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Abstract

Prediction of drug-target interactions (DTIs) is essential in medicine field, since it benefits the identification of molecular structures
potentially interacting with drugs and facilitates the discovery and reposition of drugs. Recently, much attention has been attracted
to network representation learning to learn rich information from heterogeneous data. Although network representation learning
algorithms have achieved success in predicting DTI, several manually designed meta-graphs limit the capability of extracting complex
semantic information. To address the problem, we introduce an adaptive meta-graph-based method, termed AMGDTI, for DTI
prediction. In the proposed AMGDTI, the semantic information is automatically aggregated from a heterogeneous network by training
an adaptive meta-graph, thereby achieving efficient information integration without requiring domain knowledge. The effectiveness
of the proposed AMGDTI is verified on two benchmark datasets. Experimental results demonstrate that the AMGDTI method overall
outperforms eight state-of-the-art methods in predicting DTI and achieves the accurate identification of novel DTIs. It is also verified
that the adaptive meta-graph exhibits flexibility and effectively captures complex fine-grained semantic information, enabling the
learning of intricate heterogeneous network topology and the inference of potential drug-target relationship.
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search space for laboratory experiments while achieving high
accuracy in predicting possible interactions.

INTRODUCTION

The interactions between drugs and targets play a critical role
in the process of drug discovery. The successful prediction of
interactions between drugs and targets helps to identify new drug
compounds that can bind to specific biological targets, which
facilitates drug discovery, repositioning and the prediction of drug
side effects [1]. Although laboratory experiments, utilizing var-
ious techniques of classical and reverse pharmacology, can be
used to infer drug-target interactions (DTIs), they are both time-
consuming and expensive [2]. Therefore, there is a growing need
for in-silico prediction of DTIs, which can effectively reduce the

There are two main computational tasks for predicting DTIs, i.e.
DTI probability prediction and drug-target binding affinity pre-
diction. Specifically, the DTI probability prediction task was tra-
ditionally modeled as a binary classification problem which pre-
dicts potential links between drugs and targets. The drug-target
binding affinity prediction task focuses on an important piece
of information about protein-ligand interactions (i.e. the binding
affinity values), and therefore, the drug-target binding affinity
prediction task is always considered as a regression task [3]. In
our work, we mainly focus on the DTI probability prediction task.
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The existing mainstream DTI prediction methods are machine
learning-based approaches, which can be further categorized into
three categories: feature-based methods, similarity-based meth-
ods and network-based methods. Feature-based methods trans-
form drug and target data into feature vectors by using effective
feature extraction and processing methods to describe drug and
target information for DTI prediction. For example, Tabei et al.
[4] utilized a tensor product approach to combine 8381 drug com-
pound structures with 876 protein domain structural features of
target proteins. Ru et al. [5] employed a distance-based top-n-
gram algorithm and general descriptors of compounds to extract
protein and drug features. DeepDT1 first automatically extracted
drug and target features from the simple chemical substruc-
ture and sequence information and then constructed classifica-
tion models using deep belief networks to exploit potential DTIs
[6]. However, lacking of explicit features may cause difficulties
in accurately predicting DTIs. Similarity-based methods assume
that similar drugs usually interact with the same target. For
instance, NRLMF calculated the probability of DTI exploiting the
drug similarities and target similarities through logistic matrix
factorization [7]. Chen et al. [8] proposed a model named NRWRH
based on the integration of drug-drug, protein-protein and DTI
networks. TransformerCPI improved the accuracy of drug-protein
interaction prediction through sequence-based deep learning and
self-attention mechanisms [9].

Network-based methods infer potential edges from known
heterogeneous network, where nodes represent drugs, targets,
side effects and other entities related with drugs or targets. For
instance, Ezzat et al. [10] utilized a matrix factorization approach
with graph regularization to predict DTIs based on a drug-target
bipartite graphs. With the increment of data associated with
drugs/targets, advanced network-based approaches are succes-
sively proposed based on complex heterogeneous networks and
achieved satisfactory performance on DTIs prediction. Yan et al.
[11] proposed a network-based label propagation method with
mutual interaction information derived from heterogeneous net-
work to infer potential DTIs. DTINet employed random walk with
restart and diffusion component analysis to obtain features of
drugs and proteins; then, inductive matrix complementation was
used to distinguish DTIs [12]. DDR applied a random forest model
to recognize DTIs using various graph-based features [13]. MKLC-
BiRW applied multiple kernel learning and clustering methods to
integrate heterogeneous information sources, and the bi-random
walk was used to infer potential DTIs [14]. MultiDTI employed
convolutional neural networks to ascertain sequence features and
predicted DTIs based on nodes’ distance in a shared space [15].
However, these network-based models have a limited ability to
learn the complex structure of the network due to the multi-
source nature of the heterogeneous network. More recently, graph
neural network (GNN) models have demonstrated their efficacy
in capturing the intricate topological structure of heterogeneous
networks. NeoDT1I utilized GNN to learn topology-preserving node
features through multiple messaging and aggregation [16]. GCN-
DTI applied a graph convolutional network (GCN) to discern fea-
tures of each drug-protein pair, which subsequently serve as
input, followed by deploying deep neural networks for DTI predic-
tion [17]. EEG-DTI leveraged a GCN to extract features from eight
biological networks, computing DTI scores via the inner product
method based on the derived low-dimensional representations
[18]. Nowadays, one of the fundamental challenges for GNN-based
models is how to effectively learn the embedding of nodes and
edges in heterogeneous network.

