Skip to main content
Pathogens logoLink to Pathogens
. 2023 Dec 10;12(12):1436. doi: 10.3390/pathogens12121436

First Report of Colletotrichum fructicola, C. rhizophorae sp. nov. and C. thailandica sp. nov. on Mangrove in Thailand

Chada Norphanphoun 1,2,3, Kevin D Hyde 1,2,3,*
Editor: Lawrence S Young
PMCID: PMC10747506  PMID: 38133319

Abstract

Colletotrichum, a genus within the phylum Ascomycota (Fungi) and family Glomerellaceae are important plant pathogens globally. In this paper, we detail four Colletotrichum species found in mangrove ecosystems. Two new species, Colletotrichum rhizophorae and C. thailandica, and a new host record for Colletotrichum fructicola were identified in Thailand. Colletotrichum tropicale was collected from Taiwan’s mangroves and is a new record for Rhizophora mucronata. These identifications were established through a combination of molecular analysis and morphological characteristics. This expanded dataset for Colletotrichum enhances our understanding of the genetic diversity within this genus and its associations with mangrove ecosystems. The findings outlined herein provide data on our exploration of mangrove pathogens in Asia.

Keywords: Ascomycota, molecular phylogeny, phylogeny, taxonomy, two new species

1. Introduction

Mangroves, the coastal ecosystems where land and sea merge, have been a subject of fascination for ecologists, conservationists, and nature enthusiasts for decades. Thailand has an extensive coastline and is home to numerous mangrove forests that have not only drawn the attention of researchers but have also unveiled a lesser-known yet incredibly diverse facet of these ecosystems—the extraordinary diversity of fungi they harbor [1,2]. This introduction sets the stage for the exploration of the captivating world of Thai mangroves and their rich fungal diversity. Thailand’s mangrove forests are a critical component of its coastal biodiversity and ecological integrity. They serve as a protective buffer against erosion, tidal surges, provide invaluable breeding grounds for marine species, and contribute significantly to carbon sequestration and climate change mitigation [3]. While the spotlight is often on the charismatic fauna and flora within mangroves, the fungi inhabiting these environments have, until recently, remained less studied. Recent studies have shed light on the remarkable diversity of fungi in Thai mangroves [4,5,6,7]. These fungi exhibit unique adaptations to the harsh conditions of mangrove ecosystems, thriving in saline environments and forming intricate relationships with mangrove trees and other microorganisms [1,2]. They play pivotal roles in nutrient cycling, organic matter decomposition, and symbiotic associations, all of which are essential for the health and sustainability of mangrove ecosystems [8,9].

Colletotrichum is a genus within the phylum Ascomycota (Fungi), belonging to the order Glomerellales and family Glomerellaceae [10]. There are 1035 names in Index Fungorum (http://www.indexfungorum.org/, Access Date 18 September 2023) with the type species being Colletotrichum lineola Corda. The genus is characterized by hemibiotrophic or necrotrophic lifestyles, displaying a biotrophic phase during initial host colonization before transitioning to necrotrophic, leading to cell death [1,11]. Colletotrichum species are important plant pathogens causing anthracnose or Colletotrichum blight diseases, infecting a wide range of hosts, including fruits, vegetables, ornamental plants, and agricultural crops [12,13,14,15]. Typical symptoms of Colletotrichum infection include dark, sunken lesions with defined edges on leaves, stems, and fruits, resulting in wilting, rotting, and premature fruit drops [16,17]. Given its economic significance, Colletotrichum causes substantial losses in crop yield and quality globally, affecting major plants like mango, banana, Citrus, pepper, coffee, and strawberry [18,19,20,21]. The morphological features of Colletotrichum vary among species but generally include conidia, conidiomata, and setae [22]. Disease management involves using resistant cultivars, cultural practices, fungicides, and sanitation [23]. Molecular techniques, such as DNA sequencing of specific genes (e.g., ITS, act, β-tubulin, gapdh), evolutionary and coalescent-based methods, aid in accurate identification [24,25]. Ongoing research aims to understand pathogenic mechanisms, host specificity, and sustainable disease control strategies [26]. Some Colletotrichum species are also endophytes or latent pathogens, which means they live in plants without causing disease until the right conditions are met, including mangroves [27,28,29,30,31,32,33,34]. Colletotrichum’s prevalence and impact on mangroves have been thoroughly investigated in several studies, providing crucial data for a comprehensive understanding of its ecology and management strategies [28,35,36].

In this study, we studied the mangroves of Thailand and Taiwan to uncover the phylogenetic diversity of Colletotrichum species associated with Rhizophora apiculata and R. mucronata, respectively. The aim of this study was to identify these isolates based on phylogenetic data and morphology to confirm their novel associations in mangrove ecosystems.

2. Materials and Methods

2.1. Sampling and Examination of Specimens

Fresh leaf samples were collected in 2017 from Rhizophora apiculata in Thailand. Fresh specimens were taken to the laboratory in paper bags, examined, and described. Morphological characters of conidiomata were examined using an Olympus SZX16 stereo microscope (Olympus Corporation, Tokyo, Japan). Micromorphology was studied and photographed using a Nikon Eclipse Ni compound microscope with a Microscope Camera DS-Ri2 (Nikon Corporation, Tokyo, Japan). All image measurements were made with the Image Frame Work program v. 0.9.7 (Tarosoft ®, Nontha Buri, Thailand). Photoplates were made using Adobe Photoshop CC 2019 version 20.0.1 (Adobe Systems, San Jose, CA, USA).

The cultures were acquired using the tissue isolation technique as described in the study of Norphanphoun et al. [37]. Single hyphal tips were transferred onto 2% potato agar (PA) plates at room temperature (25 °C ± 2) throughout a one-week period: 12 hours dark and 12 hours light. The cultural features were observed and documented at intervals of 5, 7, and 14 days. The morphological characteristics of the culture were analyzed during the entire cultivation duration. In order to conduct further experiments, pure cultures were cultivated on potato dextrose agar (PDA) (HiMedia Laboratories LLC, Kennett Square, PA, USA). Dried and living cultures were deposited in the culture collection at Mae Fah Luang University (MFLUCC) and herbarium collection (MFLU), Chiang Rai, Thailand. The enumeration of Faces of Fungi (https://www.facesoffungi.org/) was conducted following the methodology outlined in Jayasiri et al. [38].

2.2. DNA Extraction, Amplification via PCR, and Sequencing

Genomic DNA was extracted from fresh fungal mycelia growing on PDA at room temperature (25 °C ± 2) for two weeks using an E.Z.N.A® Fungal DNA Mini Kit, (Omega Bio-tek, Inc., Nocross, GA, USA) following the manufacturer’s protocols. Polymerase chain reactions (PCR) were carried out using the following primer pairs: ITS1/ITS4 to amplify the internal transcribed spacer region (ITS), ACT512F/ACT738R for actin (act), GDF1/GPDHR2 for partial glyceraldehyde-3-phosphate dehydrogenase region (gapdh), T1/T2 for beta-tubulin (β-tubulin), CHS-79F/CHS-354R for chitin synthase (chs-1), CL1C/CL2C for calmodulin (cal) [39,40,41,42].

The amplification reactions were carried out using the following protocol: 25 μL reaction volume containing 1 µL of DNA template, 1 µL (20 µM stock concentration) of each forward and reverse primers, 12.5 µL of DreamTaq Green PCR Master Mix (2×) (Thermo Fisher Scientific Inc., Waltham, MA, USA), and 9.5 µL of double-distilled water (ddH2O). The PCR thermal cycling program for each locus is described in Table 1. PCR products were analyzed using 1.7% TAE agarose gels containing the 100 bp DNA Ladder RTU (Bio-Helix Co., Ltd., Taipei, Taiwan) to confirm the presence of amplicons at the expected molecular weight. The purification and sequencing of PCR products using the amplification primers specified above were conducted at SolGent Co., Ltd., located in Daejeon, Republic of Korea.

Table 1.

Polymerase chain reaction (PCR) thermal cycling programs for each locus.

Gene Primers PCR Thermal Cycle Protocols *
ITS ITS1/ITS4 ID 95 °C for 5 min, 40 cycles of D at 95 °C for 45 s, A at 53 °C for 45 s, E at 72 °C for 2 min, FE at 72 °C for 10 min
actin ACT512F/ACT738R ID 95 °C for 3 min, 35 cycles of D at 95 °C for 30 s, A at 56 °C for 30 s, E at 72 °C for 45 s, FE at 72 °C for 1 min
gapdh GDF1/GPDHR2 ID 95 °C for 5 min, 35 cycles of D at 95 °C for 30 s, A at 50 °C for 45 s, E at 72 °C for 90 s, FE at 72 °C for 7 min
β-tubulin T1/T2 ID 95 °C for 3 min, 35 cycles of D at 95 °C for 30 s, A at 543 °C for 30 s, E at 72 °C for 45 s, FE at 72 °C for 1 min
chs-1 CHS-79F/CHS-354R ID 95 °C for 3 min, 35 cycles of D at 95 °C for 30 s, A at 59 °C for 30 s, E at 72 °C for 45 s, FE at 72 °C for 1 min
cal CL1C/CL2C ID 94 °C for 3 min, 40 cycles of D at 95 °C for 30 s, A at 57 °C for 80 s, E at 72 °C for 80 s, FE at 72 °C for 10 min

* ID: initial denaturation; D = denaturation; A = annealing; E = elongation; FE = final extension.

2.3. Phylogenetic Analysis

The raw readings were processed and organized into contigs using Geneious Prime® 2023.2.1 Java Version 11.0.18+10 (64-bit) software (Biomatters Inc., Boston, MA, USA). The newly generated sequences were utilized as queries to conduct a BLASTn search against the nonredundant (nr) database in GenBank (https://www.ncbi.nlm.nih.gov/; accessed on 1 September 2023). The retrieval of similar sequences was conducted, followed by the construction of numerous alignments. The GenBank taxonomy browser was utilized to verify all sequences classified as Colletotrichum in the database. BioEdit version 7.2.5 (Ibis Biosciences, Carlsbad, CA, USA) [43] was used to assign open reading frames of the protein coding sequences of actin, gapdh, β-tubulin, chs-1, and cal according to reference sequences in the GenBank database. The combined sequence data of all loci were used to perform maximum likelihood (ML) and Bayesian inference analysis (BI). The dataset consisted of 126 taxa of the Colletotrichum gloeosporioides species complex and two taxa from singleton species as outgroups, C. arecacearum strains MH0003 and MH0003-1. Outgroup sequences were selected based on preliminary analysis of the multigene phylogeny of the Colletotrichum species complex dataset. All taxa used for these analyses can be found in Table 2.

Table 2.

GenBank accession numbers of the sequences used in phylogenetic analyses Figure 1.

