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Abstract
Motivation: Microbial sequences generated from clinical samples are often contaminated with human host sequences that must be removed
for ethical and legal reasons. Care must be taken to excise host sequences without inadvertently removing target microbial sequences to the
detriment of downstream analyses such as variant calling and de novo assembly.

Results: To facilitate accurate host decontamination of both short and long sequencing reads, we developed Hostile, a tool capable of accurate
host read removal using a laptop. We demonstrate that our approach removes at least 99.6% of real human reads and retains at least 99.989%
of simulated bacterial reads. Using Hostile with a masked reference genome further increases bacterial read retention (�99.997%) with negligi-
ble (�0.001%) reduction in human read removal performance. Compared with an existing tool, Hostile removes 21%–23% more human short
reads and 21–43 times fewer bacterial reads, typically in less time.

Availability and implementation: Hostile is implemented as an MIT-licensed Python package available from https://github.com/bede/hostile to-
gether with supplementary material.

1 Introduction

Microbial specimens are often contaminated with host
sequences. Since experimental host genome depletion proto-
cols are imperfect, host DNA often reaches the sequencing in-
strument. Where the specimen host is a human, it is important
that host sequences are subsequently deleted in order to pro-
tect anonymity. The widespread human contamination of
publicly deposited microbial sequence data (Bush et al. 2020)
is therefore regrettable and raises regulatory concerns, partic-
ularly in light of the rapid growth of metagenomic diagnos-
tics. Furthermore, unwanted host sequences waste computing
resources and may adversely affect downstream analyses such
as variant calling and de novo assembly. Host decontamina-
tion is therefore the first step performed in many microbial ge-
nomic analyses. Existing approaches employ one of three
strategies: (i) exclusive retention of reads aligning to a target
microbial genome (Hunt et al. 2022), (ii) subtractive removal
of reads aligning to a host genome, and (iii) subtractive re-
moval after metagenomic read classification (Kim et al. 2016,
Wood et al. 2019). Where the target microbe is known a
priori, the first strategy (exclusive retention) may be most
suitable: for SARS-CoV-2 it is both more accurate and com-
putationally efficient than subtractive removal (Hunt et al.
2022). However, the second and third strategies (subtractive

removal) are generalisable, and thus necessary for analysis of
microbes that are unknown a priori, mixtures, or novel.

In this article, we describe a simple tool implementing sub-
tractive removal of contaminant human genome sequences,
together with rigorous evaluation of its performance against
real human genomes from the 1000 Genomes Project and
simulated bacterial reads representing the 985 complete bacte-
rial assemblies in the FDA-ARGOS dataset (Sichtig et al.
2019). We also report performance using simulated reads for
140 complete mycobacterial genomes. These results provide
evidence of the accuracy of the approach in terms of both its
ability to remove human host reads (sensitivity), and to retain
microbial reads (specificity).

2 Materials and methods

Hostile is implemented as a Python package providing a com-
mand line interface and Python API. The decontamination
process involves a series of streaming operations on option-
ally gzip-compressed input FASTQ files: (i) alignment to a
custom human reference genome (Minimap2 or Bowtie2),
(ii) counting distinct reads (Samtools), (iii) discarding aligned
reads (and their mate reads for paired data; Samtools),
(iv) counting remaining reads (Samtools), (v) Optionally
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replacing read names with incrementing integers (Awk), and
(vi) writing gzip-compressed FASTQ files (Samtools)
(Langmead and Salzberg 2012, Li 2018, Danecek et al.
2021). These operations are streaming so as to minimize read-
ing from and writing to storage, reducing overall execution
time. Alignment of each read ceases after a single high-quality
match to the reference genome is found. For Bowtie2, default
alignment parameters are used, while for Minimap2 a mini-
mum chaining score of 40 is enforced for both long and short
reads. Bowtie2 (GPL-licensed) is the default aligner for short
reads due to its relatively compact (<4 GB) random access
memory (RAM) footprint, while Minimap2 (MIT-licensed) is
the default aligner for long reads, requiring approximately
13 GB of RAM when using the map-ont preset for ONT
(Oxford Nanopore Technologies) reads. Hostile generates
summary statistics in JSON format including the total number
of reads before and after decontamination. For ease of instal-
lation, Hostile is available as a Docker container and is pack-
aged with Bioconda.

A custom human reference genome was built from the
T2T-CHM13v2.0 human genome assembly (Nurk et al.
2022) and human leukocyte antigen (HLA) sequences.
Human Illumina 2x100bp (Eberle et al. 2017) and ONT (Jain
et al. 2018) reads from the well-characterised NA12878 sam-
ple were downsampled using BBTools (Bushnell 2014) to a
target depth of 10. We also examined 26 Illumina 2x150bp
genomes at 30x depth representing each of the populations in
the expanded 1000 Genomes Project, originating from Africa,
Asia, Europe, and the Americas (Byrska-Bishop et al. 2022),
in addition to newer data for the NA12878 sample. For FDA-
ARGOS bacterial (n¼ 985) and mycobacterial (n¼ 140)
metagenomes, Illumina reads were simulated with DWGSIM
(Homer 2010) while ONT reads were simulated with
PBSIM2 (Ono et al. 2021). Refer to the Supplementary Text
for detailed information about test data, masked reference ge-
nome construction, and read simulation.