Recently, meta-paths serve as effective strategies for GNN-
based DTI prediction models to optimally discern neighbors to
aggregate the information of nodes and edges in heterogeneous
networks. Specifically, the meta-paths in biological heterogeneous
networks may include specific metabolic pathways or biological
principles, which benefit for the interpretation of DTI prediction
[19]. For instance, IMCHGAN adopted a graph attention network
with a meta-path level attention mechanism to learn the drug
and target embeddings for inferring potential DTI [20]. Tanvir
et al. [21] employed meta-paths to extract rich semantic relation-
ships between entities, and feeded a comprehensive feature to
classifiers for drug-drug interaction prediction. These meta-paths
are always designed empirically, which rely heavily on domain
knowledge and are hardly transferred to other heterogeneous
networks [22]. Furthermore, although heterogeneous networks
include multiple information, not all information are useful for
DTI prediction. Recent advances of network architecture search
technologies suggest that it is possible to develop an adaptive net-
work architecture for DTI prediction. HampDTI designed a train-
able meta-path based on the network architecture search tech-
nology and learned low-dimensional features of drugs and targets
by using the generated meta-path graph [19]. Compared with
trainable meta-paths, expressive meta-graphs possess a superior
capacity to capture complex semantic information [23].

In this article, an Adaptive Meta-Graph-based Drug-Target
Interaction prediction approach, named ‘AMGDTT’, is proposed
to predict potential DTIs on a heterogeneous network. AMGDTI
automatically searches for an adaptive meta-graph from a het-
erogeneous network without requiring domain knowledge, where
the adaptive meta-graph exhibits a more flexible structure and
enables an efficient integration of complex multiple semantic
relationships and structures information embedded in the het-
erogeneous network, which is the key to achieving a satisfactory
result. Specifically, the main contributions of this paper are sum-
marized as follows.

(1) An adaptive meta-graph searching strategy is proposed in
AMGDTI, which considers automatically searching for an effi-
clent information integration way without domain knowledge.
The adaptive meta-graph exhibits a more flexible structure and
well represent fine-grained complex semantic messages, which is
utilized to learn the complex topology of heterogeneous networks
and infer the potential relationships between drugs and targets.
Although there are several works reported for DTI prediction by
using meta-paths, but little work focuses on aggregating informa-
tion based on adaptive meta-graphs.

(2) Based on the adaptive meta-graph searching strategy, a DTI
prediction method, named AMGDT], is proposed based on hetero-
geneous networks. The effectiveness of the proposed AMGDTI is
verified on two benchmark datasets. Experimental results demon-
strate that our approach overall outperforms eight state-of-the-
art methods in predicting DTI, establishing AMGDTI as a compet-
itive and promising solution. Despite this, multi-omics data, such
as transcriptome, may enhance the performance on complex DTIs
prediction task.

MATERIALS AND METHODS

Heterogeneous networks

The performance of AMGDTI is evaluated on two benchmark
heterogeneous networks, named heterogeneous network Ny and
Ng, which are constructed using Luo’s dataset [12] and Zheng's
dataset [24], respectively. Luo’s dataset includes four kinds of
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Table 1: The information of nodes and edges in the heterogeneous network Na

Node type Num Edge type Num
Drug 708 Drug—drug (interaction) 10036
Protein 1512 Drug-drug (similarity) 50 1264
Disease 5603 Drug-protein 1923
Side effect 4192 Drug-disease 199214
Drug-side effect 80164
Protein-disease 1596745
Protein-protein (interaction) 7363
Protein-protein (similarity) 228 6144
Table 2: The information of nodes and edges in the heterogeneous network Ng
Node type Num Edge type Num
Drug 1094 Drug-drug 1196836
Protein 1556 Drug-protein 11819
Chemical structure 881 Drug—chemical substructure 133880
Side effect 4063 Drug-side effect 122792
Substituent 738 Drug-substituent 20798
GO term 4098 Protein-GO term 35980
Protein-protein 2421136

objects (drugs, target proteins, diseases and side effects) as well
as several interactions between them as shown in Table 1. These
objects and interactions are integrated to construct the hetero-
geneous network N,. Compared with N,, the heterogeneous net-
work Np contains more attributes of drugs and proteins as addi-
tional objects, such as fundamental chemical substructures, basic
drug substituents, GO terms and so on. In addition, the numbers
of drugs and proteins in Ng are lager than those in Ny, as shown
in Table 2.

AMGDTI model

This section describes the details of the proposed AMGDTI model
to predict potential drug-protein interactions. The flowchart of
AMGDTI is shown in Figure 1.