Species Strain Host Country Accession Numbers
ITS act gapdh β-tubulin chs-1 cal
C. aenigma ICMP 18608 T Persea americana Israel JX010244 JX009443 JX010044 JX010389 JX009774 JX009683
C. aeschynomenes ICMP 17673 T Aeschynomene virginica USA JX010176 JX009483 JX009930 JX010392 JX009799 JX009721
C. alatae ICMP 17919 T Dioscorea alata India JX010190 JX009471 JX009990 JX010383 JX009837 JX009738
C. alienum ICMP 12071 T Malus domestica New Zealand JX010251 JX009572 JX010028 JX010411 JX009882 JX009654
C. analogum CGMCC 3.16079 T Ageratina adenophora China OK030860 OK513599 OK513663 OK513629 OK513559 -
C. aotearoa ICMP 18537 T Coprosma sp. New Zealand JX010205 JX009564 JX010005 JX010420 JX009853 JX009611
C. arecacearum LC13850, MH0003 T Arecaceae China MZ595867 MZ664165 MZ664049 MZ673986 MZ799262 MZ799238
C. arecacearum LC13851, MH0003-1 Arecaceae China MZ595868 MZ664166 MZ664050 MZ673987 MZ799263 MZ799239
C. arecicola CGMCC 3.19667 T Areca catechu China MK914635 MK935374 MK935455 MK935498 MK935541 -
C. artocarpicola MFLUCC 18-1167 T Artocarpus heterophyllus Thailand MN415991 MN435570 MN435568 MN435567 MN435569 -
C. asianum ICMP 18580 T Coffea arabica Thailand JX010196 JX009584 JX010053 JX010406 JX009867 FJ917506
C. asianum CMM4057 Mangifera indica Brazil KC329792 KC533747 KC517168 KC517278 - -
C. asianum C1646 Mangifera indica Taiwan (China) MK326570 MK462967 MK376935 - MK347247 -
C. asianum TL107 Mangifera indica China MF039845 MF039758 MF040776 MF039816 MF039787 -
C. asianum ICMP 18696 M. indica Australia JX010192 JX009576 JX009915 JX010384 JX009753 JX009723
C. asianum CMM4056 Mangifera indica Brazil KC329789 KC533720 KC517165 KC517277 - -
C. australianum UMC002 T Citrus sinensis Australia MG572138 MN442109 MG572127 MG572149 MW091987 -
C. camelliae CGMCC 3.14925 T Camellia sinensis China KJ955081 KJ954363 KJ954782 KJ955230 MZ799255 KJ954634
C. cangyuanense CGMCC 3.18969 T Ageratina adenophora China OK030864 OK513603 OK513667 OK513633 OK513563 -
C. changpingense SA0016 T Fragaria × ananass China KP683152 KP683093 KP852469 KP852490 KP852449 -
C. chiangmaiense MFLUCC 18-0945 T Magnolia garrettii Thailand MW346499 MW655578 MW548592 - MW623653 -
C. chrysophilum CMM4268 T Musa sp. Brazil KX094252 KX093982 KX094183 KX094285 KX094083 KX094063
C. cigarro ICMP 18539 T Olea europaea Australia JX010230 JX009523 JX009966 JX010434 JX009800 JX009635
C. clidemiae ICMP 18658 T Clidemia hirta Hawaii JX010265 JX009537 JX009989 JX010438 JX009877 JX009645
C. cobbittiense BRIP 66219 T Cordyline stricta × C. australis Australia MH087016 MH094134 MH094133 MH094137 MH094135 -
C. conoides CGMCC 3.17615 T Capsicum sp. China KP890168 KP890144 KP890162 KP890174 KP890156 KP890150
C. cordylinicola ICMP 18579 T Cordyline fruticosa Thailand JX010226 JX009586 JX009975 JX010440 JX009864 HM470238
C. cycadis BRIP 71326a T Cycas revoluta China MT439915 MT439919 MT439921 MT439917 -
C. dimorphum CGMCC 3.16083 T Ageratina adenophora China OK030867 OK513606 OK513670 OK513636 OK513566 -
C. dracaenigenum MFLUCC 19-0430 T Dracaena sp. Thailand MN921250 MT313686 MT215577 - MT215575 -
C. endophyticum MFLUCC 13-0418 T Pennisetum purpureum Thailand KC633854 KF306258 KC832854 MZ673954 MZ799261 -
C. fructicola ICMP 18581 T Coffea arabica Thailand JX010165 JX009501 JX010033 JX010405 JX009866 FJ917508
C. fructicola ICMP 12568 Persea americana Australia JX010166 JX009529 JX009946 - JX009762 JX009680
C. fructicola ICMP 17787 Malus domestica Brazil JX010164 JX009439 JX009958 - JX009807 JX009667
C. fructicola ICMP 17788 Malus domestica Brazil JX010177 JX009458 JX009949 - JX009808 JX009672
C. fructicola IMI 345051, ICMP 17819 Fragaria × ananassa Canada JX010180 JX009469 JX009997 - JX009820 JX009668
C. fructicola ICMP 18613 Limonium sinuatum Israel JX010167 JX009491 JX009998 JX010388 JX009772 JX009675
C. fructicola ICMP 18698 Limonium sp. Israel JX010168 JX009585 JX010052 - JX009773 JX009677
C. fructicola ICMP 18667 Limonium sp. Israel JX010169 JX009464 JX009951 - JX009775 JX009679
C. fructicola ICMP 18615 Limonium sp. Israel JX010170 JX009511 JX010016 - JX009776 JX009678
C. fructicola ICMP 18610 Pyrus pyrifolia Japan JX010174 JX009526 JX010034 - JX009788 JX009681
C. fructicola ICMP 18120 Dioscorea alata Nigeria JX010182 JX009436 JX010041 JX010401 JX009844 JX009670
C. fructicola CBS 125395, ICMP 18645 Theobroma cacao Panama JX010172 JX009543 JX009992 JX010408 JX009873 JX009666
C. fructicola ICMP 18727 Fragaria × ananassa USA JX010179 JX009565 JX010035 JX010394 JX009812 JX009682
C. fructicola CBS 120005, ICMP 18609 Fragaria × ananassa USA JX010175 JX009534 JX009926 - JX009792 JX009673
C. fructicola ICMP 17789 Malus domestica USA JX010178 JX009451 JX009914 - JX009809 JX009665
C. fructicola ICMP 18125 Dioscorea alata Nigeria JX010183 JX009468 JX010009 - JX009847 JX009669
C. fructicola CBS 125397 T, ICMP 18646 Tetragastris panamensis Panama JX010173 JX009581 JX010032 JX010409 JX009874 JX009674
C. fructicola CBS 238.49 T, ICMP 17921 Ficus edulis Germany JX010181 JX009495 JX009923 JX010400 JX009839 JX009671
C. fructicola MFLUCC 17-1752 Rhizophora apiculata Thailand OR828931 OR840845 OR840868 OR840862 OR840856 OR840851
C. fructicola MFLUCC 17-1753 Rhizophora apiculata Thailand OR828932 OR840846 OR840869 OR840863 OR840857 OR840852
C. fructivorum CBS 133125 T Vaccinium macrocarpon Burlington JX145145 MZ664126 MZ664047 JX145196 MZ799259 -
C. gloeosporioides ICMP 17821 T Citrus sinensis Italy JX010152 JX009531 JX010056 JX010445 JX009818 JX009731
C. gracile CGMCC 3.16075 T Ageratina adenophora China OK030868 OK513607 OK513671 OK513637 OK513567
C. grevilleae CBS 132879 T Grevillea sp. Italy KC297078 KC296941 KC297010 KC297102 KC296987 KC296963
C. grossum CGMCC 3.17614 T Chili pepper China KP890165 KP890141 KP890159 KP890171 KP890153 KP890147
C. hebeiense MFLUCC 13-0726 T Vitis vinifera China KF156863 KF377532 KF377495 KF288975 KF289008 -
C. hederiicola MFLU 15-0689 T Hedera helix Italy MN631384 MN635795 - - MN635794 -
C. helleniense CBS 142418 T Poncirus trifoliata Greece, Arta KY856446 KY856019 KY856270 KY856528 KY856186 KY856099
C. henanense CGMCC 3.17354 T Camellia sinensis China KJ955109 KM023257 KJ954810 KJ955257 MZ799256 KJ954662
C. horii ICMP 10492 T Diospyros kaki Japan GQ329690 JX009438 GQ329681 JX010450 JX009752 JX009604
C. hystricis CBS 142411 T Citrus hystrix Italy, Catania KY856450 KY856023 KY856274 KY856532 KY856190 KY856103
C. jiangxiense CGMCC 3.17361 T Camellia sinensis China KJ955149 KJ954427 KJ954850 OK236389 MZ799257 KJ954701
C. kahawae ICMP 17816 T Coffea arabica Kenya JX010231 JX009452 JX010012 JX010444 JX009813 JX009642
C. makassarense CBS 143664 T Capsicum annuum Indonesia MH728812 MH781480 MH728820 MH846563 MH805850 -
C. musae CBS 116870 T Musa sp. USA HQ596292 HQ596284 HQ596299 HQ596280 JX009896 JX009742
C. nanhuaense CGMCC 3.18962 T Ageratina adenophora China OK030870 OK513609 OK513673 OK513639 OK513569 -
C. nullisetosum CGMCC 3.16080 T Mangifera indica China OK030872 OK513611 OK513675 OK513641 OK513571 -
C. nupharicola ICMP 18187 T Nuphar lutea subsp. polysepala USA JX010187 JX009437 JX009972 JX010398 JX009835 JX009663
C. oblongisporum CGMCC 3.16074 T Ageratina adenophora China OK030874 - OK513677 OK513643 OK513573 -
C. pandanicola MFLUCC 17-0571 T Pandanaceae Thailand MG646967 MG646938 MG646934 MG646926 MG646931 -
C. pandanicola MFLUCC 22-0164 Pandanaceae Thailand OP802369 OP801689 OP801724 OP801744 OP801706 -
C. pandanicola MFLUCC 22-0151 Pandanaceae Thailand OP802371 OP801691 OP801726 OP801746 OP801708 -
C. pandanicola MFLUCC 22-0159 Pandanaceae Thailand OP802373 OP801692 OP801727 OP801747 OP801709 -
C. perseae CBS 141365 T Avocado Israel KX620308 KX620145 KX620242 KX620341 MZ799260 -
C. proteae CBS 132882 T Protea sp. South Africa KC297079 KC296940 KC297009 KC297101 KC296986 KC296960
C. pseudotheobromicola MFLUCC 18-1602 T Prunus avium China MH817395 MH853681 MH853675 MH853684 MH853678 -
C. psidii ICMP 19120 T Psidium sp. Italy JX010219 JX009515 JX009967 JX010443 JX009901 JX009743
C. queenslandicum ICMP 1778 T Carica papaya Australia JX010276 JX009447 JX009934 JX010414 JX009899 JX009691
C. rhexiae CBS 133134 T Rhexia virginica Sussex JX145128 MZ664127 MZ664046 JX145179 MZ799258 -
C. rhizophorae MFLUCC 17-1927 T Rhizophora apiculata Thailand OR828933 OR840847 OR840870 OR840864 OR840858 OR840853
C. rhizophorae MFLUCC 17-1911 Rhizophora apiculata Thailand OR828934 OR840848 OR840871 OR840865 OR840859 OR840854
C. salsolae ICMP 19051 T Salsola tragus Hungary JX010242 JX009562 JX009916 JX010403 JX009863 JX009696
C. siamense ICMP 18578 T Coffea arabica Thailand JX010171 JX009518 JX009924 JX010404 JX009865 FJ917505
C. siamense HSI-3 Hymenocallis littoralis China OM654563 OM831342 OM831360 OM831384 OM831354 -
C. siamense ICMP 12567 Persea americana Australia JX010250 JX009541 JX009940 JX010387 JX009761 JX009697
C. siamense DAR 76934, ICMP 18574 Pistacia vera Australia JX010270 JX009535 JX010002 JX010391 JX009798 JX009707
C. siamense ICMP 12565 Persea americana Australia JX010249 JX009571 JX009937 - JX009760 JX009698
C. siamense CBS 125379, ICMP 18643 Hymenocallis americana China JX010258 GQ856776 JX010060 - GQ856729 GQ849451
C. siamense ICMP 18121 Dioscorea rotundata Nigeria JX010245 JX009460 JX009942 JX010402 JX009845 JX009715
C. siamense ICMP 18117 Dioscorea rotundata Nigeria JX010266 JX009574 JX009954 - JX009842 JX009700
C. siamense ICMP 18739 Carica papaya South Africa JX010161 JX009484 JX009921 - JX009794 JX009716
C. siamense ICMP 18570 Persea americana South Africa JX010248 JX009510 JX009969 - JX009793 JX009699
C. siamense ICMP 18569 Persea americana South Africa JX010262 JX009459 JX009963 - JX009795 JX009711
C. siamense HKUCC 10884, ICMP 18575 Capsicum annuum Thailand JX010256 JX009455 JX010059 - JX009785 JX009717
C. siamense HKUCC 10881, ICMP 18618 Capsicum annuum Thailand JX010257 JX009512 JX009945 - JX009786 JX009718
C. siamense ICMP 18572 Vitis vinifera USA JX010160 JX009487 JX010061 - JX009783 JX009705
C. siamense ICMP 18571 Fragaria × ananassa USA JX010159 JX009482 JX009922 - JX009782 JX009710
C. siamense ICMP 17795 Malus domestica USA JX010162 JX009506 JX010051 JX010393 JX009805 JX009703
C. siamense CBS 125378 (T), ICMP 18642 Hymenocallis americana China JX010278 GQ856775 JX010019 JX010410 GQ856730 JX009709
C. siamense CBS 130420 (T), ICMP 19118 Jasminum sambac Vietnam HM131511 HM131507 HM131497 JX010415 JX009895 JX009713
C. siamense ICMP 17785 Malus domestica USA JX010272 JX009446 JX010058 - JX009804 JX009706
C. siamense ICMP 18573 Vitis vinifera USA JX010271 JX009435 JX009996 - JX009784 JX009712
C. siamense ICMP 18118 Commelina sp. Nigeria JX010163 JX009505 JX009941 - JX009843 JX009701
C. siamense MFLUCC 22-0109 Pandanaceae Thailand OP740246 OP744511 OP744513 OP744514 OP744512 -
C. siamense MFLUCC 22-0135 Pandanaceae Thailand OP802374 OP801693 OP801728 OP801748 OP801710 -
C. siamense MFLUCC 22-0137 Pandanaceae Thailand OP802362 OP801686 OP801721 OP801740 OP801703 -
C. siamense MFLUCC 22-0138 Pandanaceae Thailand OP802366 OP801688 OP801723 OP801742 OP801705 -
C. siamense CGMCC 3.16078 T Ageratina adenophora China OK030876 OK513613 OK513679 OK513645 OK513575 -
C. subhenanense CGMCC 3.16073 T Ageratina adenophora China OK030883 OK513618 OK513684 OK513647 OK513581 -
C. syzygiicola MFLUCC 10-0624 T Syzygium samarangense Thailand KF242094 KF157801 KF242156 KF254880 - KF254859
C. tainanense CBS 143666 T Capsicum annuum Taiwan (China) MH728818 MH781475 MH728823 MH846558 MH805845 -
C. temperatum CBS 133122 T Vaccinium macrocarpon Bronx JX145159 MZ664125 MZ664045 JX145211 MZ799254 -
C. tengchongense YMF 1.04950, CGMCC 3.18950 T Isoetes sinensis China OL842169 OL981238 OL981264 - OL981290 -
C. theobromicola ICMP 18649 T Theobroma cacao Panama JX010294 JX009444 JX010006 JX010447 JX009869 JX009591
C. thailandica MFLUCC 17-1924 T Rhizophora apiculata Thailand OR828935 OR840849 OR840872 OR840866 OR840860 OR840855
C. ti ICMP 4832 T Cordyline sp. New Zealand JX010269 JX009520 JX009952 JX010442 JX009898 JX009649
C. tropicale ICMP 18653 T Theobroma cacao Panama JX010264 JX009489 JX010007 JX010407 JX009870 JX009719
C. tropicale MAFF 239933, ICMP 18672 Litchi chinensis Japan JX010275 JX009480 JX010020 JX010396 JX009826 JX009722
C. tropicale CBS 124943, ICMP 18651 Annona muricata Panama JX010277 JX009570 JX010014 - JX009868 JX009720
C. tropicale NTUCC Rhizophora mucronata Taiwan (China) - OR840850 - OR840867 OR840861 -
C. viniferum CBS130643 T Vitis vinifera cv. Shuijing China JN412804 JN412795 JN412798 - - JQ309639
C. vulgaris YMF 1.04940, CGMCC 3.18940 T Hippuris vulgaris China OL842170 OL981239 OL981265 - OL981291 -
C. wuxiense CGMCC 3.17894 T Camellia sinensis China KU251591 KU251672 KU252045 KU252200 KU251939 KU251833
C. xanthorrhoeae ICMP 17903 T Xanthorrhoea preissii Australia JX010261 JX009478 JX009927 JX010448 JX009823 JX009653
C. xishuangbannaense MFLUCC 19-0107 T Magnolia liliifera China MW346469 MW652294 MW537586 - MW660832 -
C. yuanjiangense CGMCC 3.18964 T Ageratina adenophora China OK030885 OK513620 OK513686 OK513649 OK513583 -
C. yulongense CFCC 50818 T Vaccinium dunalianum var. urophyllum China MH751507 MH777394 MK108986 MK108987 MH793605 MH793604

BRIP—Queensland Plant Pathology Herbarium; CBS—CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; CFCC—China Forestry Culture Collection Center; CGMCC—China General Microbiological Culture Collection Center; ICMP—International Collection of Microorganisms from Plants; IMI—International Mycological Institute; MFLUCC—Mae Fah Luang University Culture Collection, Chiang Rai, Thailand; NTUCC—the Department of Plant Pathology and Microbiology, National Taiwan University Culture Collection. T Ex-type strains. Strains in this study are in bold.

Sequences were aligned for each locus separately using the MAFFT v.7.110 online program (http://mafft.cbrc.jp/alignment/server/; accessed on 19 September 2023) [44]. TrimAl/readAl v1.2. program was used to trim ambiguously aligned positions [45]. The software BioEdit version 7.2.5 was utilized to make additional manual edits as needed [43]. The congruency of genes and their potential for combination were assessed using a partition homogeneity test (PHT) conducted using PAUP* 4.0b10 software [46]. The concatenated sequence alignments were acquired from MEGA version 7.0.14 and version 10.1.0, as reported by Kumar et al. [47] and Tamura et al. [48], respectively. Geneious Prime® 2023.2.1 was used to convert file format to Nexus BI analyses.

The data were divided into the following categories: ITS, act-exon, gapdh-exon, β-tubulin-exon, chs-1-exon, cal-exon, act-intron, gapdh-intron, β-tubulin-intron, and cal-intron. The researchers utilized the software RAxML-HPC2 on XSEDE to conduct maximum likelihood (ML) analysis, which was implemented using the CIPRES Science Gateway web server (https://www.phylo.org/portal2/; accessed on 20 November 2023) [49]. A total of 1000 bootstrap repeats were conducted in a swift manner, employing the GTRGAMMA model to simulate nucleotide evolution. The researchers conducted a Bayesian inference analysis by utilizing the Markov Chain Monte Carlo (MCMC) algorithm, which was implemented on the CIPRES Science Gateway web server. Specifically, they used MrBayes on XSEDE, as described by Miller et al. [49]. The optimal nucleotide substitution model for each partition was individually calculated using MrModeltest version 2.2 (Boston, MA, USA), as shown in Table 3 [50]. The computation of posterior probability involved the execution of two independent runs, each consisting of four chains. These runs were initiated from a randomly generated tree topology. A total of 10 million generations were executed for the given dataset. The sampling of trees occurred at regular intervals of 100 generations. According to Ronquist et al. [51], a quarter of the trees were excluded as burn-in values, while the average standard deviation of split frequencies reached convergence below 0.01.

Table 3.

The best-fit nucleotide substitution model for each dataset, selected by AIC in MrModeltest. 2.2.

Gene Substitution Model
ITS SYM+I+G
act-exon HKY
gapdh-exon F81
β-tubulin-exon GTR+G
chs-1-exon K80+G
cal-exon SYM+G
act-intron K80+G
gapdh-intron HKY+G
β-tubulin-intron K80+G
cal-intron SYM+G

The phylogram was generated using FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/) [52], a software tool commonly used for visualizing phylogenetic trees. The final figure was created using Adobe Illustrator CC version 23.0.1 (64-bit) and Adobe Photoshop CC version 20.0.1 release, both products developed by Adobe Systems in California, USA. The newly produced sequences in this investigation were deposited in GenBank as indicated in Table 2. The completed alignments and trees were submitted to TreeBASE.

The Genealogical Concordance Phylogenetic Species Recognition (GCPSR) model with a pairwise homoplasy index (PHI) test was used to analyze the newly generated taxon and its most phylogenetically close neighbors [53]. The PHI test was performed in SplitsTree v. 4.14.6 [54,55] with a five-locus concatenated dataset (ITS, act, gapdh, β-tubulin, chs-1, and cal) to determine the recombination level among phylogenetically closely related species. A pairwise homoplasy index below a 0.05 threshold (Φw < 0.05) indicated the presence of significant recombination in the dataset. The relationship between closely related species was visualized by constructing a split graph.

3. Results

The results of the partition homogeneity test (PHT) for the phylogenetic tree were not significant (95% level), which suggests that the individual datasets can be combined. To assess tree topology and clade support, single-locus phylogenetic trees were also generated before the combined gene tree was conducted. In this research, we introduce two novel Colletotrichum species alongside two known species.

The phylogenetic analysis utilized a comprehensive dataset encompassing six genes, including 126 strains from the Colletotrichum species in the gloeosporioides species complex and 2 singleton strains—C. arecacearum strains MH0003 and MH0003-1 sequences served as the outgroup. This dataset had a total length of 1803 characters, inclusive of alignment gaps, with the following partitions: ITS1+5.8S+ITS2 (1–593), act-exon (594–679), gapdh-exon (680–743), β-tubulin-exon (744–973), chs-1-exon (974–1197), cal-exon (1198–1569), act-intron (1570–1738), gapdh-intron (1739–1951), β-tubulin-intron (1952-2175), and cal-intron (2176–2534). Both maximum likelihood (ML) and Bayesian inference (BI) were employed for the analysis. Notably, trees generated under distinct optimality criteria exhibited congruent topologies and showed no significant differences. The highest-scoring likelihood tree for the combined dataset possessed a final likelihood value of -13,417.186937 (Figure 1). Within this tree, the new strains clustered within the gloeosporioides species complex clade, alongside other sequences identified as members of the gloeosporioides species complex. Remarkably, this species complex received robust statistical support, with 100% bootstrap support (BSML) and a posterior probability of 1.00 (PPBI).

Figure 1.

Figure 1

Figure 1

Phylogenetic tree generated from maximum likelihood analysis based on combined ITS, act-exon, gapdh-exon, β-tubulin-exon, chs-1-exon, act-intron, gapdh-intron, β-tubulin-intron sequence data. The species obtained in this study are in blue and species synonymized are in green. Ex-type taxa are in bold. Bar = 0.03, which represents the estimated number of nucleotide substitutions of site per branch.

