.0010 99.74% 0.7123 0.0121 98.30%
STD 0.1009 0.0024 97.62% 0.3877 0.0121 96.87%
Mean 0.0212 0.0074 65.09% 0.0311 0.0251 19.29%
RPE  Median 0.0093 0.0049 47.31% 0.0207 0.0163 21.26%
(m) RMSE 0.0367 0.0094 74.39% 0.0850 0.0376 55.76%
STD 0.0300 0.0059 80.33% 0.0790 0.0280 64.56%

To evaluate the superior localization performance of TSG-SLAM in complex environ-
ments with dynamic objects, we compared it with several dynamic SLAM systems that have
shown good performance in recent years, such as DS-SLAM, DynaSLAM, MISD-SLAM,
and RDS-SLAM. Since we used different computers for testing, we could not directly
compare the error data obtained. Therefore, we used the relative accuracy improvement
rates of these dynamic SLAM systems compared to ORB-SLAMS3 as the evaluation standard
for a performance comparison, specifically the RMSE and STD improvement rates of ATE.

The comparison results are presented in Table 5. In the low-dynamic scenarios of
fr3/sitting_static, TSG-SLAM demonstrated a significant advantage compared to other
dynamic SLAM systems. The ATE improvement rate was much higher than that of the
other dynamic SLAM systems thanks to the high dynamic segmentation accuracy of the
dynamic feature removal method proposed in this paper. The data for DynaSLAM are not
provided in the relevant paper; therefore, no comparison could be made. In high-dynamic
scenarios, all dynamic SLAM systems showed significant improvements compared to the
ORB-SLAMS3 system. Although TSG-SLAM had slightly lower improvement rates than
some dynamic SLAM systems, it still had certain advantages overall.

Table 5. Comparison of ATE improvement rates of all SLAM system relative to ORB-SLAM3.

ATE Improvement Rate

Dataset Index
DS-SLAM Dyna SLAM  MISD-SLAM  RDS-SLAM  TSG-SLAM
RMSE 97.76% 98.11% 63.31% 97.78% 99.74%
fr3/walking_static

STD 97.83% 97.89% 68.92% 97.37% 97.62%
RMSE 97.30% 98.21% 95.54% 98.39% 98.30%

fr3/walking_xyz
STD 96.69% 98.23% 94.89% 98.52% 96.87%
RMSE 27.78% - 11.94% 30% 45.45%

fr3/sitting_static
STD 23.26% - 24.23% 25.58% 32.76%

In summary, the TSG-SLAM system overcomes the challenges posed by moving targets
in complex environments and demonstrates reliable performance in various dynamic
environments with high localization accuracy and stability. It also performs comparably to
other top-performing dynamic SLAM systems in certain low-dynamic scenarios and even
outperforms them in terms of localization accuracy.

An experimental evaluation was conducted to assess the instance-level semantic
mapping performance of TSG-SLAM in static, low-dynamic, and high-dynamic scenarios.
Figure 18 depicts the results of scene semantic mapping on six datasets, including fr1/desk,
fr1/room, fr3/sitting_static, fr3/sitting xyz, fr3/walking_static, and fr3/walking xyz.
TSG-SLAM successfully constructs 3D geometric models of the objects in the scenarios and
adds semantic tag color information for the objects, which enhances the map’s visualization,
such as the blue screen, red chair, and gray table.
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(e) fr3/walking_static (f) fr3/walking_xyz

Figure 18. Octree semantic map construction results.

Figure 18a,b show the results of semantic map construction for the indoor static sce-
nario with the desktop as the main object and the larger global static scenario, respectively.
The scenarios and targets appearing in the sequence were accurately reconstructed, and
semantic color information was added to the targets.

Figure 18c,d demonstrate the results of semantic map construction for low-dynamic
scenarios. It can be observed that even two people only slightly moving their hands and
heads were successfully segmented and most of the features on their bodies were removed,
leaving only the static targets for reconstructing the scenario. Additionally, Figure 18c has a
smaller reconstruction range than Figure 18d but with better results due to capturing more
data from the local screen area caused by a smaller camera movement range. Meanwhile,
the camera’s view in Figure 18c is limited, and some scenarios blocked by people were not
reconstructed and remain blank, while most of the scenarios blocked by moving people in
Figure 18d were reconstructed.

Figure 18e,f depict the results of constructing semantic maps for high-dynamic sce-
narios. It can be seen that the features of the two moving persons were removed, and the
parts of the scenario occluded by people were also reconstructed. The overall scenario
reconstruction is relatively complete. The camera motion in Figure 18e is slower and has a
smaller range, so the reconstruction scope is smaller, but the reconstruction effect is better.

Therefore, TSG-SLAM, with the help of its dynamic feature segmentation module, is ca-
pable of effectively handling the presence of dynamic objects in both static and dynamic sce-
narios, reconstructing scenarios accurately, acquiring the instance-level semantic informa-
tion of objects, and building a static 3D semantic map with dynamic interference removed.
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6.5. Real-World-Scenario Experiments

In order to verify the effectiveness of the TSG-SLAM system in real-world scenarios,
experiments on the simultaneous localization and semantic mapping of mobile robots
were conducted in an indoor laboratory. Due to the challenge of replicating identical
trajectories for a mobile robot, an experiment was conducted using a mobile robot that
was remotely controlled to move around in an indoor laboratory. A dataset was generated
with the camera’s viewpoint identical to that of the robot’s movements which was used
to evaluate the ORB-SLAMS3 and TSG-SLAM systems. The evaluation was carried out
on two different experimental scenarios, one static and the other dynamic, to assess the
system’s performance in simultaneous localization and semantic mapping. To simulate
a dynamic environment, the experimenter moved freely around the scenario, capturing
image sequences from various angles, as shown in Figure 19.