Encoding the node representation

In our work, Node2Vec [25] is employed to encode nodes in
a heterogeneous network, since Node2Vec is widely used to
convert nodes into low-dimensional vectors as initial features
before graph convolution operations (Figure 1A). Node2Vec
performs multiple random walks to obtain sequences of nodes.
Subsequently, utilizing the skip-gram model from Word2Vec [26],
the sequences of nodes obtained from the random walks are
used as training samples to generate low-dimensional embedding
vectors for the nodes. This approach effectively captures both the
local neighborhood and global structural information between
nodes and subsequently encodes it into vector representations.

Adaptive meta-graph
In what follows, we describe the definition of an adaptive meta-
graph, and the way to aggregate semantic information guided by
adaptive meta-graphs within a heterogeneous network.
Definition of an adaptive meta-graph. An adaptive meta-
graph is formally defined as a directed acyclic graph M = (Viy, En),
where Viy = (HO H', ... HT} refers to the collection of a het-
erogeneous network’s node-feature H! within the ith information

propagation (i € {0,1,---,T}, T denotes the number of aggrega-
tion iterations in the heterogeneous network). For simplicity, the
node-feature of a heterogeneous network within the ith infor-
mation propagation is called the ith state of the heterogeneous
network. The set of directed links, Ey;, represents the collection of
information propagation modes. For example, if the directed link
from HC to H' is labeled as ‘side-effect — drug’ (Figure 2C), then it
means H' is achieved by aggregating the features of ‘side-effect’
nodes to those of ‘drug’ nodes in H°. In the proposed adaptive
meta-graph, any of the previous t states (H° HY,.-. ,H"!) can
affect the current state H* by a certain information propagation
mode, thereby generating the skip structures between different
states of a heterogeneous network. Thus, the first feature of
the proposed meta-graph is the skip structure between nodes,
which enables more effective extraction of complex semantic
information from a heterogeneous network.

Another feature of the proposed adaptive meta-graph is that
each link in a meta-graph is adaptively determined. That is,
whether a previous state of a heterogeneous network affects the
current state, the way to affect the current state is determined
adaptively. To this end, all the edge types in a heterogeneous net-
work are served as the possible information propagation modes.
Besides, another two information propagation modes (J; and Jy)
are added, where the propagation mode J; means that the current
state is equal to a previous state, and the mode J; denotes that
a previous state could not affect the current state. Specifically,
in AMGDTI, there are 12 kinds of possible links between nodes,
i.e. Ey = {pp,Jrp,Jps,Jsp,JoE, JED, JPE, JEP, JOD, JPP, 1, )8}, Where the first
10 types of links are corresponding to the edge types in the
heterogeneous graph, and Jy, J; are newly designed to make the
adaptive meta-graph more flexible. The way to adaptively select
the information propagation modes among different states will be
illustrated in the following.

Construction of an adaptive meta-graph. For the DTI predic-
tion, an adaptive meta-graph is applied to guide the information
aggregation in a heterogeneous network to obtain the features
of both drugs and proteins. In what follows, we illustrate the
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Figure 1. Overview of the AMGDTI algorithm, which is divided into three steps. (A) Constructing the heterogeneous network with multi-source biomedical
data and employing the Node2Vec algorithm to encode the node representation. (B) Searching for the adaptive meta-graph for the information
aggregation of drugs (b1) and protein targets (b;) based on GCN in the heterogeneous network, respectively. (C) Utilizing the inner product of the
aggregated feature representation of drugs and proteins to predict potential DTI.
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Figure 2. [llustration of adaptive meta-graph construction and information aggregation. (A) Representation of nodes and edges in an adaptive meta-
graph. J, represents the edge types of the heterogeneous graph. D stands for Drug, P stands for Protein, E stands for diseasE and S stands for Side-effect,
I signifies participation in the composition process but without information aggregation, while ¢ denotes a lack of participation in the composition
process. For example, Jpp represents the transmission of node information from the drug to the protein, while Jpp represents the transmission of node
information from the protein to the drug. 6* represent the normalized parameters of the corresponding edges, which are used to quantify the importance
of the edges. (B) The process of selecting the optimal link type of information propagation for an adaptive meta-graph (with the example of information
propagation for protein target). (C) The process of information propagation based on the constructed adaptive meta-graph.



way to construct an adaptive meta-graph. Firstly, the number
of nodes in an adaptive meta-graph depends on the times of
information propagation in the heterogeneous network. Suppose
that the feature of nodes propagates T times in the heterogeneous
network. Then, the nodes in the adaptive meta-graph are V,,, =
(HO,H,... HT}.