The analysis of six genetic loci using both maximum likelihood (ML) and Bayesian inference (BI) methods resulted in a phylogenetic tree with well-supported clades, as shown in Figure 1. Within this study, we propose the recognition of two novel species, namely C. rhizophorae and C. thailandica, with robust statistical backing, signified by a high bootstrap support of 95% (BSML) and a posterior probability of 0.85 (PPBI). In terms of known species, two strains originating from mangrove habitats in Thailand (MFLUCC 17-1752 and MFLUCC 17-1753) were classified as members of the species C. fructicola, while a strain from Taiwan (NTUCC) was identified as C. tropicale. Notably, MFLUCC 17-1752 and MFLUCC 17-1753 clustered within the C. fructicola species group with substantial support: a 98% bootstrap support (BSML) and a posterior probability of 1.00 (PPBI). On the other hand, strain NTUCC was grouped within the C. tropicale species cluster, exhibiting a strong 99% bootstrap support (BSML) and a posterior probability of 1.00 (PPBI). It is noteworthy that all newly introduced strains in this study shared the same topological arrangement as the preliminary analysis of the Colletotrichum species complex.

To assess evolutionary independence, we employed the GCPSR concept on our strain dataset and its closely related taxa. The pairwise homoplasy index (PHI or Φw) is a crucial metric, and a value below 0.05 suggests the presence of substantial genetic recombination within a dataset. Figure 2 shows that our GCPSR analysis gave a PHI of 0.3688 for all closely related taxa in this study. This means that there was no significant genetic mixing between these strains and their sister taxa. Since we saw that the newly introduced species were very different from each other in terms of their phylogeny, we extended the GCPSR analysis to isolate only these new species. The results showed that the PHI value was greater than 0.05 (Φw = 1.0) for both newly taxon C. rhizophorae and C. thailandica isolates with the known species C. pandanicola. This clearly shows that these two new species have not been recombined in a significant way. This substantiates the distinct species status of all these isolates.

Figure 2.

Figure 2

The results of the pairwise homoplasy index (PHI) test for closely related species of Colletotrichum stains in this study using both LogDet transformation and splits decomposition. PHI test results (Φw) > 0.05 indicate no significant recombination within the dataset.

3.1. Colletotrichum fructicola Prihast., L. Cai and K.D. Hyde, Fungal Diversity 39: 96 (2009)

Figure 3.

Figure 3

Colletotrichum fructicola (MFLUCC 17-1752). (A) Habitat. (B,C) Rhizophora apiculata leaf spot. (D) Culture on CMA (leaf-above, right-reverse). (E–G) Conidiomata on PDA. (H,I) Conidiogenous cells giving rise to conidia. (J–P) Conidia. Scale bars: (F) = 200 µm, (G) = 500 µm, (HP) 10 µm.

Figure 4.

Figure 4

Sexual morph of Colletotrichum fructicola (MFLUCC 17-1752). (A) Culture on WA with sterilized sticks. (B) Ascomata habitat on sterilized sticks. (C) Ascoma. (D) Ascoma peridium. (EG) Immature and mature asci. (H) Apical ring in Melzer’s reagent. (IM) Ascospores. Scale bars: (B) = 100 µm, (C) = 50 µm, (DM) = 10 µm.

Isolated from the leaf spot that is associated with Rhizophora apiculata Blume. Asexual morph: Conidiomata pycnidial, globose, brown, superficial on PDA, releasing conidia in a yellow mass, slimy, globose, glistening mass. Conidiophores either directly formed from hyphae or from a cushion of spherical hyaline cells, septate, branched. Conidiogenous cells hyaline, cylindrical to ampulliform, straight to flask-shaped, 5–15 × 3–5 μm. Setae not observed. Conidia (9–)12.5–13(–14) × (4.7–)4–5(–5.5) μm (mean ± SD = 13 ± 0.5 × 5 ± 0.5 μm), hyaline, aseptate, smooth-walled, clavate to cylindrical, one end rounded and one end acute or both ends rounded, guttulate, granular. Sexual morph: Ascomata pycnidial, produced on WA + needle, sub-globose with ostiole, superficial, brown. Asci 30–68 × 8–14 μm, clavate to cymbiform, slightly curved, composed of pale to medium brown flattened angular cells, bitunicate, smooth-walled, 6–8-spored, with visible apical chamber, hyaline. Ascospore (14–)15–16(–19) × (4.4–)4–5(–5.3) μm (mean ± SD = 16 ± 0.5 × 5 ± 0.5 μm), hyaline, aseptate, smooth-walled, allantoid to lunate, both ends rounded, guttulate, granular.

Culture characteristics: Colonies on CMA reaching 7–8 cm diam after 7 d at room temperature (±25 °C), under light 12 h/dark 12 h, colonies rhizoid to filamentous, dense, flat or raised surface, with filiform margin, white from above and white to pale-yellow reverse, with producing grouped pycnidia. Colonies on WA with sterilized sticks, reaching 5 cm diam after 7 d at room temperature (±25 °C), under light 12 h/dark 12 h, colonies rhizoid to filamentous, dense, flat surface, with filiform margin, dark green from above and reverse, with producing pycnidia on sticks and immersed pycnidia under media.

Hosts and Distribution: Actinidia chinensis, China [56], Japan [57]; Aesculus chinensis, China [58]; Amomum villosum, China [59]; Anacardium occidentale, Brazil [60,61]; Annona spp., Brazil [62,63]; Anthurium, Sri Lanka [64]; Arachis hypogaea, China [65]; Areca catechu, China [66,67]; Atractylodes ovata, Korea [68]; Aucuba japonica, China [69], Korea [70]; Averrhoa carambola, China [71]; Bletilla striata, China [72]; Brassica spp., China [73]; Camellia chrysantha, China [74]; Camellia grijsii, China [75,76]; Camellia oleifera, China [77]; Camellia sinensis, China [67,78,79,80,81,82,83], Indonesia [42,80]; Capsicum spp., China [84,85], Thailand [86]; Carica papaya, Mexico [87]; Carya spp., China [88,89,90,91]; Cattleya spp., Brazil [92]; Ceanothus thyrsiflorus, Italy [93]; Citrus spp., China [19,94]; Coffea arabica, Thailand [32,42], China [95]; Corchorus sp., China [96,97]; Cunninghamia lanceolata, China [98,99]; Curcuma phaeocaulis, China [100]; Cyclamen sp., Italy [93]; Cymbopogon citratus, Thailand [101,102]; Dalbergia hupeana, China [103]; Dendrobium spp. China, Thailand [104,105]; Dimocarpus longan, Thailand [101]; Dioscorea spp., Nigeria [42]; Diospyros kaki, Brazil [106], China [107,108],; Eichhornia crassipes, China [109]; Eriobotrya japonica, China [110]; Eucalyptus spp., [111]; Ficus edulis, Germany [42]; Fragaria × ananassa, China [112,113,114,115,116]; Glycine max, China [117]; Hedera spp., China [100,118,119]; Hevea brasiliensis, China [120]; Hydrangea paniculate, Italy [93]; Ilex chinensis, China [100]; Illicium verum, China [121]; Juglans regia, China [122,123]; Licania tomentosa, Brazil [124]; Ligustrum lucidum, China [100]; Limonium sp., Israel [42]; Liquidambar styraciflua, Italy [93]; Liriodendron spp., China [125]; Loropetalum chinense, China [126]; Luffa cylindrica, China [127]; Macadamia ternifolia, China [128]; Magnolia garrettii, China [27]; Magnolia spp., China [129,130,131,132]; Malus domestica, USA [42,133], Brazil [42,134,135,136], Uruguay [135,137,138,139], China [140,141], Korea [142,143,144,145], Japan [146], Italy [147] and France [148]; Mangifera indica, Brazil, Mexico, Egypt, China, Korea, India [20,25,149,150,151,152,153,154,155]; Manihot esculenta, China [156], Brazil [157,158]; Morus alba, China [159]; Musa spp., China [160]; Myrica rubra, China [161]; Nephelium lappaceum, Puerto Rico [162]; Nicotiana tabacum, China [163]; Nopalea cochenillifera, Brazil [164]; Osmanthus fragrans, China [30]; Paris polyphylla, China [165,166]; Pennisetum purpureum, Thailand [102]; Persea americana, New Zealand [167], Australia [42], China [168], Israel [169], Colombia [170], Mexico [171,172]; Peucedanum praeruptorum, China [173]; Phalaenopsis sp., Brazil [92]; Phoebe sheareri, China [174]; Pouteria caimito, China [175]; Prunus persica, USA [176,177], China [178], Korea [179]; Prunus salicina, China [180,181,182]; Pyrus spp., China [42,183,184,185], and Korea [186]; Radermachera sinica, China [187]; Rhizophora apiculate, Thailand (in this study); Rubus spp., Colombia [188], China [189]; Salvia greggii, Italy [190]; Selenicereus undatus, Thailand [191]; Tetragastris panamensis, Panama [42]; Tetrapanax papyrifer, China [192]; Theobroma cacao, Panama [42]; Vitis spp., Korea [193], Brazil [194]; Zamia furfuracea, China [195]; Zingiber officinale, China [100]; Ziziphus jujuba, China [196,197,198]; Ziziphus sp., Thailand [191]; Human, China [199]; Nematodes, Worms Chordodes formosanus, China [200].

Material examined: Thailand, Chanthaburi Province, associated on leaf spot of Rhizophora apiculata, 25 April 2017, Kevin D. Hyde JT04-1, living cultures, MFLUCC 17-1752 (dried culture in MFLU 23-0476); JT04-2, living cultures, MFLUCC 17-1753 (dried culture in MFLU 23-0477).

Notes: Based on samples taken from Coffea arabica in Thailand, Prihastuti et al. [201] described Colletotrichum fructicola (Figure 3 and Figure 4). This taxon has various ecological roles, including epiphytic, endophytic, and pathogenic associations [202]. Yang et al. [203], which summarized subsequent research, showed Colletotrichum fructicola has a widespread distribution across a variety of host species. Through single and combined-gene phylogenetic analysis, our strain consistently grouped with C. fructicola, a species within the gloeosporioides species complex. This alignment was observed in both the preliminary analysis of the Colletotrichum species complex dataset and Figure 1. Furthermore, our strain exhibited morphological characteristics similar to C. fructicola, such as conidia size (in our study; 13.2 ± 0.5 × 5 ± 0.3 μm versus to 9.7–14 × 3–4.3 μm: Prihastuti et al. [201]), ascus size (in our study; 30–68 × 8–14 μm versus 30–55 × 6.5–8.5 μm: Prihastuti et al. [201]), featuring clavate to cymbiform asci, and ascospores (in our study; 16 ± 0.5 × 5 ± 0.5 μm versus to 9–14 × 3–4 μm: Prihastuti et al. [201]), which were hyaline and lunate. Consequently, we classify our strain as C. fructicola. This is the first record of an endophytic C. fructicola isolated from Rhizophora apiculata in Thailand.

3.2. Colletotrichum rhizophorae Norph. and K.D. Hyde sp. nov.

  • Index Fungorum number: IF901452; Faces of Fungi number: FoF 14890, Figure 5

  • Etymology: refers to the host from which the fungus was isolated, Rhizophora apiculata Blume.

  • Holotype: MFLU 23-0478

Figure 5.

Figure 5

Colletotrichum rhizophorae (MFLUCC 17-1927). (A) Habitat. (B,C) Rhizophora apiculata. (D,E) Culture on PDA (leaf-above, right-reverse). (F) conidiomata on WA with sterilized sticks. (G) Conidiomata on PDA. (H,I) Conidiogenous cells giving rise to conidia. (JP) Conidia. Scale bars: (F) = 200 µm, (G) = 500 µm, (HP) 10 µm.

Isolated from an asymptomatic leaf spot of Rhizophora apiculata Blume. Sexual morph: undetermined. Asexual morph: Conidiomata pycnidial, globose, dark brown, superficial on PDA, releasing conidia in a yellow mass, slimy, globose. Conidiophores either directly formed from hyphae or from a cushion of spherical hyaline cells, septate, branched. Conidiogenous cells hyaline to pale brown, cylindrical to clavate, straight to flask-shaped, 6–19 × 2–9 μm. Setae not observed. Conidia (11.5–)12.5–13(–14.5) × (4–)4.5–5(–5.7) μm (mean ± SD = 13.1 ± 0.9 × 4.5 ± 0.3 μm), hyaline, aseptate, smooth-walled, ellipsoidal to cylindrical, one end rounded and one end acute or both ends rounded, guttulate, granular.

Culture characteristics: Colonies on PDA reaching 6–7 cm diam after 7 d at room temperature (±25 °C), under light 12 h/dark 12 h, colonies filamentous to circular, medium dense, aerial mycelium on surface flat, with irregular margin, white from above and reverse, with producing pycnidia and yellow spore mass.

Distribution: Thailand

Hosts: Rhizophora apiculata

Material examined: Thailand, Wan Yao, Khlung, Chanthaburi, asymptomatic leaf of Rhizophora apiculata, 25 April 2017, Kevin D. Hyde WYKE04AP (dried culture, MFLU 23-0478, holotype), living cultures, MFLUCC 17-1927; WYKE04AL, MFLUCC 17-1911 (dried culture MFLU 23-0479).

Notes: We introduce Colletotrichum rhizophorae as a novel species discovered within Rhizophora apiculata, a mangrove plant in Thailand (Figure 5). This classification is supported by morphological and phylogenetic evidence, as depicted in Figure 1. The phylogenetic analysis demonstrates that this new taxon closely associates with C. thailandica (Figure 1). However, notable distinctions in morphology are observed between C. rhizophorae and C. thailandica, particularly in conidia, conidiophores, and conidiogenous cells (refer to Figure 5 and Figure 6). In order to establish evolutionary independence, we applied the GCPSR concept to C. rhizophorae and its neighboring taxa. Our dataset yielded a PHI value exceeding 0.05 (Φw = 0.363), indicating the absence of significant genetic recombination between C. rhizophorae and its sister taxa, namely C. pandanicola and C. thailandica (Figure 2). Furthermore, a comparison of nucleotide sequences within ITS, act, gapdh, β-tubulin, chs-1, and SCDgle revealed discrepancies between C. thailandica and C. rhizophorae (ITS 5 bp, act 3 bp, gapdh 4 bp, β-tubulin 2 bp, chs-1 6 bp, and SCDgle 4 bp).

Figure 6.

Figure 6

Colletotrichum thailandica (MFLUCC 17-1924). (A) Habitat. (B,C) Rhizophora apiculata. (D,E) Culture on PDA (leaf-above, right-reverse). (F,G) Conidiomata on PDA. (H) Conidiogenous cells giving rise to conidia. (I) Setae. (JP) Conidia. Scale bars: (F) = 250 µm, (G) = 500 µm, (HP) 10 µm.

3.3. Colletotrichum thailandica Norph. and K.D. Hyde sp. nov.

  • Index Fungorum number: IF901453; Faces of Fungi number: FoF 14891, Figure 6

  • Etymology: refers to the country where the fungus was collected, Thailand.

  • Holotype: MFLU 23-0480

Isolated from an asymptomatic leaf spot of Rhizophora apiculata Blume. Sexual morph: undetermined. Asexual morph: Conidiomata pycnidial, globose, dark brown, superficial on PDA, releasing conidia in a yellow mass, slimy, globose, glistening mass. Conidiophores either directly formed from hyphae or from a cushion of spherical hyaline cells, septate, branched. Conidiogenous cells hyaline to pale brown, cylindrical to ampulliform, straight to flask-shaped, 6–16 × 2–5 μm. Setae about 40–85 µm long, brown to pale brown, and septate. Conidia (12.3–)13.5–15.5(–17.4) × (3.8–)4–4.5(–5.3) μm (mean ± SD = 14.7 ± 1.2 × 4 ± 0.3 μm), hyaline, aseptate, smooth-walled, clavate to cylindrical, one end rounded and one end acute or both ends rounded, guttulate, granular.

Culture characteristics: Colonies on PDA reaching 7–8 cm diam after 10 d at room temperature (±25 °C), under light 12 h/dark 12 h, colonies filamentous to circular, medium dense, aerial mycelium on surface flat or raised, with filiform margin (curled margin), fluffy, white from above and white to pale-yellow reverse, with producing pycnidia and yellow spore mass.

Distribution: Thailand.

Hosts: Rhizophora apiculate

Material examined: Thailand, Wan Yao, Khlung, Chanthaburi, asymptomatic leaf of Rhizophora apiculata, 25 April 2017, Kevin D. Hyde WYKE07AL, Living Cultures, MFLUCC 17-1924 (dried culture MFLU).

Notes: Thailand, Wan Yao, Khlung, Chanthaburi, asymptomatic leaf of Rhizophora apiculata, 25 April 2017, Kevin D. Hyde WYKE07AL (dried culture MFLU 23-0480, holotype), living cultures, MFLUCC 17-1924.

Notes: Colletotrichum thailandica is introduced here as a new species in the gloeosporioides species complex, a classification supported by both morphological (Figure 6) and phylogenetic data. The phylogenetic analysis underscores the distinctiveness of this new taxon, clearly separating it from other recognized Colletotrichum species (Figure 1).