- L2 .
(b) dynamic scenes
Figure 19. Partial image sequence of real scenario.

In real-world scenarios, it is challenging to obtain an accurate camera motion trajectory.
Therefore, the estimated trajectories of TSG-SLAM and ORB-SLAM3 were compared based
on the dataset captured by the mobile robot in the experimental scenario. As the ground
upon which the mobile robot moves is nearly horizontal, a 2D estimated trajectory plot in
the x-y direction was created to facilitate the comparison of the estimated trajectories.

Figure 20 presents a comparison of the trajectory estimation between TSG-SLAM and
ORB-SLAMS3 in static scenarios. The use of Mecanum wheels with differential steering for
the mobile robot can cause jitter in the camera when the steering angle is large, leading
to more fluctuations in the estimated trajectory during sharp turns. Nevertheless, the
estimated trajectories of TSG-SLAM and ORB-SLAMS3 in real static scenarios are nearly
identical, which is consistent with the comparison results of the estimated trajectories in
public static datasets. As ORB-SLAM3 has good localization accuracy in static scenarios,
this result indicates that TSG-SLAM also performs well in real static scenarios.

=== TSG-SLAM
—— ORB-SLAM3
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Figure 20. Comparison of estimated trajectory for real static scenarios.
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Figure 21 illustrates a comparison of the trajectory estimation between TSG-SLAM
and ORB-SLAMS3 in dynamic scenarios. In the first half of the trajectory, where no dy-
namic targets are observed or are still far away from the camera, both methods produce
almost identical trajectory estimations. However, in the middle section, where the camera
approaches the dynamic target (marked with a red box in Figure 21), ORB-SLAM3 is signif-
icantly affected, resulting in substantial fluctuations in the estimated motion trajectory. On
the other hand, TSG-SLAM, which processes the dynamic target, is less affected, leading to
smaller fluctuations in the estimated trajectory.

P = —— ORB-SLAM3 =
30 \_/ 3.0 ///>‘ *\\\\\/ \
25 25 \\f [
20 2.0 /
E E
1.5 15
1.0 1.0
0.5 /, 0.5 /
0.0 / —— TSG-SLAM 0.0
-0.5 0.0 0.5 1.0 1.5 -05 0.0 0.5 1.0 15
x (m) x (m)

Figure 21. Comparison of estimated trajectory for real dynamic scenarios.

Figure 22 depicts a semantic octree map in a real scenario. Figure 22a,b display the
map reconstruction results in static and dynamic scenarios, respectively. Due to the large
scenario size and limited data collection, some details are still missing in the semantic map.
Nevertheless, the overall effect is impressive, and the 3D geometric models of objects in
the actual scenario were established well, with semantic tags and color information added,
such as black displays and red tables, which produce a good visualization effect. Figure 22b
indicates that TSG-SLAM only reconstructed static targets, while the moving experimenters
were not reconstructed. This demonstrates that the dynamic feature module of TSG-SLAM
successfully removed the features of dynamic targets, validating the effectiveness of the
semantic mapping of TSG-SLAM in real-world dynamic environments.

(a) static scene (b) dynamic scene

Figure 22. Semantic map of real scenario.
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7. Conclusions

This paper introduces TSG-SLAM, a simultaneous localization and semantic mapping
method tailored for complex environments. The approach aims to address the impact of
dynamic objects on mapping accuracy and the demand for semantic mapping in mobile
robots. TSG-SLAM adds two threads to ORB-SLAM3’s three-thread structure: dynamic
feature removal and semantic map construction. The dynamic feature removal module
tightly integrates the SOLOV2 instance segmentation algorithm with multi-view geometry
techniques to detect and eliminate dynamic features, mitigating the influence of dynamic
objects on visual SLAM systems. The semantic map construction module fuses target
semantic information obtained by the instance segmentation algorithm with the 3D se-
mantic point cloud, creating a 3D octree semantic map containing instance-level semantic
information. Experimental results from the use of both public datasets and real-world
scenarios demonstrate that TSG-SLAM can counteract the effects of moving objects on
localization, exhibit excellent adaptability to dynamic environments, and ensure high
localization accuracy and stability. The efficacy of the TSG-SLAM system’s 3D semantic
mapping is also validated, providing a theoretical foundation for mobile robots to execute
high-level tasks, such as navigation and interaction in complex environments.

Future work is anticipated to focus on three key areas. Firstly, to mitigate the impact
on system efficiency, the exploration of lightweight processing methods is proposed to
improve segmentation speed and ensure high real-time performance. Secondly, to enhance
localization and semantic mapping accuracy, the integration of depth information is sug-
gested, addressing the limitations of the current 2D-based instance segmentation algorithm.
Lastly, a more detailed analysis and testing will be conducted on the impact of the quantity
and movement patterns of dynamic objects on the system.
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