Next, the possible connections between a pair of nodes are
chosen from Ey. To be specific, given two nodes, H' and Hf, where
0 < it <T,1 e Nandt € N. The proposed method checks
whether H! is the next state of H' and whether H' is the last state.
Ifi =t—1andt < T, then the possible connections from H!
to Ht are those in Ey except for Jy, since the node-feature in the
ith information propagation affects that of in the tth propagation
by a certain mode. That is, the possible connections from H' to
H! are the elements in the set Ry; = Ey — Uy}, if i = t — 1 and
t < T(Eq.1).If t < Thbuti < t— 1, then the state H may not
affect the state H. In this situation, the possible connections from
H' to H! include Jy, i.e. R; = Ey. Moreover, if H' is the last state
(t = T), then the possible connections from H'"! to H' are further
restrict to those connections related with either drugs or targets.
On one hand, to achieve the node-feature of drugs, the possible
connections with constraint (C') are chosen as the types with the
form of «+ —drug’. On the other hand, we choose those related
with proteins with the form of ‘* —protein’ to update the node-
feature of proteins. For example, on the heterogeneous network
Na, four modes are chosen to update the node-feature of drugs, i.e.
‘drug — drug’, ‘protein — drug’, ‘disease — drug’ and ‘side-effect
— drug’. That is, in this situation, C’ = {Jpp,Jep,Jep,Jsp}. Compared
with the possible connections under the situation of i =t — 1 and
t =T, those under the situation of i < t—1and t = T add two types
of connections, i.e.J; and J;. The possible connections from H' to
H' in four situations are listed as follows:

Ev—1{s}, 1=t-1t<T
Em, i<t—1,t<T
Rt,i: I>A . ) (1)
c, i=t—1,t=T
CUJjUJy, 1<t=1t=T

Thirdly, a connection from H' to H' is adaptively chosen from
all possible connections. In the proposed AMGDT, a parameter 6},
is assigned to each possible link from H' to H' to represent the
possibility of the link to be selected. For example, the possibility
of the connection ‘drug — protein’ (Jpp) from H° to H? is assigned
a parameter 63,. The connection with the maximum value 6]? =
max(@t e 9}11) will have a large probability to be the link from Hi
to H. Besides, in order to increase the diversity of possible meta-
graphs, the link from H' to H' is randomly chosen from R;. In the
proposed AMGDTI, the final type of links from H' to H! is randomly
chosen from R;; with the possibility p;, and with the possibility of
1 — p; to be that with the maximum value of the parameter 6.
The parameter p; € (0, 1) is set to be a small value that promotes
the exploration of various message passing options in the initial
stages, gradually reducing to 0 as the value of i increases. Formally,
the type of connections from the node H' to H' in the adaptive
meta-graph can be determined as follows:

m _
i

()

[Gt’;‘ m = argmaxy 6 with probability 1 — p;
rand (R;;) with probability p;
where ‘rand(-)’ denotes the random and uniform sampling of an
element from a given set.

The calculation of 8]} is the key to adaptively choose the type of
links. Here, a network architecture search-based method (DiffMG
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[27]) is used to measure the value of 6. To be specific, the
significance of each link is firstly initialized as a random number
from [0, 1]. For example, the significance of the nth type of links
from H' to H' is initialized to be 0.3,1.e. o, = 0.3. According to Eq. 2,
the meta-graph isinitialized. The node feature in a heterogeneous
network is updated guided by the initialized adaptive meta-graph.
The detail of the information aggregation is illustrated in the
next subsection. Then, the significance of each link is updated by
optimizing two objectives, where the two optimization objectives
are the validation loss Lyq and the training loss Ly, respectively.
Suppose L is the loss function, and w represents the network
structure parameter. The significance of each link is adaptively
optimized by Eq. 3

min Ly (@' (@), @), s.t. 0" (@) = arg mjn Lira (@, @) (3)
> logo (njhy) = > logo (~hjhy), (4)
(d,peQ+ (d'p)eQ-

where Q7 is the set of known drug-protein interactions (positive
samples), and ~ is the negative samples which contain the drugs
and proteins without interactions. hg, h, are, respectively, the
node representations of drugs and proteins obtained from positive
samples, while hg, h, are those achieved from negative samples.
logo denotes the logsigmoid function. Furthermore, the possibility
of the nth type of links from H' to H', denoted by 67, is achieved by
normalizing the significance of the link (a}}) Whlch is as follows:

el

o= v (5)

w=0 €XP (& ( )

Information aggregation guided by adaptive meta-graphs

Given an adaptive meta-graph and the first (t — 1)th state of a
heterogeneous network, the tth state of a heterogeneous network
is updated by aggregating information based on GCN (Figure 2C).
Specifically, the message propagation for H' in adaptation meta-
graphs is delineated as follows:

H' = gelu [Z%(HH o) } 6)

where g;; denotes message propagation using the GCN model, and
subscripe represents the set of edge types from the ith interme-
diate state H' to the tth state. gelu(-) indicates GELU activation
function. g ;(H', u) denotes the propagation of information from
the ith state along an edge of type Rf} to tth state. g;; is delineated
as follows:

G (HI,R{g) =D, ZRZ"ID“Z HW,;, 7)
where Rm =R} + I, I is an identity matrix, Dy; is the diagonal
degree matrix of Rm and W;; is the weight matrix of GCN. The
states of each node of the adaptive meta-graph are obtained

sequentially according to the above process, and the Tth state HT
is finally obtained.

DTI prediction

After performing the information aggregation process, we obtain
the feature vectors of the drug and the protein and use the inner
product of the two to predict the potential DTI. Given a specific



6 | Suetal

drug d and a particular target p, the interaction score P between
d and p can be calculated as follows:

PP =¢ (hIhy), (8)

where hg and h, are the feature representations of drugs and
targets, respectively. o is the sigmoid function.