In order to assess evolutionary autonomy, we applied the GCPSR concept to C. thailandica and its closely related taxa. Our data showed that the PHI value was higher than 0.05 (Φw = 0.363), which means that there was not much genetic mixing between C. thailandica and its closest relatives, C. pandanicola and C. rhizophorae (Figure 2). Since there was a lot of phylogenetic diversity between newly introduced species and species that had already been published, like C. pandanicola, we used GCPSR analysis on a larger dataset. The outcome revealed a PHI value surpassing 0.05 (Φw = 1.0), unequivocally indicating the absence of significant recombination for this new species. As a result, we formally introduce C. thailandica as a distinct species, isolated from Rhizophora apiculata in Thailand.

3.4. Colletotrichum tropicale E.I. Rojas, S.A. Rehner & Samuels, Mycologia 102(6): 1331 (2010)

  • Faces of Fungi number: FoF 14892, Figure 7

Figure 7.

Figure 7

Colletotrichum tropicale (NCYU). (A) Habitat. (B,C) Rhizophora mucronata. (D) Culture on PDA (leaf-above, right-reverse). (EG) Colony sporulating on PDA. (H) Conidiogenous cells giving rise to conidia. (IM) Conidia. Scale bars: (E) = 2 mm, (F) = 100 µm, (G) = 50 µm, (H,M) = 10 µm, (JL) = 20 µm.

Isolated from the asymptomatic leaf of Rhizophora mucronata Lam. Sexual morph: undetermined. Asexual morph: Conidiomata pycnidial, globose, brown, superficial on PDA, releasing conidia in a yellow mass, slimy, globose, glistening mass. Conidiophores either directly formed from hyphae or from a cushion of spherical hyaline cells, septate, branched. Conidiogenous cells hyaline to pale brown, cylindrical to ampulliform, straight to flask-shaped, 10–20 × 3–5 μm. Conidia (12–)12.5–13(–14) × (4–)4.5–5(–5.7) μm (mean ± SD = 13.2 ± 0.5 × 5 ± 0.3 μm), hyaline, aseptate, smooth-walled, clavate to cylindrical, one end rounded and one end acute or both ends rounded, guttulate, granular.

Culture characteristics: Colonies on PDA reaching 7–8 cm diam after 14 d at room temperature (±25 °C), under light 12 h/dark 12 h, colonies filamentous to circular, medium dense, aerial mycelium on surface flat or raised, with filiform margin (curled margin), fluffy, gravy from above and dark gravy reverse, with producing pycnidia and yellow spore mass (Figure 3D).

Hosts and distribution: Anacardium, Brazil [60,61]; Annona spp., Brazil, Colombia, Panama and Cuba [63,204,205,206]; Capsicum spp., Indonesia [86] and Brazil [207]; Carica papaya, Costa Rica [208]; Cariniana legalis, Brazil [209]; Cattleya spp., Brazil [92]; Cenchrus purpureus [102]; Coffea spp., China [95]; Copernicia prunifera, Brazil [210]; Cordia alliodora, Panama [206]; endophyte Trichilia tuberculata, Panama [206]; Ficus spp., China [211,212]; Licania tomentosa, Brazil [124]; Litchi chinensis, Japan [42]; Malpighia emarginata, Japan [213]; Mangifera indica Brazil, Mexico, China [20,151,152,153,155,214]; Manihot spp., Brazil [215]; Musa spp., Brazil [216]; Myrciaria dubia, Brazil [217]; Nelumbo nucifera, China [218]; Origanum vulgare, Mexico [219]; Passiflora edulis, Brazil [220]; Persea americana, Mexico [172]; Plinia cauliflora, Japan [221]; Punica granatum, Brazil [222]; Rhizophora mucronata, Taiwan (in this study); Sauropus androgynus, China [223]; Selenicereus monacanthus, Philippines [224], Mexico [225]; Theobroma cacao, Panama [206]; Viola surinamensis, Panama [206]; Human [199].

Material examined: China, Taiwan, Tainan, Shicao, tissue isolation from asymptomatic leaves of Rhizophora mucronata, 17 July 2018, Chada Norphanphoun SCE3L-3B; living cultures, NTUCC.

Notes: Colletotrichum tropicale was documented by Rojas et al. [206] based on isolates obtained from Theobroma cacao leaves in Panama (Figure 7). This taxon has various ecological roles, including epiphytic, endophytic, and pathogenic with wide hosts and distribution [202]. The species was recorded as an endophyte in tropical regions associated with Annona muricata (Annonaceae), Cenchrus purpureus (Poaceae), Cordia aliodora (Boraginaceae), Cymbopogon citratus (Poaceae), Litchi chinensis (Sapindaceae), Nelumbo nucifera (Nelumbonaceae), Theobroma cacao (Malvaceae), Trichilia tuberculata (Meliaceae), Viola surinamensis (Myristicaceae) [42,102,206,218]. In our current study, our phylogenetic analysis clearly places our strain within the C. tropicale clade with robust support, as illustrated in Figure 1. This grouping is further substantiated by the striking similarity in conidia morphology and size, as observed in our study (13.2 ± 0.5 × 5 ± 0.3 μm) when compared to the reported values by Rojas et al. [206] in 2010 (14.1–14.8 × 5.1–5.20 μm). Consequently, we formally designate our isolate as C. tropicale, representing the first documented instance of an endophytic fungus isolated from Rhizophora mucronata in Taiwan.

4. Discussion

Colletotrichum is a pathogenic genus that affects various plant species, including mangroves [28,29,30]. It causes anthracnose, a common disease characterized by dark lesions on leaves, stems, and fruits [16]. Several studies have investigated the prevalence and impact of Colletotrichum on mangroves, providing valuable data for understanding its ecology and management strategies [28,35,36]. In this study, we focused on the examination of six strains isolated from mangrove ecosystems. Five of these strains were isolated from Rhizophora apiculata in Thailand’s mangroves, while one strain originated from Rhizophora mucronata in Taiwan. Among the isolates, Colletotrichum fructicola (MFLUCC 17-1752) was obtained from leaf spot symptoms, while the remaining strains were isolated from asymptomatic leaves. It is important to note that C. fructicola has been found to play different roles in the environment, including as an epiphyte, an endophyte, and a pathogen in a wide range of host species [203]. This suggests that the presence of Colletotrichum species in mangrove ecosystems may be more diverse than initially anticipated. These taxa can exhibit various ecological interactions, including their colonization of asymptomatic leaves. As a result, there is potential for the discovery of additional fungal species within mangrove forest zones. These newly discovered species could encompass both those commonly found in other plant species and entirely novel fungal types.

This comprehensive study employed phylogenetic analysis, morphological characterization, and the Genetic Clade–Phenetic Species Recognition (GCPSR) concept to elucidate the taxonomy and evolutionary relationships of these Colletotrichum species within the gloeosporioides species complex according to the guidelines of Chethana et al. [226] and Maharachchikumbura et al. [227]. Previously, Weir et al. [42] documented the efficacy of individual genes in discerning species within the gloeosporioides species complex. The study identified the designated barcoding gene for fungi in the gloeosporioides complex, encompassing eight genes: the internal transcribed spacer region (ITS), actin (act), glyceraldehyde-3-phosphate dehydrogenase region (gapdh), beta-tubulin (β-tubulin), chitin synthase (chs-1), calmodulin (cal), glutamine synthetase (GS), and manganese-superoxide dismutase (SOD2). However, it was observed that these genes do not consistently provide a conclusive resolution of relationships for all species within this particular species complex. In the context of C. siamense, the performance of individual genes that can distinguish species within the C. gloeosporioides species complex is notably achieved by examining cal and β-tubulin sequences. Conversely, for C. tropicale, the distinguishing genes encompass β-tubulin, act, GS, and SOD2. In the case of C. fructicola, the pertinent genes for effective differentiation are cal, chs-1, GS, and SOD2. To overcome limitations associated with gene function in species delimitation and to achieve precise identification of Colletotrichum isolates in the present study, a comprehensive approach employing six gene sequences (ITS, act, gapdh, β-tubulin, chs-1, and cal), encompassing 126 strains, and 2 singleton strains as outgroups were used to facilitate the identification of two novel species and to document a new host record from Thailand. Moreover, there is a new record of C. tropicale from Taiwan, using act, β-tubulin, and chs-1. The study encompasses multiple reference isolates of C. fructicola, C. siamense, and C. tropicale. The results of a multigene phylogenetic analysis demonstrated that the combined use of ITS, act, gapdh, β-tubulin, chs-1, and cal offered superior resolution in determining Colletotrichum species, surpassing the efficacy of single-gene analysis. This finding aligns with prior studies conducted by Prihastuti et al. [201] and Weir et al. [42]. The results provided valuable insights into the diversity and classification of Colletotrichum species. The phylogenetic analysis, utilizing both maximum likelihood (ML) and Bayesian inference (BI) methods, revealed a well-supported clustering of the new strains within the gloeosporioides species complex clade, alongside sequences previously identified as members of this complex. The robust statistical support, with 100% bootstrap support (BSML) and a posterior probability of 1.00 (PPBI), underlined the validity of the species complex classification (Figure 1). Within this complex, two novel species are formally recognized: C. rhizophorae and C. thailandica. These designations were supported by a high bootstrap support of 99% (BSML) and a posterior probability of 1.00 (PPBI), reaffirming their distinct species status. Additionally, known species, including C. fructicola and C. tropicale, were identified and validated based on their placement within the phylogenetic tree. The application of the GCPSR concept further corroborated the evolutionary independence of these species. The pairwise homoplasy index (PHI or Φw) values exceeding 0.05 indicated a lack of significant genetic recombination within the dataset, highlighting the distinctiveness of the newly proposed species. This was particularly evident in the case of C. rhizophorae and C. thailandica, as their PHI values exceeded 0.05 even when analyzed with closely related taxa. The study delved into the taxonomy of two Colletotrichum species, C. fructicola and C. tropicale, offering significant insights into their classification, morphology, and distribution.

Colletotrichum fructicola, originally described in 2009 from Coffea arabica in Thailand [201], was the subject of taxonomic reevaluation. The study consistently found that the strain under investigation clustered closely with known C. fructicola strains within the gloeosporioides species complex. This clustering was observed both in the preliminary analysis and the final phylogenetic tree, reaffirming its placement within this species complex. Furthermore, morphological similarities, including conidia size, asci size, and ascospore features, provided additional support for the classification of the strain as C. fructicola. Importantly, this study marked a significant milestone in scientific discovery by documenting the first-ever instance of an endophytic fungus isolated from R. apiculata in Thailand.

Colletotrichum tropicale, initially documented from T. cacao leaves in Panama [206], was also investigated in this study. The research employed phylogenetic analysis and examination of conidia morphology to validate the classification of the study’s isolate as C. tropicale. This confirmation represented a notable scientific contribution, as it marked the first documented instance of an endophytic fungus isolated from R. mucronata in Taiwan.

These records expand our knowledge of the geographic distribution of these fungal species. In conclusion, this research enhances our understanding of fungal diversity within mangrove ecosystems and provides valuable taxonomic and ecological insights. The combined use of molecular, morphological, and ecological data, as well as genetic recombination analysis, strengthens the credibility of the newly introduced Colletotrichum species. Overall, this research significantly contributes to our understanding of the taxonomy and evolutionary relationships within the Colletotrichum species complex. The combination of molecular, morphological, and ecological data has led to the recognition of novel species and the validation of known ones, enhancing our knowledge of these important plant-associated fungi.

Acknowledgments

Cexpresses gratitude for the postdoctoral fellowship fund provided by Mae Fah Luang University. Kevin D. Hyde expresses gratitude to the National Research Council of Thailand (NRCT) for providing the grant titled “Total fungal Diversity in a Given Forest Area with Implications towards Species Numbers, Chemical Diversity and Biotechnology” (grant no: N42A650547).

Author Contributions

Conceptualization, C.N. and K.D.H.; Methodology, C.N. and K.D.H.; Software, C.N.; Formal analysis, C.N.; Resources, K.D.H.; Data curation, K.D.H.; Writing—original draft, C.N.; Writing—review & editing, K.D.H.; Supervision, K.D.H.; Project administration, K.D.H. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The completed alignments and trees were submitted to TreeBASE submission ID 31014 (http://purl.org/phylo/treebase/phylows/study/TB2:S31014?x-access-code=a44bff36f1453301a23a6c12ba2d815c&format=html accessed on 28 September 2023).

Conflicts of Interest

The authors declare no conflict of interest.

Funding Statement

This research was funded by The National Research Council of Thailand (NRCT) grant number N42A650547.

