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Abstract

Spatial transcriptomics unveils the complex dynamics of cell regulation and transcriptomes, but it is typically cost-prohibitive.
Predicting spatial gene expression from histological images via artificial intelligence offers a more affordable option, yet existing
methods fall short in extracting deep-level information from pathological images. In this paper, we present THItoGene, a hybrid neural
network that utilizes dynamic convolutional and capsule networks to adaptively sense potential molecular signals in histological
images for exploring the relationship between high-resolution pathology image phenotypes and regulation of gene expression.
A comprehensive benchmark evaluation using datasets from human breast cancer and cutaneous squamous cell carcinoma has
demonstrated the superior performance of THItoGene in spatial gene expression prediction. Moreover, THItoGene has demonstrated its
capacity to decipher both the spatial context and enrichment signals within specific tissue regions. THItoGene can be freely accessed
at https://github.com/yrjia1015/THItoGene.
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INTRODUCTION
With the development of many spatial transcriptomics tech-
niques that can align high-resolution hematoxylin and eosin
(H&E)-stained histological images with high-throughput ribonu-
cleic acid (RNA) sequencing, we have been able to system-
atically characterize cell types and states while preserving
positional information [1–6]. Spatial transcriptomics technology
has revolutionized our understanding of tissue structure and
function by correlating cellular functionality, morphology and
location with gene expression. It offers a novel perspective that
facilitates the discovery of information pertaining to cell–cell
interactions and molecular signaling. In the field of oncology,
spatial transcriptomics enables unbiased analysis of cellular
states, positions and potential interactions within the tumor
microenvironment, allowing for the exploration of transcriptional
differences among different pathological features of tumors [7–9].
This is of great significance for comprehensively understanding
the molecular mechanisms underlying tumor development,
achieving more accurate molecular subtyping of patients and
discovering spatially related biomarkers. Unfortunately, the
high cost of data generation limits the application of spatial
transcriptome technology in large-scale studies [10].

High-resolution histological images contain rich yet underuti-
lized biomedical signals. Previous studies have shown that abnor-
mal gene expression or mutations often affect cell morphology,
structure, and distribution, leading to changes in histological
features [11, 12]. By utilizing methods such as computer vision,
we can establish associations between pathological images and
the occurrence and development of diseases, thereby enabling
quantitative analysis of biological features such as cellular struc-
tures, protein expression and gene expression [13–15]. Jain et al.
[16] proposed Image2TMB, a multi-scale deep learning model for
detecting global morphological changes caused by aggregated
mutations in individual tumor cells in routine histopathology
images. MOMA is a scalable deep learning method for predicting
alterations in clinical molecular events in cancer genomics, pro-
teomics and patient prognosis developed by Yu et al. [17]. Wagner
et al. [18] combined a pre-trained Transformer encoder with a
Transformer network for patch aggregation to predict biomarkers
from colorectal cancer histology.

Furthermore, existing methodologies have demonstrated the
ability to learn specific molecular characterization from histolog-
ical patterns. HE2RNA [19] employs deep learning to reconstruct
transcriptomic maps from histological images, showcasing its
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utility in clinical diagnosis. Pathological images furnish valuable
information regarding tissue structure, cellular morphology and
pathological features, while spatial transcriptomics techniques
reveal the spatial distribution of genes and their expression pat-
terns within tissues. Integrating these two approaches can offer a
more comprehensive understanding and provide deeper insights
for pathological research and disease diagnosis. Compared to
the expensive ST technology, extracting molecular features from
tissue section images stained with H&E is a faster and more cost-
effective alternative [10, 20]. ST-Net [21] successfully combines
cellular morphology with gene expression, enabling prediction
from histology to spatial transcriptomics. Li et al. [22] devel-
oped a method named HisToGene based on the Vision Trans-
former (ViT), which can predict super-resolution gene expression
in tumor histology images. However, ST-Net only extracts image
features through convolutional neural networks (CNNs) and does
not incorporate spatial positional information of gene expression
during modeling, it fails to learn the associations between gene
expression in spatially adjacent positions. HisToGene improves
upon the existing ViT by considering both the positional infor-
mation of gene expression and histological features. However,
since ViT requires compressing the image into sequences for
input despite the addition of spatial positional encoding in the
enhanced ViT, there is still a certain degree of information loss.
His2ST [10] addresses the issue of spatial relationship loss in His-
ToGene by explicitly learning the neighborhood relationships of
histological features using a combination of CNNs and graph con-
volutional networks. Nevertheless, histopathology images contain
a large number of morphologically diverse cellular landscapes
and complex pathological features. Current methods lack the
necessary flexibility and depth to interpret the complex struc-
tures found in histopathology images and are unable to effectively
resolve detailed features at super-resolution, resulting in insuffi-
cient accuracy in predicting spatial gene expression.