We evaluated Hostile version 0.0.2 performance with de-
fault and masked (human-t2t-hla-argos985-mycob140) data-
bases, alongside the NCBI Human Read Removal Tool
(HRRT) version 2.1.0 with its default database (https://
github.com/ncbi/sra-human-scrubber). Testing was performed
using a virtual machine running Ubuntu Linux 22.04 with
128 GB of RAM and an AMD EPYC (x86-64 architecture)
processor. In order to address a defect in HRRT’s handling of
paired reads and restore intended behaviour, BBTools was
used to remove singleton reads from HRRT output.

3 Results

Full benchmark results are shown in Supplementary
Tables S1 and S2, summarised in Table 1, and described here.
Table 1 includes results for Hostile run with a masked data-
base. Supplementary Table S3 includes accession numbers for
all datasets used. Refer to the Supplementary Text for detailed
information about test data preparation.

Accuracy of human read removal: For 10x depth 2x100bp
Illumina data for NA12878, Hostile retained 0.132% of hu-
man reads while HRRT retained 0.160% (21% more). For
30x depth 2x150bp Illumina data for 27 representative
genomes of each population in the expanded 1000 Genomes
Project (plus NA12878), Hostile retained 0.594% of human
reads overall, while HRRT retained 0.729%, a mean increase
of 23% (95% CI: 16%, 31%; see Supplementary Table S4

for individual figures). Surprisingly, human retention for
NA12878 in these 30x 2x150bp data was considerably higher
than in the older 10x 2x100bp data (0.132% versus
0.641%). To investigate this discrepancy we performed de
novo assembly (Li et al. 2015), revealing Epstein-Barr Virus
(EBV) representation in all of the 27 studied Byrska-Bishop
et al. genomes. Subtraction of EBV reads using Hostile with a
custom index comprising accessions NC_007605.1 and
NC_009334.1 enabled generation of adjusted accuracy fig-
ures, and highlighted one accession (ERR3242202) with
1.3% EBV contamination. Following EBV subtraction, reten-
tion for 2x150bp NA12878 decreased from 0.641% to
0.406% for Hostile and from 0.689% to 0.458% for HRRT,
with overall human retention for the 27 2x150bp genomes
decreasing from 0.594% to 0.393% for Hostile. For ONT
data, Hostile retained 0.038% of reads while HRRT retained
0.037% (2% more). Using Hostile with a reference genome
masked against bacterial sequences marginally increased re-
tention of human reads from 0.131738% to 0.131979%
(Illumina 2x100bp) and from 0.038029% to 0.038069%
(ONT).

Accuracy of microbial read retention: Accuracy of bacterial
read retention was evaluated using Illumina and ONT sequen-
ces simulated from reference-grade complete bacterial assem-
blies in the FDA-ARGOS dataset. For simulated Illumina
data, Hostile retained 99.99989% of reads while HRRT
retained 99.99752%, corresponding to HRRT removing a
mean of 21 times (95% CI: 9, 30) more bacterial reads than
Hostile (see Supplementary Table S4 for detailed figures).
Hostile’s bacterial read retention was further increased to
99.99994% through use of a reference genome masked
against bacterial sequences. For simulated ONT data, Hostile
and HRRT retained similar percentages of bacterial reads—
99.98918% and 99.98901% respectively. Use of a masked
reference genome further reduced the number of bacterial
ONT reads removed by Hostile from 891 to 251 (43 times
less than HRRT). For mycobacterial reads, 140 complete as-
semblies were simulated in the same fashion. For simulated
mycobacterial Illumina data, Hostile retained 99.99998% of
reads while HRRT retained 99.999751%, corresponding to
HRRT removing 15 times more mycobacterial reads than
Hostile. For simulated mycobacterial ONT data, Hostile
retained 99.99948% of reads while HRRT retained
99.99864%. Use of a masked reference with Hostile resulted
in perfect (100%) retention of both Illumina and ONT reads.