Footnotes

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

References

  • 1.Hyde K.D., Jones E.B.G. Marine mangrove fungi. Mar. Ecol. 1988;9:15–33. doi: 10.1111/j.1439-0485.1988.tb00196.x. [DOI] [Google Scholar]
  • 2.Hyde K.D., Lee S.Y. Ecology of mangrove fungi and their role in nutrient cycling: What gaps occur in our knowledge? Hydrobiologia. 1998;295:107–118. doi: 10.1007/BF00029117. [DOI] [Google Scholar]
  • 3.Alongi D.M. Carbon cycling and storage in mangrove forests. Annu. Rev. Mar. Sci. 2014;6:195–219. doi: 10.1146/annurev-marine-010213-135020. [DOI] [PubMed] [Google Scholar]
  • 4.Chaeprasert S., Piapukiew J., Whalley A., Sihanonth P. Endophytic fungi from mangrove plant species of Thailand: Their antimicrobial and anticancer potentials. Bot. Mar. 2010;53:555–564. doi: 10.1515/bot.2010.074. [DOI] [Google Scholar]
  • 5.Gao H., Wang Y., Luo Q., Yang L., He X., Wu J., Kachanuban K., Wilaipun P., Zhu W., Wang Y. Bioactive Metabolites from Acid-Tolerant Fungi in a Thai Mangrove Sediment. Front. Microbiol. 2021;11:609952. doi: 10.3389/fmicb.2020.609952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Jones E.B.G., Pilantanapak A., Chatmala I., Sakayaroj J., Phongpaichit S., Choeyklin R. Thai marine fungal diversity. Songklanakarin J. Sci. Technol. 2006;28:687–708. [Google Scholar]
  • 7.Ungcharoenwiwat P., Sakayaroj J. Species Composition and Hydrolase Enzyme (EC.3) Activity of Fungi Isolated from Thasala Mangroves; Nakhon Si Thammarat Province; Southern Thailand. Trends Sci. 2022;19:6172. doi: 10.48048/tis.2022.6172. [DOI] [Google Scholar]
  • 8.Bucher V.V.C., Pointing S.B., Hyde K.D., Reddy C.A. Production of wood decay enzymes; loss of mass; and lignin solubilisation in wood by diverse tropical freshwater fungi. Microb. Ecol. 2004;48:331–337. doi: 10.1007/s00248-003-0132-x. [DOI] [PubMed] [Google Scholar]
  • 9.Hongsanan S., Jeewon R., Purahong W., Xie N., Liu J., Jayawardena R.S., Ekanayaka A.H., Dissanayake A.J., Raspé O., Hyde K.D., et al. Can we use environmental DNA as holotypes? Fungal Divers. 2018;92:1–30. doi: 10.1007/s13225-018-0404-x. [DOI] [Google Scholar]
  • 10.Wijayawardene N.N., Hyde K.D., Al-Ani L.K., Tedersoo L., Haelewaters D., Rajeshkumar K.C., Zhao R., Aptroot A., Leontyev D.V., Saxena R.K., et al. Outline of Fungi and fungus-like taxa–2021. Mycosphere. 2022;13:53–453. doi: 10.5943/mycosphere/13/1/2. [DOI] [Google Scholar]
  • 11.Perfect S.E., Hughes H.B., O’Connell R.J., Green J.R. Colletotrichum: A model genus for studies on pathology and fungal–plant interactions. Fungal Genet. Biol. 1999;27:186–198. doi: 10.1006/fgbi.1999.1143. [DOI] [PubMed] [Google Scholar]
  • 12.Dean R., Van Kan J.A., Pretorius Z.A., Hammond-Kosack K.E., Di Pietro A., Spanu P.D., Rudd J.J., Dickman M., Kahmann R., Ellis J., et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012;13:414–430. doi: 10.1111/j.1364-3703.2011.00783.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Jayawardena R.S., Hyde K.D., Damm U., Cai L., Liu M., Li X.H., Zhang W., Zhao W.S., Yan J.Y. Notes on currently accepted species of Colletotrichum. Mycosphere. 2016;7:1192–1260. doi: 10.5943/mycosphere/si/2c/9. [DOI] [Google Scholar]
  • 14.Jayawardena R.S., Bhunjun C.S., Hyde K.D., Gentekaki E., Itthayakorn P. Colletotrichum: Lifestyles; biology; morpho-species; species complexes and accepted species. Mycosphere. 2022;12:519–669. doi: 10.5943/mycosphere/12/1/7. [DOI] [Google Scholar]
  • 15.Talhinhas P., Baroncelli R. Colletotrichum species and complexes: Geographic distribution; host range and conservation status. Fungal Divers. 2021;110:109–198. doi: 10.1007/s13225-021-00491-9. [DOI] [Google Scholar]
  • 16.Hyde K.D., Nilsson R.H., Alias A.S., Ariyawansa H.A., Blair J.E., Cai L., de Cock A.W.A.M., Dissanayake A.J., Glockling S.L., Goonasekara I.D., et al. One stop shop: Backbones trees for important phytopathogenic genera: I (2014) Fungal Divers. 2014;67:21–125. doi: 10.1007/s13225-014-0298-1. [DOI] [Google Scholar]
  • 17.Prusky D., Freeman S., Dickman M.B. Colletotrichum: Host specificity; pathogenicity; and interactions with the host. Annu. Rev. Phytopathol. 2000;38:367–386. [Google Scholar]
  • 18.Cannon P.F., Damm U., Johnston P.R., Weir B.S. Colletotrichum–Current status and future directions. Stud. Mycol. 2012;73:181–213. doi: 10.3114/sim0014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Huang F., Chen G.Q., Hou X., Fu Y.S., Cai L., Hyde K.D., Li H.Y. Colletotrichum species associated with cultivated Citrus in China. Fungal Divers. 2013;61:61–74. doi: 10.1007/s13225-013-0232-y. [DOI] [Google Scholar]
  • 20.Lima N.B., Batista M.V.A., De Morais M.A., Barbosa M.A.G., Michereff S.J., Hyde K.D., Câmara M.P.S. Five Colletotrichum species are responsible for mango anthracnose in northeastern Brazil. Fungal Divers. 2013;61:75–88. doi: 10.1007/s13225-013-0237-6. [DOI] [Google Scholar]
  • 21.Than P.P., Prihastuti H., Phoulivong S., Taylor P.W.J., Hyde K.D. Chilli anthracnose disease caused by Colletotrichum species. J. Zhejiang Univ. Sci. B. 2008;9:764–788. doi: 10.1631/jzus.B0860007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Crouch J.A., Clarke B.B., White J.F., Jr., Hillman B.I. Systematic analysis of the falcate-spored graminicolous Colletotrichum and a description of six new species from warm-season grasses. Mycologia. 2009;101:717–732. doi: 10.3852/08-230. [DOI] [PubMed] [Google Scholar]
  • 23.Freeman S., Minz D., Kolesnik I. Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. Eur. J. Plant Pathol. 2001;107:613–621. doi: 10.1023/B:EJPP.0000021057.93305.d9. [DOI] [Google Scholar]
  • 24.Bhunjun C.S., Phukhamsakda C., Jayawardena R.S., Jeewon R., Promputtha I., Hyde K.D. Investigating species boundaries in Colletotrichum. Fungal Divers. 2021;107:107–127. doi: 10.1007/s13225-021-00471-z. [DOI] [Google Scholar]
  • 25.White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. A Guide Methods Appl. 1990;18:315–322. [Google Scholar]
  • 26.Baroncelli R., Talhinhas P., Pensec F., Sukno S.A., Le Floch G., Thon M.R. The Colletotrichum acutatum Species Complex as a Model System to Study Evolution and Host Specialization in Plant Pathogens. Front. Microbiol. 2017;8:1–14. doi: 10.3389/fmicb.2017.02001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.de Silva N.I., Maharachchikumbura S.S.N., Thambugala K.M., Bhat D.J., Karunarathna S.C., Tennakoon D.S., Phookamsak R., Jayawardena R.S., Lumyong S., Hyde K.D. Morpho-molecular taxonomic studies reveal a high number of endophytic fungi from Magnolia candolli and M. garrettii in China and Thailand. Mycosphere. 2021;12:163–237. doi: 10.5943/mycosphere/12/1/3. [DOI] [Google Scholar]
  • 28.Grano-Maldonado M.I., Ramos-Payan R., Rivera-Chaparro F., Aguilar-Medina M., Romero-Quintana J.G., Rodríguez-Santiago A., Nieves-Soto M. First Molecular Characterization of Colletotrichum sp. and Fusarium sp. Isolated from Mangrove in Mexico and the Antagonist Effect of Trichoderma harzianum as an Effective Biocontrol Agent. Plant Pathol. J. 2021;37:465–475. doi: 10.5423/PPJ.OA.03.2021.0048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.He D., Ma Q.Y., Yang L., Xie Q.Y., Zhu H.J., Dai H.F., Wu Y.G., Yang D.M., Zhao Y.X. Two new indole alkaloids isolated from a mangrove-derived fungus Colletotrichum sp. HD-1. Phytochem. Lett. 2023;54:81–85. doi: 10.1016/j.phytol.2023.01.015. [DOI] [Google Scholar]
  • 30.He J., Li D.W., Bian J.Y., Zhu L.H., Huang L. Unravelling species diversity and pathogenicity of Colletotrichum associated with anthracnose on Osmanthus fragrans in Quanjiao, China. Plant Dis. 2023;107:350–362. doi: 10.1094/PDIS-04-22-0810-RE. [DOI] [PubMed] [Google Scholar]
  • 31.Liu J.W., Manawasinghe I.S., Liao X.N., Mao J., Dong Z.Y., Jayawardena R.S., Wanasinghe D.N., Shu Y.X., Luo M. Endophytic Colletotrichum (Sordariomycetes; Glomerellaceae) species associated with Citrus grandis cv. “Tomentosa” in China. MycoKeys. 2023;95:163–188. doi: 10.3897/mycokeys.95.87121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Numponsak T., Kumla J., Suwannarach N., Matsui K., Lumyong S. Biosynthetic pathway and optimal conditions for the production of indole-3-acetic acid by an endophytic fungus, Colletotrichum fructicola CMU-A109. PLoS ONE. 2018;13:e0205070. doi: 10.1371/journal.pone.0205070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Shoresh M., Harman G.E., Mastouri F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol. 2010;48:21–43. doi: 10.1146/annurev-phyto-073009-114450. [DOI] [PubMed] [Google Scholar]
  • 34.Waculicz-Andrade C.E., Savi D.C., Bini A.P., Adamoski D., Goulin E.H., da Silva Júnior G.J., Massola Júnior N.S., Terasawa L.G., Kava V., Glienke C. Colletotrichum gloeosporioides sensu stricto: An endophytic species or citrus pathogen in Brazil? Australas. Plant Pathol. 2017;46:191–203. doi: 10.1007/s13313-017-0476-1. [DOI] [Google Scholar]
  • 35.Johnson J.L., Raw J.L., Adams J. First report on carbon storage in a warm-temperate mangrove forest in South Africa. Estuar. Coast. Shelf Sci. 2020;235:106566. doi: 10.1016/j.ecss.2019.106566. [DOI] [Google Scholar]
  • 36.Sahibu A., Nordahliawate S.S.M., Abdullah M.M. Presence of Foliar Diseases Caused by Fungi in Mangroves on The East Coast Of Peninsular Malaysia. Malays. Appl. Biol. 2020;49:181–186. doi: 10.55230/mabjournal.v49i4.1610. [DOI] [Google Scholar]
  • 37.Norphanphoun C., Raspé O., Jeewon R., Wen T.C., Hyde K.D. Morphological and phylogenetic characterisation of novel Cytospora species associated with mangroves. MycoKeys. 2018;38:93–120. doi: 10.3897/mycokeys.38.28011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Jayasiri S.C., Hyde K.D., Ariyawansa H.A., Bhat J.D., Buyck B., Cai L., Dai Y.C., Abd-Elsalam K.A., Ertz D., Hidayat I., et al. The Faces of Fungi database: Fungal names linked with morphology; phylogeny and human impacts. Fungal Divers. 2015;74:3–18. doi: 10.1007/s13225-015-0351-8. [DOI] [Google Scholar]
  • 39.Kim J.S., Hassan O., Go M.J., Chang T. First report of Colletotrichum aenigma causing anthracnose of grape (Vitis vinifera) in Korea. Plant Dis. 2021;105:2729. doi: 10.1094/PDIS-11-20-2458-PDN. [DOI] [Google Scholar]
  • 40.Li C., Liu J.A., Zhou G.Y. First report that Colletotrichum aenigma causes leaf spots on Aquilaria sinensis in China. Plant Dis. 2021;105:3302. doi: 10.1094/PDIS-11-20-2381-PDN. [DOI] [Google Scholar]
  • 41.Schena L., Mosca S., Cacciola S.O., Faedda R., Sanzani S.M., Agosteo G.E., Sergeeva V., Lio G.M. Species of the Colletotrichum gloeosporioides and C. boninense complexes associated with olive anthracnose. Plant Pathol. 2014;63:437–446. doi: 10.1111/ppa.12110. [DOI] [Google Scholar]
  • 42.Weir B.S., Johnston P.R., Damm U. The Colletotrichum gloeosporioides species complex. Stud. Mycol. 2012;73:115–180. doi: 10.3114/sim0011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Hall T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98. [Google Scholar]
  • 44.Katoh K., Rozewicki J., Yamada K.D. MAFFT online service: Multiple sequence alignment; interactive sequence choice and visualization. Brief. Bioinform. 2019;20:1160–1166. doi: 10.1093/bib/bbx108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Capella-Gutierrez S., Silla-Martinez J.M., Gabaldon T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Swofford D.L. PAUP: Phylogenetic Analysis Using Parsimony (and Other Methods) Sinauer Associates; Sunderland, UK: 2002. Version 4.0 Beta 10. [Google Scholar]
  • 47.Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Tamura K., Stecher G., Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 2021;38:3022–3027. doi: 10.1093/molbev/msab120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Miller M.A., Pfeiffer W., Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees; Proceedings of the Gateway Computing Environments Workshop (GCE); New Orleans, LA, USA. 14 November 2010; pp. 1–8. [Google Scholar]
  • 50.Nylander J.A.A. Evolutionary Biology Centre. Uppsala University; Uppsala, Sweden: 2004. MrModeltest Version 2. Program Distributed by the Author. [Google Scholar]
  • 51.Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., John P., et al. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Rambaut A. FigTree. University of Edinburgh; Edinburgh, UK: 2014. [(accessed on 18 September 2023)]. ver. 1.4. 2. Program Distributed by the Author. Available online: http://tree.bio.ed.ac.uk/software/figtree. [Google Scholar]
  • 53.Quaedvlieg W., Binder M., Groenewald J.Z., Summerell B.A., Carnegie A.J., Burgess T.I., Crous P.W. Introducing the consolidated species concept to resolve species in the Teratosphaeriaceae. Persoonia. 2014;33:1–40. doi: 10.3767/003158514X681981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Huson D.H. SplitsTree: Analyzing and visualizing evolutionary data. Bioinformatics. 1998;14:68–73. doi: 10.1093/bioinformatics/14.1.68. [DOI] [PubMed] [Google Scholar]
  • 55.Huson D.H., Bryant D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006;23:254–267. doi: 10.1093/molbev/msj030. [DOI] [PubMed] [Google Scholar]
  • 56.Huang L., Sheng J., Song W., Zheng D., Song S., Xu X., Yu J., Liu Q., Liu Y., Tang W. First report of leaf spot caused by Colletotrichum fructicola on kiwifruit in China. Plant Dis. 2022;106:2760. doi: 10.1094/PDIS-01-22-0120-PDN. [DOI] [Google Scholar]
  • 57.Poti T., Kisaki G., Arita K., Akimitsu K. Identification and characterization of Colletotrichum species causing kiwifruit anthracnose in Kagawa Prefecture, Japan. J. Gen. Plant Pathol. 2023;89:84–90. doi: 10.1007/s10327-023-01115-7. [DOI] [Google Scholar]
  • 58.Sun J.W., Si Y.Z., Li D.W., Jin G.Q., Zhu L.H. First report of leaf blotch of aesculus chinensis caused by Colletotrichum gloeosporioides and Colletotrichum fructicola in China. Plant Dis. 2020;104:3065. doi: 10.1094/PDIS-04-20-0841-PDN. [DOI] [Google Scholar]
  • 59.Song L., Lin W., Jiang N., Zhang Z., Tan G., Wei S. anthracnose disease of Amomum villosum caused by Colletotrichum fructicola in China. J. Gen. Plant Pathol. 2021;87:259–263. doi: 10.1007/s10327-021-00999-7. [DOI] [Google Scholar]
  • 60.Veloso J.S., Câmara M.P.S., Lima W.G., Michereff S.J., Doyle V.P. Why species delimitation matters for fungal ecology: Colletotrichum diversity on wild and cultivated cashew in Brazil. Fungal Biol. 2018;122:677–691. doi: 10.1016/j.funbio.2018.03.005. [DOI] [PubMed] [Google Scholar]
  • 61.Veloso J.S., Lima W.G., Reis A., Doyle V.P., Michereff S.J., Câmara M.P.S. Factors influencing biological traits and aggressiveness of Colletotrichum species associated with cashew anthracnose in Brazil. Plant Pathol. 2021;70:167–180. doi: 10.1111/ppa.13276. [DOI] [Google Scholar]