To overcome the limitations of existing methods, we propose
a novel deep learning framework called THItoGene. THItoGene
is designed to accurately predict gene expression at a spatial
resolution in pathology images by integrating spatial informa-
tion and histological multi-view neighborhood features. Compre-
hensive benchmarking on spatial transcriptomic data generated
from different tumors demonstrates the exceptional predictive
capability of THItoGene. Moreover, THItoGene has exhibited its
capability in recognizing significant alterations in gene expression
within pathologist-annotated spatial domains and predicting the
enrichment of specific genes in complex biological tissues.

MATERIALS AND METHODS
Overview of THItoGene
THItoGene is specifically designed to provide a comprehensive
representation of the intricate relationships between gene expres-
sion, spatial location and histopathological images (Figure 1). To
characterize super-resolution histopathology images, THItoGene
first leverages the multidimensional attention mechanism of
dynamic convolution to extract comprehensive and detailed
local visual information from the initial input image. Compared
to conventional convolutions, dynamic convolutional networks
are able to effectively capture complex, detailed features and
enhance the perception of specific cellular landscape textures
through more flexible tuning capabilities. The Efficient-CapsNet
module captures the spatial relationships and distribution
patterns of cells through the dynamic routing mechanism,
learning the spatial arrangement and interaction information

of different types of cells, thereby enhancing the understanding
and prediction of gene expression.

THItoGene then fuses the spot location information embed-
ding and the depth image features learned from the histological
images to perform global modeling via the ViT module to compre-
hend the correlation between different regions. Finally, THItoGene
constructs a neighborhood network based on the relative spatial
positions between spots and adaptively characterizes the relation-
ship between the spatial position of spots and gene expression
using the graph attention network (GAT) module.

Datasets
In the evaluation process of THItoGene, we utilized spatial tran-
scriptomics data from two different tumors generated by the 10X
Genomics platform: human HER2 positive breast cancer (HER2+)
[23] and human cutaneous squamous cell carcinoma (cSCC) [24]
datasets. In the HER2+ dataset, a total of 36 sections from eight
breast cancer patients were included. We retained 32 sections
with a spot count greater than 180 to assess the performance of
THItoGene. In the cSCC dataset, there were 12 tissue sections from
four patients included.

For the spatial transcriptomic gene expression data of the
two tumors, we filtered out genes that were expressed in fewer
than 1000 spots across all tissue sections and only considered
the top 1000 highly variable genes expressed in the sections
[22]. We then normalized the gene feature counts within each
spot by dividing them by the total feature counts of all genes,
multiplied by 1 000 000, and applied a natural logarithmic trans-
formation. After processing, the HER2+ dataset contained 9612
spots and 785 genes, while the cSCC dataset contained 6630
spots and 134 genes. When processing the pathological images,
we divided the entire image into N patches of size (3∗W∗H),
where W and H represent the width and height of each patch.
To match the diameter of the spots, we set W and H to 112
pixels.

Dynamic convolution module
Compared to conventional convolution, which employs a fixed
convolution kernel to process various locations of a histological
image uniformly, dynamic convolution has the capability to adap-
tively adjust the size of the convolution kernel according to differ-
ent spatial locations. This allows for the enhanced capturing and
representation of the multi-scale fine features found in diverse
cellular and tissue structures within the histological image. The
process can be illustrated as follows:

Y = (αw1W1 + αw2W2 + · · · + αwnWn) ∗ X (1)

where X ∈ Rw×h×cin and Y ∈ Rw×h×cout represent the input image and
the extracted features, respectively; Wi ∈ Rk×k×cin represents the
ith convolutional kernel; αwi ∈ R denotes the dynamic attention
coefficients; ∗ stands for convolutional operations.