Execution time and memory usage: Execution time was
measured as the wall clock time required to process
gzip-compressed FASTQ input and create gzip-compressed
decontaminated FASTQ output with eight threads. Median
execution times and peak memory usage figures are shown in
Table 1, and full results for individuals’ trials can be found in
Supplementary Table S1. Three trials were performed for
datasets other than the 27 2x150bp human Illumina genomes.
For decontaminating simulated bacterial Illumina reads,
Hostile was faster, with HRRT taking 242% (95% CI:
219%, 266%) longer than Hostile. Hostile was also faster at
decontaminating simulated bacterial ONT reads, with HRRT
taking 153% (95% CI: 120%, 187%) longer than Hostile.
This was also the case with simulated mycobacterial reads,
with HRRT taking 241% (95% CI: 218%, 264%) and 96%
(95% CI: 89%, 104%) longer than Hostile to decontaminate
Illumina and ONT reads respectively. For decontaminating
real human Illumina reads, HRRT was faster than Hostile,
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with Hostile taking 55% (95% CI: 51%, 58%) longer than
HRRT. HRRT was also faster at decontaminating human
ONT reads, with Hostile taking 564% (95% CI: 553%,
574%) longer than HRRT. Decontaminating the 27 2x150bp
human Illumina genomes with HRRT took 28h versus 112h
for Hostile. Hostile had stable memory requirements, using
3–4 GB of RAM when processing short reads (Bowtie2) and
13–14 GB when processing long reads (Minimap2). In con-
trast, HRRT’s memory usage varied between 1 and 71 GB
depending on the quantity of human host reads present in the
dataset, necessitating use of a virtual machine instance with
128 GB of RAM in order to individually process the 27
2x150bp genomes from the 1000 Genomes Project. Unlike
Hostile, HRRT generated uncompressed intermediate ver-
sions of all input FASTQ files during operation, temporarily
using considerable additional disk storage.

4 Discussion

In any diagnostic or experiment where microbial genomes
might be contaminated with human genomes, host decontam-
ination is necessary both to safeguard patient anonymity and
to avoid encumbering downstream analyses with redundant
and potentially detrimental off-target sequences. For down-
stream analysis it is also of critical importance that microbial
sequences are not inadvertently removed, leading to false neg-
ative variant calls and incomplete de novo assemblies. Where
target microbes are unknown a priori, mixed or sufficiently
novel, a subtractive human read removal approach is re-
quired, involving non-trivial computation using gigabytes of
RAM. Hostile uses one of two complementary seed-and-
extend aligners to accurately excise human reads. Bowtie2 is
well-suited for decontaminating short reads due to its small
memory footprint, fast index loading, and memory-mapped
index support, while Minimap2 offers excellent long (and
short) read performance in return for a larger index that is
considerably slower to load. Both implementations take ad-
vantage of multiple processor cores, enabling Hostile to per-
form decontamination of host-light reads faster than HRRT.
Compared with HRRT, Hostile is more sensitive in terms of
removing human reads, and produces an order of magnitude
fewer false positives, effectively retaining diverse bacterial
reads, even without the use of a masked reference genome.
Masked reference genomes further reduce false positive rate,
and can be easily created using a built-in utility, with prebuilt
masked references available to download.

While currently more accurate base-for-base, short reads
present a greater challenge for decontamination due to their
relatively low information content. Nevertheless, for a cata-
logue of short read genomes representing diverse human

populations, Hostile removed 99.6% of reads. Although this
figure accounts for widespread Epstein-Barr Virus contamina-
tion (>1% in ERR3242202), other non-human DNA likely
accounts for a significant proportion of the remaining 0.4%.
The figure of 99.6% should therefore be considered a lower
bound for sensitivity with short reads.

Unlike existing tools, Hostile streams compressed FASTQ
input to compressed FASTQ output without creating interme-
diate files. Hostile’s RAM requirements are increasingly met
by consumer laptops, creating scope for accurate client-side
host decontamination using what we hope will be broadly
useful software.
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Table 1. Evaluation of Hostile and the NCBI Human Read Removal Tool (HRRT) on real human and simulated bacterial and mycobacterial reads.a

Dataset Samples Total reads Reads retained (%) Execution time (s) Peak RAM (GB)

Hostile HRRT Hostile HRRT Hostile HRRT

Human Illumina 10x (real) 1 404 580 418 0.1320% 0.1595% 1378 901 4 18
Human ONT 10x (real) 1 2 498 111 0.0381% 0.0373% 2740 414 14 1
Human Illumina 30x (real) 27 20 772 464 024 0.3936% 0.5331% 401 895 100 421 4 71
Bacteria Illumina 985 273 511 602 99.9999% 99.9975% 1314 4491 4 1
Bacteria ONT 985 8 230 970 99.9970% 99.9890% 1855 4617 13 1
Mycobacteria Illumina 140 51 360 128 100.0000% 99.9998% 230 785 3 1
Mycobacteria ONT 140 1 544 982 100.0000% 99.9986% 394 773 13 1

a Percentages of retained reads represent the sum of reads from all samples in the dataset.
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Data availability

Source code is available from https://github.com/bede/hostile and
archived at https://zenodo.org/record/8169826. International
Nucleotide Sequence Database Collaboration (INSDC) acces-
sion numbers for sequencing datasets used in this article are
provided in the permanently archived online supplementary
material.
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