  • 62.Costa J.F.O., Ramos-Sobrinho R., Chaves T.P., Silva J.R.A., Pinho D.B., Assunção I.P., Lima G.S.A. First report of Colletotrichum fructicola causing anthracnose on Annona leaves in Brazil. Plant Dis. 2017;101:386. doi: 10.1094/PDIS-06-16-0927-PDN. [DOI] [Google Scholar]
  • 63.Costa J.F.O., Kamei S.H., Silva J.R.A., Miranda A.R.G.d.S., Netto M.B., da Silva S.J.C., Correia K.C., de Andrade Lima G.S., Assunção I.P. Species diversity of Colletotrichum infecting Annona spp. in Brazil. Eur. J. Plant Pathol. 2019;153:1119–1130. doi: 10.1007/s10658-018-01630-w. [DOI] [Google Scholar]
  • 64.Vithanage I.S.K., Yakandawala D.M.D., Maharachchikumbura S.S.N., Jayasinghe L., Adikaram N.K.B. Colletotrichum species causing anthracnose disease in A. andraeanum, manifested as spathe rot also in addition to spadix rot and leaf spot. Eur. J. Plant Pathol. 2021;161:837–846. doi: 10.1007/s10658-021-02366-w. [DOI] [Google Scholar]
  • 65.Gong J., Sun D., Bian N., Wang R., Wang X., Wang X. First report of Colletotrichum fructicola causing anthracnose on peanut (Arachis hypogaea L.) in China. Plant Dis. 2023;107:2579–2897. doi: 10.1094/PDIS-10-22-2480-PDN. [DOI] [Google Scholar]
  • 66.Cao X., Xu X., Che H., West J.S., Luo D. Eight Colletotrichum species, including a novel species, are associated with areca palm anthracnose in Hainan, China. Plant Dis. 2020;104:1369–1377. doi: 10.1094/PDIS-10-19-2077-RE. [DOI] [PubMed] [Google Scholar]
  • 67.Zhang H., Wei Y., Shi H. First report of anthracnose caused by Colletotrichum kahawae subsp. ciggaro on Areca in China. Plant Dis. 2020;104:1871. doi: 10.1094/PDIS-12-19-2628-PDN. [DOI] [Google Scholar]
  • 68.Hassan O., Kim J.S., Romain B.B.D., Chang T. An account of Colletotrichum species associated with anthracnose of Atractylodes ovata in South Korea based on morphology and molecular data. PLoS ONE. 2022;17:e0263084. doi: 10.1371/journal.pone.0263084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Li P.L., Liu D., Gong G.S., Chen S.R., Yang X.X. First report of Colletotrichum fructicola causing anthracnose on Aucuba japonica in Sichuan Province of China. Plant Dis. 2016;100:1019. doi: 10.1094/PDIS-09-15-1088-PDN. [DOI] [Google Scholar]
  • 70.Hassan O., Shin Y.U., Lee K.S., Lee D.W., Chang T. First report of anthracnose on spotted laurel caused by Colletotrichum fructicola in South Korea. Plant Dis. 2023;107:2522. doi: 10.1094/PDIS-01-23-0182-PDN. [DOI] [Google Scholar]
  • 71.Li S., Zhang W. Post-harvest anthracnose of carambola (Averrhoa carambola) caused by Colletotrichum fructicola in China. Plant Dis. 2023;107:1234. doi: 10.1094/PDIS-07-22-1612-PDN. [DOI] [Google Scholar]
  • 72.Wang S.M., Huang J., Zheng M.H., Wang Y.N., Yuan Q., Gao Q., Zhou H. First report of anthracnose on Bletilla striata caused by Colletotrichum fructicola in China. Plant Dis. 2022;106:756. doi: 10.1094/PDIS-05-21-1008-PDN. [DOI] [PubMed] [Google Scholar]
  • 73.Yu L., Lan G., Yang Y., Tang Y., Li Z., She X., He Z. First report of anthracnose caused by Colletotrichum fructicola on Brassica parachinensis in China. Crop Prot. 2022;254:105842. doi: 10.1016/j.cropro.2021.105842. [DOI] [Google Scholar]
  • 74.Zhao J., Liu T., Zhang D., Wu H., Pan L., Liao N., Liu W. First report of anthracnose caused by Colletotrichum siamense and C. fructicola of Camellia chrysantha in China. Plant Dis. 2021;105:2020. doi: 10.1094/PDIS-11-20-2324-PDN. [DOI] [Google Scholar]
  • 75.Chen X., Liu C., Liu J.A., Zhou G.Y. First report of Colletotrichum fructicola causing anthracnose on Camellia yuhsienensis Hu in China. Plant Dis. 2022;106:321. doi: 10.1094/PDIS-04-21-0772-PDN. [DOI] [Google Scholar]
  • 76.Chen X., Jiang L., Bao A., Liu C., Liu J., Zhou G. Molecular characterization, pathogenicity and biological characterization of Colletotrichum species associated with anthracnose of Camellia yuhsienensis Hu in China. Forests. 2022;12:1712. doi: 10.3390/f12121712. [DOI] [Google Scholar]
  • 77.Wang Y., Chen J.Y., Xu X., Cheng J., Zheng L., Huang J., Li D.W. Identification and characterization of Colletotrichum species associated with anthracnose disease of Camellia oleifera in China. Plant Dis. 2020;104:474–482. doi: 10.1094/PDIS-11-18-1955-RE. [DOI] [PubMed] [Google Scholar]
  • 78.Lin S.R., Yu S.Y., Chang T.D., Lin Y.J., Wen C.J., Lin Y.H. First report of anthracnose caused by Colletotrichum fructicola on tea in Taiwan. Plant Dis. 2021;105:710. doi: 10.1094/PDIS-06-20-1288-PDN. [DOI] [Google Scholar]
  • 79.Lin S.R., Lin Y.H., Ariyawansa H.A., Chang Y.C., Yu S.Y., Tsai I., Chung C.L., Hung T.H. Analysis of the pathogenicity and phylogeny of Colletotrichum species associated with brown blight of tea (Camellia sinensis) in Taiwan. Plant Dis. 2023;107:97–106. doi: 10.1094/PDIS-03-22-0509-RE. [DOI] [PubMed] [Google Scholar]
  • 80.Liu F., Weir B.S., Damm U., Crous P.W., Wang Y., Liu B., Wang M., Zhang M., Cai L. Unravelling Colletotrichum species associated with Camellia: Employing ApMat and GS loci to resolve species in the C. gloeosporioides complex. Persoonia. 2015;35:63–86. doi: 10.3767/003158515X687597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Lu Q., Wang Y., Li N., Ni D., Yang Y., Wang X. Differences in the characteristics and pathogenicity of Colletotrichum camelliae and C. fructicola isolated from the tea plant [Camellia sinensis (L.) O. Kuntze] Front. Microbiol. 2018;9:3060. doi: 10.3389/fmicb.2018.03060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Shi N.N., Du Y.X., Ruan H.C., Yang X.J., Dai Y.L., Gan L., Chen F.R. First report of Colletotrichum fructicola causing anthracnose on Camellia sinensis in Guangdong Province, China. Plant Dis. 2018;102:241. doi: 10.1094/PDIS-05-17-0705-PDN. [DOI] [Google Scholar]
  • 83.Wang Y.C., Hao X.Y., Wang L., Xiao B., Wang X.C., Yang Y.J. Diverse Colletotrichum species cause anthracnose of tea plants (Camellia sinensis (L.) O. Kuntze) in China. Sci. Rep. 2016;6:35287. doi: 10.1038/srep35287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Diao Y.Z., Zhang C., Liu F., Wang W.Z., Liu L., Cai L., Liu X.L. Colletotrichum species causing anthracnose disease of chili in China. Persoonia. 2017;38:20–37. doi: 10.3767/003158517X692788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Liu F., Tang G., Zheng X., Li Y., Sun X., Qi X., Zhou Y., Xu J., Chen H., Cheng X., et al. Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease in peppers from Sichuan Province, China. Sci. Rep. 2016;6:32761. doi: 10.1038/srep32761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.de Silva D.D., Groenewald J.Z., Crous P.W., Ades P.K., Nasruddin A., Mongkolporn O., Taylor P.W.J. Identification, prevalence and pathogenicity of Colletotrichum species causing anthracnose of Capsicum annuum in Asia. IMA Fungus. 2019;10:8. doi: 10.1186/s43008-019-0001-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Marquez-Zequera I., Cruz-Lachica I., Ley-Lopez N., Carrillo-Facio J.A., Osuna-Garcia L.A., Garcia-Estrada R.S. First report of Carica papaya fruit anthracnose caused by Colletotrichum fructicola in Mexico. Plant Dis. 2018;102:2649. doi: 10.1094/PDIS-05-18-0736-PDN. [DOI] [Google Scholar]
  • 88.Chang J., Zhai F., Zhang Y., Wang D., Shu J., Yao X. Identification and characterization of Colletotrichum fioriniae and C. fructicola that cause anthracnose in pecan. Front. Plant Sci. 2022;13:1043750. doi: 10.3389/fpls.2022.1043750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Ma J., Xue Q., Min L.J., Zhang L.Q. First report of Colletotrichum fructicola causing anthracnose on Carya cathayensis Sarg. in China. Plant Dis. 2023;107:2253. doi: 10.1094/PDIS-10-22-2483-PDN. [DOI] [Google Scholar]
  • 90.Zhang Y., Liu Y., Deng K., Ma L., Lv S., Zhang C., Xiao L. First report of Colletotrichum plurivorum causing anthracnose on pecan (Carya illinoinensis) in China. Plant Dis. 2023;107:2547. doi: 10.1094/PDIS-12-22-2774-PDN. [DOI] [Google Scholar]
  • 91.Zheng X.R., Zhang M.J., Shang X.L., Fang S.Z., Chen F.M. Etiology of Cyclocarya paliurus anthracnose in Jiangsu Province, China. Front. Plant Sci. 2021;11:613499. doi: 10.3389/fpls.2020.613499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Silva-Cabral J.R.A., da Silva J.L., Soares L.S.H., Costa J.F.O., Amorim E.P.R., Lima G.S.A., Assunção I.P. First report of Colletotrichum fructicola and C. tropicale causing anthracnose on orchids in Brazil. Plant Dis. 2019;103:2672. doi: 10.1094/PDIS-03-19-0518-PDN. [DOI] [Google Scholar]
  • 93.Guarnaccia V., Martino I., Gilardi G., Garibaldi A., Gullino M.L. Colletotrichum spp. causing anthracnose on ornamental plants in northern Italy. J. Plant Pathol. 2021;103:127–137. doi: 10.1007/s42161-020-00684-2. [DOI] [Google Scholar]
  • 94.Hu W.L., Ma Y.Z., Chen J.Z. First report of Citrus sinensis anthracnose caused by Colletotrichum fructicola in China. Plant Dis. 2019;103:1018. doi: 10.1094/PDIS-08-18-1466-PDN. [DOI] [Google Scholar]
  • 95.Cao X.R., Xu X.M., Che H.Y., West J.S., Luo D.Q. Characteristics and distribution of Colletotrichum species in coffee plantations in Hainan, China. Plant Pathol. 2019;68:1146–1156. doi: 10.1111/ppa.13028. [DOI] [Google Scholar]
  • 96.Niu X.P., Gao H., Chen Y., Qi J.M. First report of anthracnose on white jute (Corchorus capsularis) caused by Colletotrichum fructicola and C. siamense in China. Plant Dis. 2016;100:1243. doi: 10.1094/PDIS-12-15-1418-PDN. [DOI] [Google Scholar]
  • 97.Niu X., Gao H., Qi J., Chen M., Tao A., Xu J., Dai Z., Su J. Colletotrichum species associated with jute (Corchorus capsularis L.) anthracnose in southeastern China. Sci. Rep. 2016;6:25179. doi: 10.1038/srep25179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.He J., Li D.W., Zhu Y.N., Si Y.Z., Huang J.H., Zhu L.H., Ye J.R., Huang L. Diversity and pathogenicity of Colletotrichum species causing anthracnose on Cunninghamia lanceolata. Plant Pathol. 2022;71:1757–1773. doi: 10.1111/ppa.13611. [DOI] [Google Scholar]
  • 99.Huang L., Kim K.T., Yang J.Y., Song H., Choi G., Jeon J., Cheong K., Ko J., Xu H., Lee Y.H. A high-quality draft genome sequence of Colletotrichum gloeosporioides sensu stricto SMCG1#C, a causal agent of anthracnose on Cunninghamia lanceolata in China. Mol. Plant-Microbe Interact. 2019;32:139–141. doi: 10.1094/MPMI-05-18-0144-A. [DOI] [PubMed] [Google Scholar]
  • 100.Zhang Q., Nizamani M.M., Feng Y., Yang Y.Q., Jayawardena R.S., Hyde K.D., Wang Y., Li C. Genome-scale and multi-gene phylogenetic analyses of Colletotrichum spp. host preference and associated with medicinal plants. Mycosphere. 2023;14:1–106. doi: 10.5943/mycosphere/14/si2/1. [DOI] [Google Scholar]
  • 101.Hyde K.D., Norphanphoun C., Chen J., Dissanayake A.J., Doilom M., Hongsanan S., Jayawardena R.S., Jeewon R., Perera R.H., Thongbai B., et al. Thailand’s amazing diversity: Up to 96% of fungi in northern Thailand may be novel. Fungal Divers. 2018;93:215–239. doi: 10.1007/s13225-018-0415-7. [DOI] [Google Scholar]
  • 102.Manamgoda D.S., Udayanga D., Cai L., Chukeatirote E., Hyde K.D. Endophytic Colletotrichum from tropical grasses with a new species C. endophytica. Fungal Divers. 2013;61:107–115. doi: 10.1007/s13225-013-0256-3. [DOI] [Google Scholar]
  • 103.Zhou Y., Ye R., Ying Q., Zhang Y., Zhang L. First report of leaf spot caused by Colletotrichum fructicola on Dalbergia hupeana in China. Plant Dis. 2022;106:1526. doi: 10.1094/PDIS-08-21-1842-PDN. [DOI] [PubMed] [Google Scholar]
  • 104.Ma X., Nontachaiyapoom S., Jayawardena R.S., Hyde K.D., Gentekaki E., Zhou S., Qian Y., Wen T., Kang J. Endophytic Colletotrichum species from Dendrobium spp. in China and Northern Thailand. MycoKeys. 2018;43:23–57. doi: 10.3897/mycokeys.43.25081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Ma J., Wang X., Guo M. First report of anthracnose on Dendrobium officinale caused by Colletotrichum fructicola in Anhui Province, China. Plant Dis. 2020;104:574. doi: 10.1094/PDIS-09-19-1859-PDN. [DOI] [Google Scholar]
  • 106.Carraro T.A., Lichtemberg P.S.F., Michailides T.J., Pereira W.V., Figueiredo J.A.G., May-De Mio L.L. First report of Colletotrichum fructicola, C. nymphaeae, and C. melonis causing persimmon anthracnose in Brazil. Plant Dis. 2019;103:2692. doi: 10.1094/PDIS-12-18-2241-PDN. [DOI] [Google Scholar]
  • 107.Evallo E., Taguiam J.D., Balendres M.A. Colletotrichum fructicola associated with fruit anthracnose of persimmon. J. Phytopathol. 2022;170:194–201. doi: 10.1111/jph.13068. [DOI] [Google Scholar]
  • 108.Zhang M., Forte-Perri V., Sun W., Tang L., Huang S., Guo T., Chen X., Li Q. Identification and observation of infection processes of Colletotrichum species associated with persimmon anthracnose in Guangxi, China. Plant Dis. 2023;107:1670–1679. doi: 10.1094/PDIS-06-22-1372-SR. [DOI] [PubMed] [Google Scholar]
  • 109.Huang W., Lin Z., Zhang Z., Chen J. First report of Colletotrichum fructicola causing anthracnose on water hyacinth in China. Plant Dis. 2021;105:2246. doi: 10.1094/PDIS-12-20-2621-PDN. [DOI] [Google Scholar]
  • 110.Kuang W., Cui R., Xiang M., Liu B., Wang Z., Guo D., Ma J. First report of Colletotrichum fructicola causing anthracnose on loquat in Jiangxi province, China. J. Plant Pathol. 2021;103:1053–1054. doi: 10.1007/s42161-021-00858-6. [DOI] [Google Scholar]
  • 111.Mangwende E., Truter M., Aveling T.A.S., Chirwa P.W. Anthracnose leaf spot pathogens, Colletotrichum fructicola and Colletotrichum cigarro, associated with Eucalyptus seed produced in South Africa. Australas. Plant Pathol. 2021;50:533–543. doi: 10.1007/s13313-021-00807-y. [DOI] [Google Scholar]
  • 112.Chen X.Y., Dai D.J., Zhao S.F., Shen Y., Wang H.D., Zhang C.Q. Genetic diversity of Colletotrichum spp. causing strawberry anthracnose in Zhejiang, China. Plant Dis. 2020;104:1351–1357. doi: 10.1094/PDIS-09-19-2026-RE. [DOI] [PubMed] [Google Scholar]
  • 113.Han Y.C., Zeng X.G., Xiang F.Y., Ren L., Chen F.Y., Gu Y.C. Distribution and characteristics of Colletotrichum spp. associated with anthracnose of strawberry in Hubei, China. Plant Dis. 2016;100:996–1006. doi: 10.1094/PDIS-09-15-1016-RE. [DOI] [PubMed] [Google Scholar]
  • 114.He L., Li X., Gao Y., Li B., Mu W., Liu F. Characterization and fungicide sensitivity of Colletotrichum spp. from Different Hosts in Shandong, China. Plant Dis. 2019;103:34–43. doi: 10.1094/PDIS-04-18-0597-RE. [DOI] [PubMed] [Google Scholar]
  • 115.Jayawardena R.S., Huang J.K., Jin B.C., Yan J.Y., Li X.H., Hyde K.D., Bahkali A.H., Yin S.L., Zhang G.Z. An account of Colletotrichum species associated with strawberry anthracnose in China based on morphology and molecular data. Mycosphere. 2016;7:1143–1163. doi: 10.5943/mycosphere/si/2c/6. [DOI] [Google Scholar]
  • 116.Jian Y., Li Y., Tang G., Zheng X., Khaskheli M.I., Gong G. Identification of Colletotrichum species associated with anthracnose disease of strawberry in Sichuan Province, China. Plant Dis. 2021;105:3025–3036. doi: 10.1094/PDIS-10-20-2114-RE. [DOI] [PubMed] [Google Scholar]