Omni-dimensional Dynamic Convolution [25] is a design of
dynamic convolution that learns different attention weights along
the four dimensions of convolutional kernel space, including
kernel size (k × k), input channel number(cin), output channel
number(cout), and the number of convolutional kernels(n), in order
to better adapt to variations in input features:

Y = (αw1 � αk1 � αc1 � αo1 � W1 + . . .

+ αwn � αkn � αcn � αon � Wn) ∗ X (2)
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Figure 1. Overview of THItoGene. (A) Segmentation of the histological image into patches corresponding to each spot’s location and creation of position
embeddings for the spatial coordinates of each spot. (B) Extraction of deep molecular features from patches utilizing the dynamic convolution module
and the Efficient-Capsule module. (C) Global modeling of position embeddings and pathology features using the ViT module to understand cross-
positional association relationships in the images, followed by adaptive learning of the relationship between the spatial position of the neighborhood of
the spot and gene expression based on the GAT module.

In this equation, αwi ∈ R represents the attention coefficient
of the convolutional kernel Wi. αki ∈ Rk×k, αci ∈ Rcin and
αoi ∈ Rcout , respectively, denote the attention weights computed
along the spatial dimensions of the convolutional kernel Wi, the
input channel dimension, and the output channel dimension.
The symbol � represents element-wise multiplication across
different dimensions of the kernel space. The αwi, αki , αci and
αoi are computed using the multi-head attention module ϕi(x).
In ϕi(x), the input x is first compressed into a feature vector
of length cin through the Global Average Pooling operation.
Then, the compressed feature vector is mapped to a lower-
dimensional space using a fully connected (FC) layer. Finally, for
each attention head branch, there is an output FC layer of size
n × 1, k × k, cin × 1 and cout × 1, as well as a Sigmoid function,
used to generate normalized attention coefficients αwi, αki, αci

and αoi.

Efficient-CapsNet module
The Efficient-CapsNet [26] module is an optimized version of
the Capsule Network that utilizes self-attention mechanisms to
effectively route capsules, significantly reducing the number of
model parameters. By employing dynamic routing mechanisms,
the Efficient-CapsNet enables communication and collaboration
among capsules. The dynamic routing allocates weights between
capsules based on their similarities, thereby determining the
final output feature representation. This mechanism helps cap-
ture spatial relationships and hierarchical structures among fea-
tures, allowing for the learning of multi-level feature representa-
tions in pathological images and modeling the spatial relation-
ships between features. In the Efficient-CapsNet, the input is first
mapped to a high-dimensional space:

Fl+1
(
Xl

) = Relu
(
Convk×k

(
Xl

))
(3)
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The shape of Xl is represented as W × H × C, where W, H
and C denote the width, height, and number of channels of the
convolved image, respectively. The convolutional kernel has a size
of k×k and a stride of s = 1. Subsequently, C convolutional kernels,
each of the same size as in Eq. (4), are applied to each channel
independently, resulting in the primary capsule layer denoted as
Sl

n,d, where n and d represent the number of primary capsules in
the lth layer and the dimensionality of a single capsule, respec-
tively.

After this, it is activated by the squash operation and routed to
the whole by the self-attention routing algorithm:

ul
n = squash

(
sl

n

) =
(

1 − 1

e‖sl
n‖

)
sl

n‖sl
n‖ (4)

Ul
nl+1 = ul

n × Wl (5)

sl+1
n = (

Ul
nl+1

)T × (
Cl

nl+1 + Bl
nl+1

)
(6)

where sl
n and ul

n represent the capsules before and after activation,
respectively; Bl

nl+1 represents the log priors matrix; Ul
nl+1 represents

the prediction of all primary capsules in the lth layer, and Wl is
used for the prediction’s weight matrix. Cl

nl+1 represents the matrix
of all coupling coefficients generated after self-attention, and it
is summed with Bl

nl+1 with to get the final routing weights. The
coupling coefficient Cl

nl+1 can be expressed as:

Cl
nl+1 =

exp

⎛
⎜⎝∑

nl

Ul
nl+1 ×

(
Ul

nl+1

)T

√
dl

⎞
⎟⎠

∑
nl+1 exp

⎛
⎜⎝∑

nl

Ul
nl+1 ×

(
Ul

nl+1

)T

√
dl

⎞
⎟⎠

(7)

where dl represents the dimension of each capsule in the lth layer,
and Ul

nl+1 comes from the calculation of Eq. (6).