RESULTS
Baseline methods

To evaluate the performance of the proposed model, we compared
AMGDTI with the six state-of-the-art drug-target prediction mod-
els as follows.

e DTINet [11] learns the low-dimensional vector representa-
tions of nodes in a constructed heterogeneous network by
using a network diffusion algorithm and detects new DTIs
based on a matrix completion method.

e NeoDTI [16] is the first framework to integrate the feature
extraction techniques with the DTI prediction methods into
an end-to-end learning framework, where the feature of a
node is achieved by aggregating all of its neighborhood infor-
mation.

e GCN-DTI [17] learns the features for each node in a con-
structed drug-protein pair network by using a GCN and then
uses a deep neural network to predict DTIs.

e IMCHGAN [20] is a meta-path-based DTIs prediction model,
where the drug and target embeddings are learned by adopt-
ing a graph attention network with meta-path level attention
mechanism.

e EEG-DTI [18] is a heterogeneous GCNs-based framework for
the prediction of DTIs, where the feature representation of
each node is generated by aggregating the features of its
neighbors connecting by different types of edges in each layer
of the GCN.

e HampDTI [19] developed a meta-path graph structure that
indirectly determines the importance of each possible meta-
path connecting a drug and a target. Following this, GCNs are
employed on the resulting meta-path graph to learn reduced-
dimension drug and target attributes for DTI prediction.

e DeepConv-DTI [28] uses convolutional filters to capture local
residue patterns participating in DTIs, uses data as high-
level input, constructs model protein features and concate-
nates drug features. Finally, the DTIs probability is predicted
through the fully connected layer.

o TripletMultiDTI [29] employs a combination of triplet loss and
task prediction loss to create a more discriminative feature
representation of drug-target pairs, leading to improved pre-
diction performance by enhancing the clustering of feature
space for similar drug-target pairs and distinguishing dissim-
ilar ones.

DeepConv-DTI is a sequence-based method, while others are
network-based methods. Network-based methods execute the
similar procedures with the proposed model, i.e. they firstly learn
the feature representations of nodes in a heterogeneous network
and then predict DTIs.

Parameter setting

The proposed AMGDTI model is implemented on the PyTorch
framework with the Adam optimizer [30], where the learning rate
is 6e — 3, the weight decay rate is le — 3, the hidden size is 64, the

decay rate is 0.2 and 150 epochs are used to train. For Node2Vec,
we set the walk size ws = 100, the number of walks nw = 15, the
degree of forward movement p = 1 and the degree of backward
movement q = 1. Besides, the parameters of the above-mentioned
baseline methods follow the settings in their papers.

Performance evaluation

To evaluate the performance of AMGDTI, we perform 5-fold
cross-validation in two benchmark datasets. Since the number
of unknown DTIs is much larger than that of known drug-target
pairs in each of the two benchmark datasets, unknown DTIs
are under-sampled to make the size the same as the number of
known DTIs, resulting the positive samples (i.e. all of the known
DTIs) and the negative samples (i.e. the unknown DTIs selected
according to above principle). For the 5-fold cross-validation, we
randomly select 60% of positive samples and 60% the negative
samples to train the model. Besides, randomly selected 20% of
positive samples and 20% of negative samples are used as the
validation set to tune the parameters. The remaining 20% of
positive samples and negative samples are selected as the testing
set. The area under the receiver operating characteristic curve
(AUC) and the area under the precision-recall curve (AUPRC) are
used to evaluate the performance of the proposed AMGDTI, since
they have been widely used in the research of DTI prediction.
In our work, 5 times of 5-fold cross-validation are perfomed on
two benchmark datasets, and the best results are calculated to
show the performance of each method. As shown in Table 3, the
following two observations can be obtained.

First, the proposed adaptive meta-graph based AMGDTI
achievesan overall superior performance over two datasets.
For example, on the Network N_B, AMGDTI shows the best
performance, and the meta-path-based method IMCHGAN ranks
the second. The performances of other methods considered
here are not good as above two methods, due to the fact that
they aggregate node information without distinguishing edge
types (except HampDTI). It is demonstrated that different types
of edges in heterogeneous networks play different roles in
aggregating node information. Both IMCHGAN and HampDTI
enable the automatic learning of latent feature representations
from bioinformatics networks, which avoids the need for domain-
specific knowledge. The IMCHGAN algorithm constructs corre-
sponding meta-paths for drugs and protein targets, extracting
potential feature representations for drugs and target proteins
separately. In contrast, HampDTI designs a single meta-path for
the heterogeneous network to predict DTI. We consider that
due to differences in effectively extracting potential features
for drugs and targets, the separate design of meta-path/meta-
graph in the context of heterogeneous network modeling for
DTI prediction should outperform the sole design of a single
meta-path/meta-graph. As for AMGDTI, it constructs meta-
graphs for drugs and protein targets to extract potential features,
respectivelyMoreover, the adaptive meta-graph in AMGDTI
enables the flexible extraction of refined semantic features.
Therefore, although AMGDTI, IMCHGAN, and HampDTI are all
algorithms designed for automatic meta-path/meta-graph to
predict DTI, AMGDTI performs the best in terms of prediction
performance.Second, the proposed adaptive meta-graph is more
suit to aggregating node information for drug-target interaction
prediction. Specificly, the AUC obtained by AMGDTI is 0.977 and
0.973 on Luo’s dataset and Zheng’s dataset, respetively, which
is 2.1% and 2.5% higher than those obtained by IMCHGAN. The
promising performance of the proposed method AMGDTI may
partly be due to the introduce of an adaptive meta-graph module,
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Table 3: The Comparison of AUC, AUPRC, P-value and Params between various models

Model Network N4 Network Ny Params
AUC AUPRC P-value AUC AUPRC P-value

DTINet 0.879 0.906 5.31e-10 0.889 0.900 2.08e—7 *
NeoDTI 0.955 0.889 4.84e—8 0.946 0.846 1.99e—-4 9.98e10
GCN-DTI 0.918 0.897 1.76e—8 0.922 0.914 1.61le—4 *
IMCHGAN 0.956 0.903 1.06e—4 0.946 0.929 1.35e-3 4.44e5
EEG-DTI 0.954 0.964 2.24e-5 0.942 0.941 2.41le—4 1.84e6
HampDTI 0.928 0.927 5.51e-9 - - - 9.92e4
DeepConv-DTI 0.909 0.917 3.23e-8 - - - 1.52e6
TripletMultiDTI ~ 0.991 0.990 6.53e—4 - - - 1.53e7
AMGDTI 0.977 0.977 0.973 0.971 1.33e5

‘-’ indicates that the model is not applicable to this dataset. ‘P-value’ is calculated using AUC as a statistic. ‘+’ indicates that the model is not convenient for

parameter statistics. ‘Params’ represents the parameter quantity of the model.
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Figure 3. Comparison of different positive and negative sample ratios on Luo and Zheng'’s dataset.

since AMGDTI discerns more useful edge types for predicting
drug-target intersections. HampDTI relies on both the SMILES
sequences of the drug and the amino acid sequences of the
target. However, Zheng’'s dataset lacks the necessary sequence
information.

In our work, DTI pairs with known interactions are considered
as positive samples and the remaining drug-target pairs as neg-
ative samples. Due to the inherent imbalance in the number of
positive and negative samples, the number of positive samples
is significantly lower than that of negative samples. To evaluate
whether the number of positive and negative samples affects
the performance of the proposed AMGDTI, we conducted experi-
ments employing varying ratios of positive and negative samples.
Figure 3 presents the AUC and AUPRC values of AMGDTI when
the positive and negative sample ratios are settobe 1 : 1,1 :5
and 1 : 10. From the figure, it can be found that the performance
of AMGDTI differs little as the positive and negative sample ratios
changes.

Effectiveness of adaptive meta-graph

Different meta-graphs influence the DTI prediction results. A
key structure of meta-graphs is the type of edges. To explore
which kind of information aggregation modes largely affects the
prediction of DTI, Figure 4 shows the frequency of edge types in
meta-graphs achieved by the proposed AMGDTI and the method

proposed by Fu et al. [31] in the heterogeneous network Ny,
respectively. Specifically, in the method proposed by Fu et al,
51 meta-paths with lengths ranging from 2 to 4 are manually
enumerated, and the edge type (‘drug-target’) contributes the
most to predicting DTI, followed by ‘target-target’ (Figure 4(A)).
Similarly, in AMGDTI, we randomly selected negative samples
and chose T to be either 3 or 4 for each trial and achieved 51
adaptive meta-graphs. From Figure 4(B), it is found that the two
most frequent edge types are also the ‘drug—target’ and ‘target-
target’, which are the same as those achieved by the method
proposed by Hu et al. The other types of interactions play a
supporting role in predicting DTI. Besides, We provided a t-test on
DTI prediction results to further investigate the difference among
various methods. The P-value generated by considered models on
two datasets are also listed in Table 3. Form above results, it is
indicated that the proposed AMGDTI can effectively detect useful
information aggregation modes for DTI prediction.

To further show the effectiveness of the proposed adaptive
meta-graph, Figure 5 shows the comparison of the prediction
results by using the best meta-paths achieved by HampDTI and
the method proposed by Fu et al.,, as well as the optimal adaptive
meta-graph achieved by AMGDTI. To be specific, above three
meta-graphs were, respectively, used to aggregate information on
the heterogeneous network N,, while the way to calculate the
interaction score was the same. Besides, 5-fold cross-validation
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Figure 4. Comparison of the frequency of edge types in meta-graphs. (A) The frequency of edge types in meta-paths determined by the method proposed
by Fu et al. (B) The frequency of edge types in adaptive meta-graphs determined by AMGDTL
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Figure 5. Meta-graphs and their effects on DTI prediction. (A) Meta-graphs achieved by three methods include the best adaptive meta-graph obtained
by AMGDTI (the first for Drugs and the second for Proteins), the optimal meta-path acquired by HampDTI (the third figure), and the method proposed
by Fu et al. (the fourth figure). (B) Comparison of DTI prediction results by using the meta-graphs achieved by AMGDTI, HampDTI and the method

proposed by Fu et al. on the heterogeneous network Ng.

was performed, and AUC and AUPRC were used as the evaluation
indicators. From Figure 5B, it can be seen that the AUC and AUPRC
achieved by the proposed optimal adaptive meta-graph are higher
than those achieved by the other two best meta-graphs, indicating
that the proposed optimal adaptive meta-graph can effectively
aggregate information in a heterogeneous network, which is ben-
efit for DTI prediction.

Ablation study

The proposed AMGDTI mainly contains three essential steps, i.e.
encoding the nodes in a heterogeneous network by Node2vec,
the construction of adaptive meta-graphs and the information
aggregation guided by adaptive meta-graphs, where the strategy
of selecting possible links with constraints is the key to construct
adaptive meta-graphs. Here, the ablation experiments were
considered to check the contribution of these key components.
The model variants are summarized as follows: (1) AMGDTI-
Node2vec means AMGDTI without Node2vec but with one-
hot encoding strategy; (2) AMGDTI-Constraints denotes AMGDTI

without the strategy of selecting possible links with constraints;
and (3) AMGDTI-AMP means that the adaptive meta-graph in
AMGDTI is replaced by a manually designed meta-path (i.e. the
best meta-path achieved by HampDTI [19]).

Table 4 presents the AUC and AUPRC values of the proposed
AMGDTI, and the three variants on two heterogeneous networks.
From the table, we can find that the performance of AMGDTI
is better than other three variants. This result indicates that
the integration of three essential steps helps to improve the
prediction performance of AMGDTI. Besides, the results suggest
the effectiveness of Node2vec in node encoding, the strategy of
selecting possible links with constraints and the information
aggregation guided by adaptive meta-graphs. In addition, we
found that AMGDTI-AMP shows the maximum performance
degradation. This finding indicates that the information aggre-
gation guided by adaptive meta-graphs is the key to achieving a
satisfactory result, and adaptive meta-graphs can well represent
fine-grained complex semantic messages, and benefit tolearn the
complex topology of heterogeneous networks and infer potential
relationships between drugs and targets.
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Table 4: Performance of AMGDTI and three variants on heterogeneous networks

Method Network N, Network Np

AUC AUPRC AUC AUPRC
AMGDTI-Node2vec 0.963 0.951 0.936 0.921
AMGDTI-Constraints 0.965 0.953 0.966 0.954
AMGDTI-AMP 0.958 0.956 - -
AMGDTI 0.977 0.977 0.973 0.971
‘-’ indicates that the model is not applicable to the dataset.
Table 5: The prediction and validation of novel (potential) DTIs
Rank Drug ID Drug Name Target ID Target Name Evidence
1 DB00502 Haloperidol P08172 CHRM2 DrugBank5.0 (DB00334),KEGG (hsa04080)
2 DB01136 Carvedilol P35368 ADRA1B DrugBanks5.0 (Proved)
3 DB01280 Nelarabine Q02880 TOP2B Unknown
4 DB00418 Secobarbital P47870 GABRB2 DrugBanks5.0 (DB06716), KEGG (hsa04080)
5 DB00398 Sorafenib Q08345 DDR1 Unknown
6 DB01236 Sevoflurane 060391 GRIN3B DrugBanks5.0 (DB01520), KEGG (hsa04080)
7 DB00734 Risperidone P08173 CHRM4 DrugBank5.0 (DB09167), KEGG (hsa04080)
8 DB00370 Mirtazapine QONYX4 CALY DrugBank5.0 (DB00370), KEGG (hsa04080)
9 DB01159 Halothane P18505 GABRB1 DrugBank5.0 (Proved)
10 DB00449 Dipivefrin P25100 CHRM2 KEGG (Proved)

Prediction of potential DTIs

Potential DTI is predicted based on the constructed heteroge-
neous network and the AMGDTI model. Utilizing heterogeneous
network N, containing drugs, targets, side effects and diseases,
the AMGDTI model is trained for the prediction of potential
DTI using an equal number of positive and negative samples.
Utilizing the trained AMGDTI model, predictions are made for
all unconfirmed drug-target relationship pairs, and the top 10
highest scoring potential DTI results are presented in Table 5.

In order to ascertain the credibility of the predicted potential
DTIs, various reference databases are consulted to seek corrob-
orative evidence, such as KEGG and DrugBank version 5.0 [32].
DrugBank database reports the relevant drugs for the target and
the relevant targets for the drug, and Drugbank 5.0 is the latest
version, documenting the DTI identified in recent research. KEGG
database reports the relevant targets for the drug, and KEGG
PATHWAY [33] stores data on protein metabolic pathways.

In our examination of the top 10 potential DTI rankings, the
second-ranked interaction involving Carvedilol and ADRA1B [34],
the ninth-ranked interaction between Halothane and GABRB1
[35] and the tenth-ranked interaction involving Dipivefrin and
CHRM2? [36] have been substantiated by the latest database as
demonstrating authentic DTIs. These findings underscore the reli-
ability of our predictive methodology in elucidating biologically
relevant DTIs.