  • 117.Xu M., Li P., Meng H., Liu J., Wu X., Gong G., Chen H., Shang J., Yang W., Chang X. First report of Colletotrichum fructicola causing anthracnose on Glycine max in China. Plant Dis. 2023;107:2240. doi: 10.1094/PDIS-09-22-2222-PDN. [DOI] [Google Scholar]
  • 118.Shi N.N., Du Y.X., Chen F.R., Ruan H.C., Yang X.J. First report of leaf spot caused by Colletotrichum fructicola on Japanese Fatsia (Fatsia japonica) in Fujian Province in China. Plant Dis. 2017;101:1552. doi: 10.1094/PDIS-12-16-1720-PDN. [DOI] [Google Scholar]
  • 119.Xu X., Xiao Q., Yang C., Liu Y. First report of anthracnose caused by Colletotrichum karstii on Fatsia japonica in Sichuan, China. Plant Dis. 2021;105:206. doi: 10.1094/PDIS-05-20-0990-PDN. [DOI] [Google Scholar]
  • 120.Cao X., Xu X., Che H., West J.S., Luo D. Three Colletotrichum species, including a new species, are associated to leaf anthracnose of rubber tree in Hainan, China. Plant Dis. 2019;103:117–124. doi: 10.1094/PDIS-02-18-0374-RE. [DOI] [PubMed] [Google Scholar]
  • 121.Zhao J., Yu Z., Li Q., Tang L., Guo T., Huang S., Mo J., Hsiang T. Leaf spot caused by Colletotrichum fructicola on star anise (Illicium verum) in China. Plant Dis. 2022;106:1060. doi: 10.1094/PDIS-04-21-0685-PDN. [DOI] [PubMed] [Google Scholar]
  • 122.Li F., Chen J., Chen Q., Liu Z., Sun J., Yan Y., Zhang H., Bi Y. Identification, pathogenicity, and sensitivity to fungicide of Colletotrichum species that causes walnut anthracnose in Beijing. Agronomy. 2023;13:214. doi: 10.3390/agronomy13010214. [DOI] [Google Scholar]
  • 123.Wang Q.H., Li D.W., Duan C.H., Liu X.H., Niu S.G., Hou L.Q., Wu X.Q. First report of walnut anthracnose caused by Colletotrichum fructicola in China. Plant Dis. 2018;102:247. doi: 10.1094/PDIS-06-17-0921-PDN. [DOI] [Google Scholar]
  • 124.Lisboa D.O., Silva M.A., Pinho D.B., Pereira O.L., Furtado G.Q. Diversity of pathogenic and endophytic Colletotrichum isolates from Licania tomentosa in Brazil. For. Pathol. 2018;48:e12448. doi: 10.1111/efp.12448. [DOI] [Google Scholar]
  • 125.Wan Y., Jin G.Q., Li D.W., Wu S., Zhu L.H. First report of Colletotrichum fructicola causing leaf spots on Liriodendron chinense × tulipifera in China. For. Pathol. 2022;52:e12779. doi: 10.1111/efp.12779. [DOI] [Google Scholar]
  • 126.Qiu L., Liu J., Kuang W., Cui R., Zhang L., Ma J. First report of anthracnose caused by Colletotrichum fructicola on Loropetalum chinense in China. Plant Dis. 2022;106:1994. doi: 10.1094/PDIS-07-21-1531-PDN. [DOI] [Google Scholar]
  • 127.Li P., Zhu J.Z., Li X.G., Zhong J. Identification and characterization of Colletotrichum fructicola and Colletotrichum siamense causing anthracnose on luffa sponge gourd in China. Plants. 2022;11:1537. doi: 10.3390/plants11121537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Li J., Qiu F., Xie C., Zhang C., Li X. First report of Colletotrichum fructicola causing anthracnose on macadamia in China. Plant Dis. 2023;107:1230. doi: 10.1094/PDIS-06-22-1376-PDN. [DOI] [Google Scholar]
  • 129.Wang Q.H., Ye R., Zhou Y., Pan Y., Hu T.Q., Zeng Y.C., Liang Y., Zhang Y. First report of Colletotrichum siamense causing leaf spot on Manglietia decidua in the world. Plant Dis. 2023;107:562. doi: 10.1094/PDIS-04-22-0774-PDN. [DOI] [Google Scholar]
  • 130.Yin Q., Shi X., Zhu Z., Wang Y., Tian L., Sang Z., Ma L., Jia Z. First report of leaf spot caused by Colletotrichum fructicola on Magnolia wufengensis in Hubei, China. Plant Dis. 2022;106:2987. doi: 10.1094/PDIS-12-21-2811-PDN. [DOI] [Google Scholar]
  • 131.Zhou Y., Yang D., Zhang L., Zeng Y.C., Zhang Y. First report of leaf spot caused by Colletotrichum siamense on Magnolia grandiflora in China. Plant Dis. 2022;106:769. doi: 10.1094/PDIS-08-21-1698-PDN. [DOI] [Google Scholar]
  • 132.Zhou Y., Zhang R., Zhang W., Liu B., Zeng Y., Zhang Y. First report of Colletotrichum siamense causing leaf spot on Michelia macclurei in China. Plant Dis. 2023;107:938. doi: 10.1094/PDIS-02-22-0288-PDN. [DOI] [Google Scholar]
  • 133.Munir M., Amsden B., Dixon E., Vaillancourt L., Gauthier N.A.W. Characterization of Colletotrichum species causing bitter rot of apple in Kentucky Orchards. Plant Dis. 2016;100:2194–2203. doi: 10.1094/PDIS-10-15-1144-RE. [DOI] [PubMed] [Google Scholar]
  • 134.Moreira R.R., Peres N.A., Mio L.L.M. Colletotrichum acutatum and C. gloeosporioides species complexes associated with apple in Brazil. Plant Dis. 2019;103:268–275. doi: 10.1094/PDIS-07-18-1187-RE. [DOI] [PubMed] [Google Scholar]
  • 135.Velho A.C., Alaniz S., Casanova L., Mondino P., Stadnik M.J. New insights into the characterization of Colletotrichum species associated with apple diseases in southern Brazil and Uruguay. Fungal Biol. 2015;119:229–244. doi: 10.1016/j.funbio.2014.12.009. [DOI] [PubMed] [Google Scholar]
  • 136.Velho A.C., Mondino P., Stadnik M.J. Extracellular enzymes of Colletotrichum fructicola isolates associated to apple bitter rot and glomerella leaf spot. Mycology. 2019;9:145–154. doi: 10.1080/21501203.2018.1464525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Alaniz S., Cuozzo V., Martinez V., Mondino P. Ascospore infection and Colletotrichum species causing glomerella leaf spot of apple in Uruguay. Plant Pathol. J. 2019;35:100–111. doi: 10.5423/PPJ.OA.07.2018.0145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Alaniz S., Hernández L., Mondino P. Colletotrichum fructicola is the dominant and one of the most aggressive species causing bitter rot of apple in Uruguay. Trop. Plant Pathol. 2015;40:265–274. doi: 10.1007/s40858-015-0025-9. [DOI] [Google Scholar]
  • 139.Casanova L., Hernández L., Martínez E., Velho A.C., Rockenbach M.F., Stadnik M.J., Alaniz S., Mondino P. First report of glomerella leaf spot of apple caused by Colletotrichum fructicola in Uruguay. Plant Dis. 2017;101:834. doi: 10.1094/PDIS-09-16-1320-PDN. [DOI] [Google Scholar]
  • 140.Chen Y., Fu D., Wang W., Gleason M.L., Zhang R., Liang X., Sun G. Diversity of Colletotrichum species causing apple bitter rot and glomerella leaf spot in China. J. Fungi. 2022;8:740. doi: 10.3390/jof8070740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Fu D.D., Wang W., Qin R.F., Zhang R., Sunb G.Y., Gleason M.L. Colletotrichum fructicola, first record of bitter rot of apple in China. Mycotaxon. 2013;126:23–30. doi: 10.5248/126.23. [DOI] [Google Scholar]
  • 142.Kim C., Hassan O., Lee D., Chang T. First report of anthracnose of apple caused by Colletotrichum fructicola in Korea. Plant Dis. 2018;102:2653. doi: 10.1094/PDIS-05-18-0717-PDN. [DOI] [Google Scholar]
  • 143.Kim C., Hassan O., Chang T. Diversity, pathogenicity and fungicide sensitivity of Colletotrichum species associated with apple anthracnose in South Korea. Plant Dis. 2020;104:2866–2874. doi: 10.1094/PDIS-01-20-0050-RE. [DOI] [PubMed] [Google Scholar]
  • 144.Oo M.M., Yoon H.Y., Jang H.A., Oh S.K. Identification and characterization of Colletotrichum species associated with bitter rot disease of apple in South Korea. Plant Pathol. J. 2018;34:480–489. doi: 10.5423/PPJ.FT.10.2018.0201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Park M.S., Kim B.R., Park I.H., Hahm S.S. First report of Two Colletotrichum species associated with bitter rot on apple fruit in Korea. Mycobiology. 2018;46:154–158. doi: 10.1080/12298093.2018.1478220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Yokosawa S., Eguchi N., Kondo K.I., Sato T. Phylogenetic relationship and fungicide sensitivity of members of the Colletotrichum gloeosporioides species complex from apple. J. Gen. Plant Pathol. 2017;83:291–298. doi: 10.1007/s10327-017-0732-9. [DOI] [Google Scholar]
  • 147.Wenneker M., Pham K.T.K., Kerkhof E., Harteveld D.O.C. First report of preharvest fruit rot of ‘Pink Lady’ apples caused by Colletotrichum fructicola in Italy. Plant Dis. 2021;105:1561. doi: 10.1094/PDIS-11-20-2404-PDN. [DOI] [Google Scholar]
  • 148.Nodet P., Chalopin M., Crété X., Baroncelli R., Le Floch G. First report of Colletotrichum fructicola causing Apple Bitter Rot in Europe. Plant Dis. 2019;103:1767. doi: 10.1094/PDIS-11-18-1915-PDN. [DOI] [Google Scholar]
  • 149.Ismail A.M., El-Ganainy S.M. Characterization of Colletotrichum species associating with anthracnose disease of mango in Egypt. J. Plant Dis. Prot. 2022;129:449–454. doi: 10.1007/s41348-021-00538-8. [DOI] [Google Scholar]
  • 150.Joa J.H., Lim C.K., Choi I.Y., Park M.J., Shin H.D. First report of Colletotrichum fructicola causing anthracnose on Mango in Korea. Plant Dis. 2016;100:1793. doi: 10.1094/PDIS-10-15-1225-PDN. [DOI] [Google Scholar]
  • 151.Li Q., Bu J., Shu J., Yu Z., Tang L., Huang S., Guo T., Mo J., Luo S., Solangi G.S., et al. Colletotrichum species associated with mango in Southern China. Sci. Rep. 2019;9:18891. doi: 10.1038/s41598-019-54809-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Lima N.B., Lima W.G., Tovar-Pedraza J.M., Michereff S.J., Câmara M.P.S. Comparative epidemiology of Colletotrichum species from mango in Northeastern Brazil. Eur. J. Plant Pathol. 2015;141:679–688. doi: 10.1007/s10658-014-0570-y. [DOI] [Google Scholar]
  • 153.Lin W.L., Duan C.H., Wang C.L. Identification and virulence of Colletotrichum species causing anthracnose on mango. Plant Pathol. 2023;72:623–635. doi: 10.1111/ppa.13682. [DOI] [Google Scholar]
  • 154.Sharma G., Kumar N., Weir B.S., Hyde K.D., Shenoy B.D. The ApMat marker can resolve Colletotrichum species: A case study with Mangifera indica. Fungal Divers. 2013;61:117–138. doi: 10.1007/s13225-013-0247-4. [DOI] [Google Scholar]
  • 155.Tovar-Pedraza J.M., Mora-Aguilera J.A., Nava-Díaz C., Lima N.B., Michereff S.J., Sandoval-Islas J.S., Câmara M.P.S., Téliz-Ortiz D., Leyva-Mir S.G. Distribution and Pathogenicity of Colletotrichum species associated with mango anthracnose in Mexico. Plant Dis. 2020;104:137–146. doi: 10.1094/PDIS-01-19-0178-RE. [DOI] [PubMed] [Google Scholar]
  • 156.Liu X., Shi T., Li B., Cai J., Lli C., Huang G. Colletotrichum species associated with cassava anthracnose in China. J. Phytopathol. 2019;167:1–9. doi: 10.1111/jph.12765. [DOI] [Google Scholar]
  • 157.Bragança C.A.D., Silva L.L., Haddad F., Oliveira S.A.S. First report of Colletotrichum fructicola causing anthracnose in cassava (Manihot esculenta) in Brazil. Plant Dis. 2016;100:857. doi: 10.1094/PDIS-06-15-0645-PDN. [DOI] [Google Scholar]
  • 158.de Oliveira S.A.S., da Silva L.L., Nascimento D.S., Diamantino M.S.A.S., Ferreira C.F., de Oliveira T.A.S. Colletotrichum species causing cassava (Manihot esculenta Crantz) anthracnose in different eco-zones within the Recôncavo Region of Bahia, Brazil. J. Plant Dis. Prot. 2020;127:411–416. doi: 10.1007/s41348-020-00327-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Xue L., Zhang L., Yang X.X., Huang X., Wu W., Zhou X., White J.F., Liu Y., Li C. Characterization, phylogenetic analyses, and pathogenicity of Colletotrichum species on Morus alba in Sichuan Province, China. Plant Dis. 2019;103:2624–2633. doi: 10.1094/PDIS-06-18-0938-RE. [DOI] [PubMed] [Google Scholar]
  • 160.Huang R., Sun W., Wang L., Li Q., Huang S., Tang L., Guo T., Mo J., Hsiang T. Identification and characterization of Colletotrichum species associated with anthracnose disease of banana. Plant Pathol. 2021;70:1827–1837. doi: 10.1111/ppa.13426. [DOI] [Google Scholar]
  • 161.Li S.C., Xiao L.H., Wu F., Wang Y.B., Jia M.S., Chen M., Chen J.Y., Xiang M.L. First report of leaf spot caused by Colletotrichum fructicola on Myrica rubra in China. Plant Dis. 2022;106:1993. doi: 10.1094/PDIS-10-21-2138-PDN. [DOI] [Google Scholar]
  • 162.Serrato-Diaz L.M., Rivera-Vargas L.I., Goenaga R., Navarro E.D., French-Monar R.D. First report of Colletotrichum fructicola and C. queenslandicum causing fruit rot of rambutan (Nephelium lappaceum) Plant Dis. 2017;101:1043. doi: 10.1094/PDIS-11-16-1557-PDN. [DOI] [Google Scholar]
  • 163.Wang H.C., Huang Y.F., Chen Q., Wang M.S., Xia H.Q., Shang S.H., Zhang C.Q. Anthracnose caused by Colletotrichum fructicola on Tobacco (Nicotiana tabacum) in China. Plant Dis. 2016;100:1235. doi: 10.1094/PDIS-06-15-0724-PDN. [DOI] [Google Scholar]
  • 164.Conforto C., Lima N.B., Garcete-Gómez J.M., Câmara M.P.S., Michereff S.J. First report of Colletotrichum siamense and C. fructicola causing cladode brown spot in Nopalea cochenillifera in Brazil. J. Plant Pathol. 2017;99:812. [Google Scholar]
  • 165.Zhong J., Li C.X., Zhong S.Y., Hu Z. First report of leaf spot caused by Colletotrichum spaethianum on Paris polyphylla in China. Plant Dis. 2020;104:972. doi: 10.1094/PDIS-09-19-1844-PDN. [DOI] [Google Scholar]
  • 166.Zhou X., Li M., Rao B., Chen Y., Cai C.F., Gao H. First report of anthracnose on Paris polyphylla var. chinensis caused by Colletotrichum fructicola in Northern Fujian, China. Plant Dis. 2020;104:2728. doi: 10.1094/PDIS-04-20-0693-PDN. [DOI] [Google Scholar]
  • 167.Hofer K.M., Braithwaite M., Braithwaite L.J., Sorensen S., Siebert B., Pather V., Goudie L., Williamson L., Alexander B.J.R., Toome-Heller M. First report of Colletotrichum fructicola, C. perseae, and C. siamense causing anthracnose disease of avocado (Persea americana) in New Zealand. Plant Dis. 2021;105:1564. doi: 10.1094/PDIS-06-20-1313-PDN. [DOI] [Google Scholar]
  • 168.Li S., Liu Z., Zhang W. First report of anthracnose disease on avocado (Persea americana) caused by Colletotrichum fructicola in China. Plant Dis. 2022b 106:2529. doi: 10.1094/PDIS-01-22-0151-PDN. [DOI] [Google Scholar]
  • 169.Sharma G., Maymon M., Freeman S. Epidemiology, pathology and identification of Colletotrichum including a novel species associated with avocado (Persea americana) anthracnose in Israel. Sci. Rep. 2017;7:15839. doi: 10.1038/s41598-017-15946-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170.Gañán L., Álvarez E., Castaño-Zapata J. Identificación genética de aislamientos de Colletotrichum spp. causantes de antracnosis en frutos de aguacate, banano, mango y tomate de árbol. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat. 2015;39:339–347. doi: 10.18257/raccefyn.192. [DOI] [Google Scholar]
  • 171.Fuentes-Aragón D., Juárez-Vázquez S.B., Vargas-Hernández M., Silva-Rojas H.V. Colletotrichum fructicola, a member of Colletotrichum gloeosporioides sensu lato, is the causal agent of anthracnose and soft rot in avocado fruits cv. “Hass”. Mycobiology. 2018;46:92–100. doi: 10.1080/12298093.2018.1454010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172.Fuentes-Aragón D., Silva-Rojas H.V., Guarnaccia V., Mora-Aguilera J.A., Aranda-Ocampo S., Bautista-Martínez N., Téliz-Ortíz D. Colletotrichum species causing anthracnose on avocado fruit in Mexico: Current status. Plant Pathol. 2020;69:1513–1528. doi: 10.1111/ppa.13234. [DOI] [Google Scholar]