ViT module
Subsequently, we encode the spatial location information
coordinates

(
x, y

)
of spots into the feature matrices of Ex ∈ R1×d

and Ey ∈ R1×d, respectively, and fuse them with the visual features
of the pathology images, Sl+1 ∈ Rn×d, and use ViT to capture the
long-range dependencies in the images:

Sl+2 = concat
(
Sl+1, Ex, Ey

)
(8)

where Sl+1 ∈ Rn×d is the output of the capsule network, n and d are
the number and dimension of the output capsule, respectively;
and then the attention of each spot is learned through the multi-
head attention layer of the Transformer, which assigns different
weights to different image patches:

Attention (Q, K, V) = softmax
(

QKT√
dk

)
V (9)

headi = Attention
(
XWQ

i , XWK
i , XWv

i

)
(10)

H(X) = concat
(
head1, head2, . . . , headm

) × Wh (11)

where Q, K, V represent ‘Query’, ‘Key’ and ‘Value’, respectively;
WQ

i WK
i and Wv

i are the weight matrices for transforming inputs

into Q, K, V; The term QKT√
dk

represents the similarity between Query,

Key and the Attention coefficient can be obtained by weighting

and summing the values of each V by the weight coefficients cal-
culated by Softmax. Wh is the weight matrix of multiple Attention
heads, and m is the number of Attention heads.

Graph attention network module
To explore the correlation between gene expression and spatial
location, THItoGene uses GAT to explicitly learn the interactions
between spatially located neighboring spots. GAT could pass infor-
mation in a specific network structure, learn different attention
values based on the importance of each neighbor of the node, and
then use these weights to aggregate the features of the neighbors.

We refer to His2ST [10] for the nearest neighbor graph construc-
tion. The spatial locations of the Euclidean distances are used as
edges in the nearest neighbor graph by calculating the Euclidean
distances. Specifically, we select four nearest neighbors for each
spot to construct the nearest neighbor graph G = (V, E). N = |V|
denotes the number of spots, and E denotes the edges connected
to the nearest neighbors. The Euclidean distance between every
two spots

(
i, j

)
is calculated as follows:

d
(
i, j

) =
√(

ix − jx
)2 + (

iy − jy
)2 (12)

We then use GAT to aggregate the node features in the network.
Here, the importance of the jth node with respect to the ith node
is calculated as follows:

eij = f
(
Whhi, Whhj

)
(13)

where f is a single-layer feed-forward neural network, Wh is a
learnable parameter matrix which transforms the input features
into a hierarchical feature representation between spots, and hi ∈
RM is the feature representation of the ith node. Here, THItoGene
unfolds the features output from ViT into a one-dimensional
vector of length M. In order to regulate the influence between
different nodes, the importance weights are normalized among
all neighboring nodes of vi:

αij = exp(LeakyRelu(eij))∑
t∈Ω(vi)

exp(LaekyReLU(eit)) (14)

where Ω (vi) represents the neighboring nodes of vi and the nor-
malized attention coefficients are used to compute a linear com-
bination of the features of the neighboring nodes:

hΩ(vi) = ∑
t∈Ω(vi)

αitht (15)

Finally, we connect the current node feature representation
with the feature representations of its neighboring nodes to
update the embedding:

h = Elu
(
concat

(
h∗, hΩ(∗)

)
ω + β

)
(16)

where ω and β are the parameterized weight and bias matrices,
respectively.

Evaluated metrics and criteria
In this study, we employ the Pearson correlation coefficient (PCC)
to compare the spatial gene expression predicted by THItoGene
with the observed gene expression, in order to assess their level
of correlation. The PCC has a range of values between −1 and 1.
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It is calculated by dividing the covariance of the two variables by
the product of their respective SDs:

PCC = Cov(Xtrue ,Xpred)
σ(Xtrue)·σ(Xpred)

(17)

where Cov denotes covariance; Xtrue and Xpred denote the original
gene expression and the gene expression obtained by prediction,
respectively. σ () denotes SD.

When evaluating the performance of spatial clustering, we
employ the Adjusted Rand Index (ARI) to measure the similarity
between the clustering results and the true pathological annota-
tion regions. It has a range of values between −1 and 1, where
a value closer to 1 indicates a higher consistency between the
clustering results and the true labels. Conversely, a value closer to
0 suggests that the similarity between the clustering results and
the true labels is random, while a value closer to −1 indicates a
complete opposition between the clustering results and the true
labels. The ARI can be expressed as follows:

ARI =
∑

ij

⎛
⎜⎝ nij

2

⎞
⎟⎠−

⎡
⎢⎣∑

i

⎛
⎜⎝ ni

2

⎞
⎟⎠∑

j

⎛
⎜⎝ nj

2

⎞
⎟⎠

⎤
⎥⎦/

n
2

1
2

⎡
⎢⎣∑

i

⎛
⎜⎝ ni

2

⎞
⎟⎠+∑

j

⎛
⎜⎝ nj

2

⎞
⎟⎠

⎤
⎥⎦−

⎡
⎢⎣∑

i

⎛
⎜⎝ ni

2

⎞
⎟⎠∑

j

⎛
⎜⎝ nj

2

⎞
⎟⎠

⎤
⎥⎦/

n
2

(18)

where ni and nj denote the number of samples appearing in the ith
prediction cluster and the jth true cluster, respectively; nij denotes
the number of overlapping samples between the ith prediction
cluster and the jth true cluster.

RESULT
THItoGene can improve the prediction accuracy
of spatial resolution gene expression
In order to quantitatively evaluate the gene expression prediction
performance of THItoGene, we first applied it to the HER2+ and
cSCC datasets using leave-one-out cross-validation. We compared
THItoGene to two other recently developed state-of-the-art meth-
ods for predicting spatial gene expression, HisToGene and His2ST.
The comparison was based on calculating the PCC between pre-
dicted and observed gene expression in each tissue section. This
allowed us to evaluate how accurately each method could predict
actual spatial gene expression patterns. By comparing the PCCs,
we aimed to determine which of the three methods provided the
most accurate spatial gene expression predictions overall. Since
HisToGene [22] does not give the models, we retrained HisToGene
based on the parameters provided by the authors. For each section
in the HER2+ and cSCC datasets, we utilized the remaining sec-
tions to train THItoGene and evaluated the correlation between
predicted gene expression and actual gene expression on the
current section. As shown in Figure 2A, among all the sections in
the HER2+ dataset, THItoGene predicts the highest PCC between
spatially resolved gene expression and actual gene expression.
Notably, HisToGene has 11 sections (A2–A6, E1–F3) among the 32
sections in the HER2+ dataset with average correlations floating
around the near-zero level. Among them, the average correlation
of E3 and F1 sections was negative, which might be caused by
its failure to capture the association relationship between deep
histologic features and spot gene expression.

THItoGene exhibited the highest PCC across all tissue sections
in the cSCC dataset (as shown in Figure 2B). Notably, it showed
the greatest improvement over existing methods in predicting
gene expression correlation for section P10_ST_rep2. These results

provide strong evidence that THItoGene can more accurately
forecast the relationship between spatial and actual gene expres-
sion. By incorporating adaptive super-resolution image signatures,
THItoGene effectively reveals intricate cellular landscapes in his-
tology images, enabling more reliable and precise gene expres-
sion prediction. In summary, THItoGene’s use of enhanced image
features leads to considerable benefits in predicting spatial gene
expression compared to current methods.

Investigating the impact of each module in
THItoGene on the predicted gene expression
results
In order to comprehend the reasons behind the enhanced per-
formance of THItoGene compared to other methods, we evalu-
ated the contribution of each module to THItoGene. To achieve
this, we removed key modules of THItoGene for the ablation
experiment, as shown in Figure 3. Keeping all modules intact
leads to the highest correlation between predicted and observed
gene expression. Notably, excluding the Efficient-CapsNet module
caused average PCC reductions of 0.095 and 0.076 for the HER2+
and cSCC datasets, only slightly higher than HisToGene’s perfor-
mance. This suggests the Efficient-CapsNet module plays a key
role in enabling THItoGene to uncover the relationship between
histopathology and gene expression. Furthermore, removing the
ViT, dynamic convolution or GAT modules also decreased perfor-
mance to varying degrees. In summary, the results of the ablation
experiment demonstrate the necessity of preserving the integrity
of all modules in THItoGene to ensure optimal performance in
predicting gene expression.

THItoGene accurately predicts tumor-related
genes
We investigated whether THItoGene’s predicted gene expression
reflects the true status of tumor-associated genes. In the
HER2+ dataset, we analyzed the correlation between observed
and predicted gene expression, calculating both correlation
coefficients and P-values for each spot. We then derived the
average −log10 P-value across all genes. These genes were ranked
in descending order of their −log10 P-values, as detailed in
Supplementary Table 1. We focused on the top four genes with
the highest −log10 P-values (FN1, SCD, IGKC and FASN), which are
visualized in Figure 4. THItoGene yielded correlation coefficients
for these genes of 0.747, 0.711, 0.672 and 0.452, respectively—
outperforming existing methods. Notably, these top-ranked genes
have established associations with breast cancer, with studies
indicating that the expression patterns of FN1 and IGKC correlate
with patient survival and clinical outcomes [27, 28].

To demonstrate the scalability of THItoGene, we conducted
same experiments on the cSCC dataset (Supplementary Table 2
and Supplementary Figure 1). THItoGene enables accurate pre-
diction of key genes associated with cutaneous squamous cell
carcinoma. This is in line with findings by Nindl et al. [29] and
Zhu et al. [30] have both identified increased expression levels of
NDRG1 and PI3 in cutaneous squamous cell carcinoma compared
to normal skin.

THItoGene effectively analyzes the changes in
gene expression within the spatial region
The spatial gene expression predicted by THItoGene is capable
of accurately restoring specific spatial domains. We performed
quantitative analysis to evaluate the spatial clustering perfor-
mance of gene expression predicted by THItoGene, using a set of
six pathologist-annotated tissue sections (B1, C1, D1, E1, F1 and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad464#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad464#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad464#supplementary-data
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Figure 2. Comparative evaluation of spatial transcriptome prediction methods. (A) Boxplot representation of PCC distributions comparing observed and
predicted gene expressions in the HER2+ dataset. (B) Similar PCC distribution comparisons for the cSCC dataset. The predictions are made by three
different methods: THItoGene, His2ST and HisToGene.

Figure 3. Ablation experiments on the HER2+ and cSCC datasets. The data showed the average PCC for THItoGene (after removing specific modules),
HisToGene and His2ST in each dataset.

G2) from the HER2+ dataset. We used the spatial transcriptomics
annotations generated by pathologists as the gold standard to
assess the gene expression predicted by THItoGene, HisToGene
and His2ST using K-means clustering (Figure 5). Compared to
other methods, THItoGene is able to effectively identify the pre-
defined spatial structures and achieve significant improvements.
Specifically, in the B1 section, THItoGene (ARI = 0.327) achieved
a similar ARI to HisToGene (ARI = 0.329) and significantly out-
performed His2ST (ARI = 0.250). Across other sections, THItoGene
consistently reconstructs spatial-specific gene expression more
clearly. Interestingly, in all six sections, the clustering results
obtained from the predicted gene expression by THItoGene out-
performed those obtained from the observed gene expression.

This discrepancy may stem from the inherent variability and
noise in observed gene expression, affected by technical factors
such as sequencing depth, batch effects and background noise,
which can compromise clustering accuracy.

Compared to existing methods, THItoGene has the ability to
capture the correlation between subtle differences in histopatho-
logical phenotypes and gene expression through dynamic convo-
lutional adaptive learning. This allows for a better understanding
of the spatial gene regulation patterns reflected by different
histopathological features. Therefore, the gene expression data
generated by THItoGene is superior in spatial domain identifi-
cation and better reflects the true biological characteristics of
tissues.
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Figure 4. The top four predicted genes with the highest mean −log10 P-value in the HER2+ dataset. The first column displays the observed gene
expression, while the last three columns show gene expression predictions from three different methods. We derived P-values for each gene by
calculating the PCC between predicted and observed gene expressions. For visualization, we selected the section that exhibited the highest −log10
P-value for each gene.

THItoGene can predict differentially enriched
molecular signals in complex tissue structures
We tested the ability of THItoGene to accurately predict context-
specific signals within the complex structures of tissues.
Specifically, we applied THItoGene to a spatial transcriptomics
(ST) dataset of the human dorsolateral prefrontal cortex (DLPFC)
obtained using 10x Visium technology [31]. This dataset included
12 sections from three different DLPFC samples. The DLPFC is
functionally stratified into six layers, each with distinct neuronal
compositions and roles in cognition, emotion regulation and
decision-making [32]. The layered gene expression within the
cortex is pivotal for the brain’s complex architecture. In our
analysis, we assessed the accuracy of THItoGene in predicting
the expression of genes enriched in specific layers by comparing
it with His2ST and HisToGene, as shown in Figure 6 and
detailed in Supplementary Table 3. THItoGene’s predictions more
closely mirrored the actual gene expression patterns associated
with different cortical layers. For instance, HPCAL1, recently

identified by Kristen et al. [31] as a layer-specific marker gene
in DLPFC’s layer 2, was precisely predicted by THItoGene in the
corresponding brain regions.

DISCUSSION
Spatial transcriptomics is an emerging technique that holds great
promise for elucidating tissue development, understanding cell
fate, advancing disease research, and facilitating drug discovery
[33, 34]. Despite its promise, the high cost of spatial transcrip-
tomics techniques limits their widespread application [35]. Com-
putational predictions of spatial gene expression from histological
images have emerged as a cost-effective alternative, yet existing
methods often fail to capture the full complexity of molecular
signatures. In this paper, we introduce THItoGene, a deep learning
framework tailored for decoding spatial gene expression from
pathology images. THItoGene utilizes histological images as input
and employs dynamic convolutional and capsule networks to

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad464#supplementary-data
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Figure 5. The spatial clustering analysis compares gene expression predictions from three different methods: THItoGene, Hist2ST and HisTGene.
Histological images annotated by the pathologist are displayed in the first column. The second column presents the observed gene expression clustering
results, while the last three columns show the clustering outcomes for gene expression as predicted by different methods.

capture signals of potential molecular features within histological
samples. In addition, it integrates spatial location information by
utilizing ViT and GAT to establish a deep connection between
spatial location and gene expression, thereby deciphering cellular
landscapes in histopathology images.

However, THItoGene has not yet achieved the capability to
resolve gene expression at the cellular or subcellular level with
higher resolution. In future studies, our aim is to augment the
feature characterization potential of THItoGene by employing
active machine learning approaches. Furthermore, with the
emergence of new technologies and the availability of more data,

we anticipate that future research will enable us to achieve higher
resolution prediction of spatial gene expression and enhance the
overall performance of THItoGene.

THItoGene has demonstrated the ability to extract valuable
molecular information from high-resolution histologic images
containing hundreds of thousands of cells. By analyzing H&E-
stained pathology images, the framework captures tissue struc-
ture, cell morphology, and lesion details, correlating them with
gene expression. This is particularly valuable for research sce-
narios with scarce resources or tissue samples. THItoGene can
facilitate the analysis of tumorigenesis and progression, enhance
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Figure 6. The results for layer marker genes predicted using three differ-
ent methods within the spatial transcriptomics dataset of DLPFC.

the understanding of complex interactions and spatial effects in
the tumor microenvironment, and offer a robust tool for precision
medicine in resource-limited settings.

Key Points

• We introduce THItoGene, a deep learning framework
designed to predict spatially resolved gene expression
profiles from histopathological images.

• THItoGene outperforms other methods in accurately
predicting spatial gene expression and has demon-
strated effectiveness across different tumor tissue
sections.

• THItoGene is able to decipher spatial domains and
enrichment signals within tissue regions.
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