Numerous inferred DTIs lack direct verification; however,
specific biological hypotheses enable the deduction of potential
DTI associations [37]. This premise relies on the notion that
similar drugs typically engage with identical target proteins.
Furthermore, a drug’s interaction with a protein may influence
the expression of other proteins within the same pathway.
For instance, the interaction prediction scores for Haloperidol
and CHRM2 rank at the top. Antipsychotics Haloperidol and
Olanzapine exhibit a documented interaction with CHRM?2; both
related to the neuroactive ligand-receptor pathway (hsa04080),
suggesting a potential interaction between Haloperidol and
CHRM2. Moreover, by intputing sorafenib into the model, a

literature-based validation revealed that among the top 10
predicted potential targets ranked by score, three were confirmed
to interact with sorafenib, encompassing FLT1 [38], CSF1R [39]
and RET [40]. This substantiates the model’s robust performance
in predicting targets for emerging drug entities.

DISCUSSION AND CONCLUSION

Despite recent advances of biomedical research and technologies,
DTI prediction remains a challenging task which requires the
effective learning of the information of drugs and targets form
a large heterogeneous network. In this study, we propose an
adaptive meta-graph-based deep-learning method, AMGDTI,
which automatically searches for a suitable adaptive meta-graph
to predict potential DTI. AMGDTI guides the GCN in gathering
neighborhood information of nodes by a novel and expressive
search space, i.e. adaptive meta-graphs. From the experimental
results, the enhanced performance of the proposed method
mainly attributes to the adaptive meta-graph. Firstly, the adaptive
meta-graph has a skip connection structure, i.e. nodes within
the adaptive meta-graph (excluding the source node) possess
more than one incoming link, aggregating information from
multiple propagation paths. Specifically, a node in the adaptive
meta-graph represents the state of the heterogeneous network
after message propagation, and an edge in the adaptive meta-
graph characterizes a message propagation path. Note that the
adaptive meta-graph degenerates into a meta-path when there is
no skip connection between nodes. The target node of the previous
propagation coincides with the source node of the subsequent
propagation in the adaptive meta-graph. Thus, the adaptive
meta-graph exhibits a more flexible structure and can better
represent fine-grained semantic messages than the meta-
graph, enabling the extraction of complex semantic information.
Secondly, it uncovers crucial DTI meta-paths for prediction,
providing valuable insights into DTI-related research and
enhances interpretability compared with prior black-box deep
learning models. Thirdly, it circumvents reliance on domain
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knowledge, enabling the dynamic learning of adaptive meta-
graphs between drugs and targets from relevant heterogeneous
networks.

Furthermore, the DTIs predicted by AMGDTI could also provide
potential real-world implications. An interesting finding is that
Sorafenib is a potential drug for T-cell lymphoma. To be specific,
Sorafenib, as a kinase inhibitor, has significant therapeutic effects
in the treatment of unresectable liver cancer, advanced renal can-
cer and differentiated thyroid cancer. The kinase activity of DDR1
plays a central role in the development of T-cell lymphoma [41]. It
is inferred that sorafenib may have potential therapeutic effects
with T-cell lymphoma. Besides, Nelarabine is a purine nucleoside
analog and antineoplastic agent used for the treatment of with
acute T-cell lymphoblastic leukemia and T-cell lymphoblastic
lymphoma. TOP2B is a DNA topoisomerase that plays an impor-
tant role in maintaining genomic integrity and may also lead to
chromosomal translocation and mutations, leading to acute T-
cell lymphoblastic leukemia [42]. It is speculated that Nelarabine
has potential therapeutic effects with acute T-cell lymphoblastic
leukemia.

AMGDTI is an effective network architecture search strategy
based on heterogeneous network that offers a powerful deep
learning toolbox for the prediction of DTIs. If broadly applied,
AMGDTI could be applied to other kinds of prediction, such as
drug-drug interactions. In future endeavors, we plan to develop
heterogeneous networks tailored to various disease types and
incorporate multi-omics data (e.g. transcriptome, metabolome)
within the disease-specific networks. The predicted DTI may
prove beneficial for the treatment of specific diseases.

Key Points

e The prediction of drug-target interactions (DTIs) is
essential in medicine field, and one of the fundamental
challenges is how to effectively learn the embedding of
nodes and edges in heterogeneous network. Here, we
developed an adaptive meta-graph-based DTI predic-
tion model (AMGDTI), which serves as an adaptive and
efficient method for DTI prediction in a heterogeneous
network.

e An adaptive meta-graph searching strategy is proposed
in AMGDTI, which considers automatically searching
for an efficient information integration way without
domain knowledge. The adaptive meta-graph enables an
efficient integration of complex multiple semantic rela-
tionships and structures information embedded in the
heterogeneous network, which is the key to achieving a
satisfactory result.

e The effectiveness of the proposed AMGDTI is verified on
two benchmark datasets. Experimental results demon-
strate that our approach overall outperforms eight state-
of-the-art methods in predicting DTI. It also provides
crucial meta-paths for DTI prediction, providing valu-
able insights into DTI-related research and enhances
interpretability compared with prior black-box deep
learning models.

SUPPLEMENTARY MATERIALS

Supplementary data are available online at http://bib.oxford
journals.org/.
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