  • 173.Ma J., Xiao X., Wang X., Guo M. Identification of Colletotrichum fructicola causing anthracnose on Peucedanum praeruptorum in China. Plant Dis. 2020;104:3066. doi: 10.1094/PDIS-04-20-0691-PDN. [DOI] [Google Scholar]
  • 174.Huang X., Wu Y., Li Y., Lin H., Ma L., Su X., Zhou X. First report of Colletotrichum fructicola causing anthracnose on Phoebe sheareri in China. Plant Dis. 2022;106:1994. doi: 10.1094/PDIS-08-21-1841-PDN. [DOI] [Google Scholar]
  • 175.Yang Z., Mo J., Guo T., Li Q., Tang L., Huang S., Wei J.G., Hsiang T. First report of Colletotrichum fructicola causing anthracnose on Pouteria campechiana in China. Plant Dis. 2021;105:708. doi: 10.1094/PDIS-02-20-0253-PDN. [DOI] [Google Scholar]
  • 176.Chen S., Wang Y., Schnabel G., Peng C.A., Lagishetty S., Smith K., Luo C., Yuan H. Inherent resistance to 14α-Demethylation inhibitor fungicides in Colletotrichum truncatum is likely linked to CYP51A and/or CYP51B gene variants. Phytopathology. 2018;108:1263–1275. doi: 10.1094/PHYTO-02-18-0054-R. [DOI] [PubMed] [Google Scholar]
  • 177.Hu M.J., Grabke A., Schnabel G. Investigation of the Colletotrichum gloeosporioides species Complex causing Peach anthracnose in South Carolina. Plant Dis. 2015;99:797–805. doi: 10.1094/PDIS-10-14-1076-RE. [DOI] [PubMed] [Google Scholar]
  • 178.Tan Q., Schnabel G., Chaisiri C., Yin L.F., Yin W.X., Luo C.X. Colletotrichum species associated with Peaches in China. J. Fungi. 2022;8:313. doi: 10.3390/jof8030313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Lee D.M., Hassan O., Chang T. Identification, characterization, and pathogenicity of Colletotrichum species causing anthracnose of peach in Korea. Mycobiology. 2020;48:210–218. doi: 10.1080/12298093.2020.1763116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180.Chethana K.W.T., Jayawardene R.S., Zhang W., Zhou Y.Y., Liu M., Hyde K.D., Li X.H., Wang J., Zhang K.C., Yan J.Y. Molecular characterization and pathogenicity of fungal taxa associated with cherry leaf spot disease. Mycosphere. 2019;10:490–530. doi: 10.5943/mycosphere/10/1/8. [DOI] [Google Scholar]
  • 181.Han S., Xu X., Jiang Y., Yuan H., Li S., Liu Y., Lin T., Qiao T., Yang C., Li S., et al. Colletotrichum fructicola causal agent of shot-hole symptoms on leaves of Prunus sibirica in China. Plant Dis. 2023;107:2530. doi: 10.1094/PDIS-04-22-0848-PDN. [DOI] [Google Scholar]
  • 182.Tang Z., Lou J., He L., Wang Q., Chen L., Zhong X., Wu C., Zhang L., Wang Z.Q. First report of Colletotrichum fructicola causing anthracnose on cherry (Prunus avium) in China. Plant Dis. 2022;106:317. doi: 10.1094/PDIS-03-21-0544-PDN. [DOI] [Google Scholar]
  • 183.Fu M., Crous P.W., Bai Q., Zhang P.F., Xiang J., Guo Y.S., Zhao F.F., Yang M.M., Hong N., Xu W.X., et al. Colletotrichum species associated with anthracnose of Pyrus spp. in China. Persoonia. 2019;42:1–35. doi: 10.3767/persoonia.2019.42.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184.Li H.N., Jiang J.J., Hong N., Wang G.P., Xu W.X. First report of Colletotrichum fructicola causing bitter rot of pear (Pyrus bretschneideri) in China. Plant Dis. 2013;97:1000. doi: 10.1094/PDIS-01-13-0084-PDN. [DOI] [PubMed] [Google Scholar]
  • 185.Zhang P.F., Zhai L., Zhang X.K., Huang X.Z., Hong N., Xu W., Wang G. Characterization of Colletotrichum fructicola, a new causal agent of leaf black spot disease of sandy pear (Pyrus pyrifolia) Eur. J. Plant Pathol. 2015;143:651–662. doi: 10.1007/s10658-015-0715-7. [DOI] [Google Scholar]
  • 186.Choi K.J., Park S.Y. First report of anthracnose caused by Colletotrichum fructicola on hybrid pear fruit in Korea. Plant Dis. 2021;105:3291. doi: 10.1094/PDIS-09-20-1866-PDN. [DOI] [Google Scholar]
  • 187.Yu L., Lyu C., Tang Y., Lan G., Li Z., She X., He Z. Anthracnose: A new leaf disease on Radermachera sinica (China doll) in China. Plant Dis. 2022;106:2304–2309. doi: 10.1094/PDIS-01-22-0072-SC. [DOI] [PubMed] [Google Scholar]
  • 188.Afanador-Kafuri L., González A., Gañán L., Mejía J.F., Cardona N., Alvarez E. Characterization of the Colletotrichum species causing anthracnose in Andean blackberry in colombia. Plant Dis. 2014;98:1503–1513. doi: 10.1094/PDIS-07-13-0752-RE. [DOI] [PubMed] [Google Scholar]
  • 189.Wu J., Wang H., Fang L., Xie Y., Wang L. First report of Colletotrichum fructicola and Colletotrichum nymphaeae causing leaf spot on Rubus corchorifolius in Zhejiang province, China. Plant Dis. 2021;105:3746. doi: 10.1094/PDIS-01-21-0198-PDN. [DOI] [Google Scholar]
  • 190.Guarnaccia V., Gilardi G., Martino I., Garibaldi A., Gullino M.L. Species diversity in Colletotrichum causing anthracnose of aromatic and ornamental Lamiaceae in Italy. Agronomy. 2019;9:613. doi: 10.3390/agronomy9100613. [DOI] [Google Scholar]
  • 191.Udayanga D., Manamgoda D.S., Liu X., Chukeatirote E., Hyde K.D. What are the common anthracnose pathogens of tropical fruits? Fungal Divers. 2013;61:165–179. doi: 10.1007/s13225-013-0257-2. [DOI] [Google Scholar]
  • 192.Tang X.Y., Zhou Z.C., Hu S., Zhu W.Y., Wu X.P., Ding H.X., Peng L.J. First report of anthracnose on Tetrapanax papyriferus caused by Colletotrichum fructicola in China. Plant Dis. 2023;107:2246. doi: 10.1094/PDIS-10-22-2366-PDN. [DOI] [Google Scholar]
  • 193.Lim Y.S., Hassan O., Chang T. First report of anthracnose of shine muscat caused by Colletotrichum fructicola in Korea. Mycobiology. 2020;48:75–79. doi: 10.1080/12298093.2019.1697190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Echeverrigaray S., Scariot F.J., Fontanella G., Favaron F., Sella L., Santos M.C., Schwambach J., Pedrotti C., Delamare A.P.L. Colletotrichum species causing grape ripe rot disease in Vitis labrusca and V. vinifera varieties in the highlands of Southern Brazil. Plant Pathol. 2020;69:1504–1512. doi: 10.1111/ppa.13240. [DOI] [Google Scholar]
  • 195.Manawasinghe I.S., Calabon M.S., Jones E.B.G., Zhang Y.X., Liao C.F., Xiong Y., Chaiwan N., Kularathnage N.D., Liu N.G., Tang S.M., et al. Mycosphere notes 345–386. Mycosphere. 2022;13:454–557. doi: 10.5943/mycosphere/13/1/3. [DOI] [Google Scholar]
  • 196.Duan C.H., Chen G.Y. First report of Colletotrichum fructicola causing anthracnose on Indian Jujube (Ziziphus mauritiana) in Taiwan. Plant Dis. 2022;106:1751. doi: 10.1094/PDIS-06-21-1337-PDN. [DOI] [Google Scholar]
  • 197.Fan R., Xie D., Nie M., Long Y., Zhao Z. Identification and first report of Colletotrichum fructicola causing fruit rot on Zizyphus mauritiana in China. Plant Dis. 2022;106:2751. doi: 10.1094/PDIS-12-21-2707-PDN. [DOI] [Google Scholar]
  • 198.Shu J., Guo T., Li Q., Tang L., Huang S., Mo J., Yu Z., Forte-Perri V. First report of leaf spot caused by Colletotrichum fructicola and C. siamense on Ziziphus mauritiana in Guangxi, China. Plant Dis. 2021;105:2021. doi: 10.1094/PDIS-09-20-1863-PDN. [DOI] [Google Scholar]
  • 199.Hung N., Hsiao C.H., Yang C.S., Lin H.C., Yeh L.K., Fan Y.C., Sun P.L. Colletotrichum keratitis: A rare yet important fungal infection of human eyes. Mycoses. 2020;63:407–415. doi: 10.1111/myc.13058. [DOI] [PubMed] [Google Scholar]
  • 200.Vivo M., Wang W.H., Chen K.H., Huang J.P. First detection of Colletotrichum fructicola (Ascomycota) on horsehair worms (Nematomorpha) Biodivers. Data J. 2021;9:e72798. doi: 10.3897/BDJ.9.e72798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 201.Prihastuti H., Cai L., Chen H., McKenzie E.H.C., Hyde K.D. Characterization of Colletotrichum species associated with coffee berries in northern Thailand. Fungal Divers. 2009;39:89–109. [Google Scholar]
  • 202.Talhinhas P., Baroncelli R. Hosts of Colletotrichum. Mycosphere. 2023;14:158–261. doi: 10.5943/mycosphere/14/si2/4. [DOI] [Google Scholar]
  • 203.Yang Y.L., Liu Z.Y., Cai L., Hyde K.D., Yu Z.N., Mckenzie E.H.C. Colletotrichum anthracnose of Amaryllidaceae. Fungal Divers. 2009;39:123–146. [Google Scholar]
  • 204.Álvarez E., Gañán L., Rojas-Triviño A., Mejía J.F., Llano G.A., González A. Diversity and pathogenicity of Colletotrichum species isolated from soursop in Colombia. Eur. J. Plant Pathol. 2014;139:325–338. doi: 10.1007/s10658-014-0388-7. [DOI] [Google Scholar]
  • 205.García L., Manzano A.M. First report of anthracnose on cherimoya caused by Colletotrichum tropicale in Cuba. J. Plant Pathol. 2017;99:806. [Google Scholar]
  • 206.Rojas E.I., Rehner S.A., Samuels G.J., Van Bael S.A., Herre E.A., Cannon P., Chen R., Pang J., Wang R., Zhang Y., et al. Colletotrichum gloeosporioides s.l. associated with Theobroma cacao and other plants in Panamá: Multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes. Mycologia. 2010;102:1318–1338. doi: 10.3852/09-244. [DOI] [PubMed] [Google Scholar]
  • 207.Silva J.R., Chaves T.P., da Silva A.R., Barbosa L.D., Costa J.F., Ramos-Sobrinho R., Teixeira R.R., Silva S.J., Lima G.S., Assunção I.P. Molecular and morpho-cultural characterization of Colletotrichum spp. associated with anthracnose on Capsicum spp. in northeastern Brazil. Trop. Plant Pathol. 2017;42:315–319. doi: 10.1007/s40858-017-0151-7. [DOI] [Google Scholar]
  • 208.Ruiz-Campos C., Umaña-Rojas G., Gómez-Alpízar L. Identificación multilocus de especies de Colletotrichum asociadas a la antracnosis de papaya. Agron. Mesoam. 2022;33:45495. [Google Scholar]
  • 209.Souza T.M., Pereira J., Bezerra J.L., Oliveira R.J.V. First report of Colletotrichum tropicale causing leaf spot on Cariniana legalis in Brazil. Plant Dis. 2023;107:578. doi: 10.1094/PDIS-11-21-2522-PDN. [DOI] [Google Scholar]
  • 210.Araújo M.B.M., Lima C.S., Ootani M.A., Bezerra A.M.E., Cardoso J.E. First report of Colletotrichum theobromicola and C. tropicale causing anthracnose on fruits of carnauba palm in Brazil. Plant Dis. 2018;102:244. doi: 10.1094/PDIS-06-17-0860-PDN. [DOI] [Google Scholar]
  • 211.Duan C.H., Chen G.Y. First report of Colletotrichum tropicale causing anthracnose on common fig in Taiwan. Plant Dis. 2022;106:1750. doi: 10.1094/PDIS-06-21-1329-PDN. [DOI] [Google Scholar]
  • 212.Kong W.L., Wu S.H., Wu X.Q., Zheng X.R., Sun X.R., Ye J.N., Wang Q.H. First report of leaf spot disease caused by Colletotrichum tropicale on Ficus binnendijkii var. variegata in China. Plant Dis. 2020;104:585. doi: 10.1094/PDIS-04-19-0834-PDN. [DOI] [Google Scholar]
  • 213.Takushi T., Mitsube F., Gibo E., Kohatsu A. First report of anthracnose caused by Colletotrichum tropicale on barbados cherry (acerola) in Japan. Jpn. J. Phytopathol. 2018;84:282–286. doi: 10.3186/jjphytopath.84.282. [DOI] [Google Scholar]
  • 214.Wu C.J., Chen H.K., Ni H.F. Identification and characterization of Colletotrichum species associated with mango anthracnose in Taiwan. Eur. J. Plant Pathol. 2020;157:1–5. doi: 10.1007/s10658-020-01964-4. [DOI] [Google Scholar]
  • 215.Oliveira S.A.S., Bragança C.A.D., Silva L.L. First report of Colletotrichum tropicale causing anthracnose on the wild cassava species Manihot dichotoma and M. epruinosa in Brazil. Plant Dis. 2016;100:2171. doi: 10.1094/PDIS-10-15-1136-PDN. [DOI] [Google Scholar]
  • 216.Vieira W.A.S., Lima W.G., Nascimento E.S., Michereff S.J., Câmara M.P.S., Doyle V.P. The impact of phenotypic and molecular data on the inference of Colletotrichum diversity associated with Musa. Mycologia. 2017;109:912–934. doi: 10.1080/00275514.2017.1418577. [DOI] [PubMed] [Google Scholar]
  • 217.Matos K.D., Machado J.F., Chagas P.C., Siqueira R.H., Silva G.F., Xavier Filha M.S., Lima-Primo H.E., Chagas E.A. First report of Colletotrichum aeschynomenes and C. tropicale causing anthracnose on Myrciaria dubia in Brazil. Plant Dis. 2020;104:2517. doi: 10.1094/PDIS-04-19-0882-PDN. [DOI] [Google Scholar]
  • 218.Chen K., Kirschner R. Fungi from leaves of lotus (Nelumbo nucifera) Mycol. Prog. 2018;17:275–293. doi: 10.1007/s11557-017-1324-y. [DOI] [Google Scholar]
  • 219.Ayvar-Serna S., Díaz-Nájera J.F., Mena-Bahena A., Ortiz-Montes B.E., Alvarado-Gómez O.G., Lima N.B., Tovar-Pedraza J.M. First report of leaf anthracnose caused by Colletotrichum tropicale on Oregano (Origanum vulgare) in Mexico. Plant Dis. 2020;104:1855. doi: 10.1094/PDIS-01-20-0169-PDN. [DOI] [Google Scholar]
  • 220.da Silva J.L., da Silva W.F.D.S., Lopes L.E.M., Silva M.J.D.S., Silva-Cabral J.R.A., Costa J.F.O., Lima G.S.A., Assuncao I.P. First report of Colletotrichum tropicale causing anthracnose on Passiflora edulis in Brazil. Plant Dis. 2021;105:3761. doi: 10.1094/PDIS-07-20-1440-PDN. [DOI] [Google Scholar]
  • 221.Taba S., Fukuchi K., Tamashiro Y., Tomitaka Y., Sekine K., Ajitomi A., Takushi T. First report of anthracnose of jaboticaba caused by Colletotrichum tropicale in Japan. J. Gen. Plant Pathol. 2020;86:65–69. doi: 10.1007/s10327-019-00881-7. [DOI] [Google Scholar]
  • 222.Silva-Cabral J.R.A., Batista L.R.L., Costa J.F.O., Ferro M.M.M., Silva S.J.C., Lima G.S.A., Assunção I.P. First report of Colletotrichum tropicale causing anthracnose on pomegranate in Brazil. Plant Dis. 2019;103:583. doi: 10.1094/PDIS-05-18-0767-PDN. [DOI] [Google Scholar]
  • 223.Liu T., Chen D., Liu Z., Hou J.M. First report of anthracnose caused by Colletotrichum tropicale on Sauropus androgynus in China. Plant Dis. 2018;102:2030. doi: 10.1094/PDIS-12-17-1959-PDN. [DOI] [Google Scholar]
  • 224.Evallo E., Taguiam J.D., Bengoa J., Maghirang R., Balendres M.A. First report of Colletotrichum tropicale on dragon fruit and the response of three Selenicereus species to anthracnose. J. Phytopathol. 2022;170:11–12. doi: 10.1080/09670874.2022.2027551. [DOI] [Google Scholar]
  • 225.Nuñez-García P.R., Carrillo-Fasio J.A., Márquez-Licona G., Leyva-Madrigal K.Y., Lagunes-Fortiz E., Tovar-Pedraza J.M. First report of Colletotrichum tropicale causing anthracnose on pitahaya fruit in Mexico. Plant Dis. 2023;107:2235. doi: 10.1094/PDIS-09-22-2054-PDN. [DOI] [Google Scholar]
  • 226.Chethana T.K.W., Manawasinghe I.S., Hurdeal V.G., Bhunjun C.S., Appadoo M.A., Gentekaki E., Raspé O., Promputtha I., Hyde K.D. What are fungal species and how to delineate them? Fungal Divers. 2021;109:1–25. doi: 10.1007/s13225-021-00483-9. [DOI] [Google Scholar]
  • 227.Maharachchikumbura S.S.N., Chen Y., Ariyawansa H.A., Hyde K.D., Haelewaters D., Perera R.H., Samarakoon M.C., Wanasinghe D.N., Bustamante D.E., Liu J., et al. Integrative approaches for species delimitation in Ascomycota. Fungal Divers. 2021;109:155–179. doi: 10.1007/s13225-021-00486-6. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The completed alignments and trees were submitted to TreeBASE submission ID 31014 (http://purl.org/phylo/treebase/phylows/study/TB2:S31014?x-access-code=a44bff36f1453301a23a6c12ba2d815c&format=html accessed on 28 September 2023).


Articles from Pathogens are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES