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Cardiovascular diseases (CVDs) are the leading cause of
death worldwide and are heavily influenced by genetic factors.
Genome-wide association studies have mapped >90% of CVD-
associated variants within the noncoding genome, which can
alter the function of regulatory proteins, such as transcription
factors (TFs). However, due to the overwhelming number of
single-nucleotide polymorphisms (SNPs) (>500,000) in
genome-wide association studies, prioritizing variants for in
vitro analysis remains challenging. In this work, we imple-
mented a computational approach that considers support vec-
tor machine (SVM)-based TF binding site classification and
cardiac expression quantitative trait loci (eQTL) analysis to
identify and prioritize potential CVD-causing SNPs. We iden-
tified 1535 CVD-associated SNPs within TF footprints and
putative cardiac enhancers plus 14,218 variants in linkage
disequilibrium with genotype-dependent gene expression in
cardiac tissues. Using ChIP-seq data from two cardiac TFs
(NKX2-5 and TBX5) in human-induced pluripotent stem cell-
derived cardiomyocytes, we trained a large-scale gapped k-mer
SVM model to identify CVD-associated SNPs that altered
NKX2-5 and TBX5 binding. The model was tested by scoring
human heart TF genomic footprints within putative enhancers
and measuring in vitro binding through electrophoretic
mobility shift assay. Five variants predicted to alter NKX2-5
(rs59310144, rs6715570, and rs61872084) and TBX5 (rs7612445
and rs7790964) binding were prioritized for in vitro validation
based on the magnitude of the predicted change in binding and
are in cardiac tissue eQTLs. All five variants altered NKX2-5
and TBX5 DNA binding. We present a bioinformatic approach
that considers tissue-specific eQTL analysis and SVM-based TF
binding site classification to prioritize CVD-associated variants
for in vitro analysis.

Cardiovascular diseases (CVDs) are the leading cause of
death worldwide and encompass multiple disorders
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(coronary artery disease, congenital heart disease, stroke,
etc.), many of which are heritable (1–5). Genome-wide as-
sociations studies (GWAS) have mapped over 90% of CVD-
associated variants within noncoding regions of the genome
(6, 7). Noncoding single nucleotide polymorphisms (SNPs)
can impact phenotype by altering gene regulatory mecha-
nisms, such as transcription factor (TF)-DNA binding and
gene expression (8–11). NKX2-5 and TBX5 are cardiac TFs
that regulate gene expression in the developing heart
(12–17). Previous research has identified CVD-associated
SNPs that alter cardiac TF-DNA binding, but further
research is required to establish causality (18–22). However,
with the overwhelming number of GWAS SNPs (>500,000),
prioritizing candidate CVD-causing variants for experi-
mental validation remains challenging.

One approach to address this challenge is the integration of
functional genomic datasets with predictive models to identify
variants that create or disrupt TF binding sites (TFBSs)
(23–26). Large-scale gapped k-mer (LS-GKM) support vector
machine (SVM) models can be trained to predict TFBSs by
using in vitro genome-wide binding data from chromatin
immunoprecipitation followed by DNA sequencing (ChIP-
seq). LS-GKM-SVM models have several advantages over
traditional position weight matrix (PWM)-based methods, by
considering complex sequence features like dinucleotide in-
teractions, longer/gapped k-mers, and intracellular patterns
(27–30). LS-GKM-SVM models can be trained with ChIP-seq
data from specific cell lines or tissue to integrate relevant
epigenomic and regulatory context (23).

In this work, we prioritize noncoding variants associated
with CVDs and CV traits using public data from the GWAS
catalog (31), genome tissue expression (GTEx) portal (32),
ENCODE (33), ChIP-Atlas (34), and Remap (35). We compiled
a list of CVD-associated SNPs linked with a genotype-
dependent gene expression in cardiac tissue and trained a
LS-GKM-SVM model with ChIP-seq data from NKX2-5 and
TBX5 in human-induced PSC-derived cardiomyocytes
(HiPSC-CMs). Both models were used to score previously
identified heart DNase I hypersensitivity genomic footprints
(DGFs) (36) that colocalize within putative cardiac enhancers
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Prioritizing SNPs altering NKX2-5 and TBX5 DNA binding
(37) and tested them through in vitro binding by electropho-
retic mobility shift assay (EMSA). Our predictive model was
successful at identifying NKX2-5 and TBX5 binding sites and
distinguishing between DNA sequences with different binding
affinities.

Having validated DGF scored by the GKM-SVM model, we
calculated the impact of CVD-associated SNPs in NKX2-5 and
TBX5 binding. Five variants (rs59310144, rs6715570,
rs61872084, rs7612445, and rs7790964) predicted to alter
NKX2-5 and TBX5 binding were prioritized for in vitro vali-
dation based on the predicted change in binding and expres-
sion quantitative trait loci (eQTLs) in cardiac tissue. The five
variants were validated through EMSA and resulted in changes
in NKX2-5 and TBX5 DNA binding. In short, we present a
bioinformatic approach that considers tissue-specific eQTL
analysis and SVM-based TFBS classification to prioritize
functional CVD-associated SNPs.
Results

Identification of CVD-associated SNPs in cardiac eQTL

To identify potential CVD-causing SNPs, we downloaded
the GWAS catalog and filtered the data to keep cardio-
vascular disease or trait-associated SNPs (e.g., congenital
heart defects, cardiomyocyte differentiation, stroke,
arrhythmia, etc.; full list of SNPs in File S1). We then
intersected the CVD-associated SNPs with a catalog of
putative fetal and adult heart enhancers and genomic
footprints of fetal hearts, resulting in 1535 genomic vari-
ants. The CVD-associated SNP set was expanded to
include SNPs in linkage disequilibrium (LD r2 > 0.8) from
diverse populations (EUR, AFR, SAS, EAS, and AMR) and
resulted in 14,218 unique SNPs occurring in one or more
populations. To evaluate the potential of these SNPs to be
biologically relevant in cardiovascular biology, we analyzed
gene expression patterns in cardiac tissue with the previ-
ously identified variants in the GTEx portal. We found 792
genes with genotype-dependent activity in the heart atrial
appendage or left ventricle associated with the previously
identified SNPs. The workflow is illustrated in Fig. 1A, and
the list of SNPs associated with differentially expressed
genes in cardiac tissue is in File S1. We identified chro-
mosomes with a higher frequency of CVD-associated
SNPs, with >1000 variants (chromosomes 1 and 6) and
�500 (chromosomes 2, 3, 7, 10, 11, 12, 15, 16, 17, 19, and
22), including those in LD (Fig. 1B). Chromosomes with a
high SNP frequency may have variants evenly distributed
among them, like chromosomes 1 and 2, while others
contain multiple variants in the same (or near) loci, like
chromosomes 6, 10, 15, and 22 (Fig. 1C). We also analyzed
data from the GTEx database and found genes with
genotype-dependent expression in cardiac tissue (heart
atrial appendage and left ventricle) containing the identi-
fied CVD-associated SNPs or the variants in LD. We
identified 31,122 SNP-gene pairs (792 unique genes) with
genotype-dependent expression in cardiac tissue (Fig. 1D).
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Training LS-GKM SVM model to score NKX2-5 and TBX5
binding sites

We trained a LS-GKM SVM model to prioritize CVD-
associated SNPs that alter DNA binding by TFs known to
play important roles in heart development and biology. The
models were trained using NKX2-5 and TBX5 ChIP-seq data
from HiPSC-CMs. The 1000 top-scoring ChIP-seq peaks were
used as a positive training set, while unbound sequences of the
same length, GC content, and chromosome were used as
negative training (Fig. 2A) The best-performing LS-GKM SVM
classifier model trained with NKX2-5 ChIP-seq data
(SRX9284027) (38) obtained an AUROC value of 0.955 and an
AUPRC value of 0.954. The best TBX5 (SRX2023721) (39)
model obtained an AUROC value of 0.921 and an AUPRC
value of 0.912 (Fig. S1, A and B). The models were used to
score all possible 2,097,152 nonredundant 11 bp oligomers
(11-mers). The 11-mer scores were sorted, and the 1000 top-
scoring sequences were used to generate a PWM using mul-
tiple Em for motif elicitation and observed similar motifs to
those previously reported for NKX2-5 (40, 41) and TBX5 (42)
(Fig. S1, C and D). We proceeded to score �520,000 fetal heart
DGF that occur heart enhancers to identify genomic loci
potentially bound by NKX2-5 or TBX5 (Fig. 2B). We then
chose the DNA sequences with the highest, middle, and lowest
scores to test for in vitro binding through EMSA (Figs. 2C and
S2). As predicted by the GKM SVM model, sequences with a
higher score resulted in increased NKX2-5 and TBX5-DNA
binding.

CVD-associated SNPs alter NKX2-5 and TBX5-DNA binding

After successful training and validation of the LS-GKM
SVM predictive model, we proceeded to score the 14,218
SNPs to prioritize variants that may directly contribute to
CVDs. Both reference and alternate allele sequences were
scored to predict fold change (deltaSVM score) of TF-DNA
binding. We selected five SNPs (rs59310144, rs6715570,
rs61872084, rs7612445, and rs7790964) that deltaSVM pre-
dicted significant change in NKX2-5 or TBX5 binding and are
associated with genotype-dependent expression in cardiac
tissue (Fig. 3A and Table S2). When evaluated through EMSA,
we observed a difference in NKX2-5 and TBX5 DNA binding
between reference and alternate for all five SNPs (Figs. 3, B and
C and S3). Variants rs59310144 and rs61872084 resulted in a
decrease in NKX2-5 DNA binding, while rs6715570 increased
binding. Variant rs7612445 resulted in an increase in TBX5
binding, while rs7790964 decreased binding. We found that all
five SNPs were in eQTLs described in cardiac tissue and
identified five genes with genotype-dependent expression in
the heart atrial appendage or left ventricle (Fig. 3D).

Discussion

As we continue to research the genetic basis for human
disease, the number of identified functional/causal noncoding
SNPs continues to grow. Understanding and prioritizing SNPs
that contribute to the disease phenotypes is essential. How-
ever, there is a lack of consensus or bioinformatic protocol to



Figure 1. Identification of CVD-associated SNPs. A, pipeline to identify potential CVD-causing SNPs. B, number of CVD-associated SNPs per chromosome.
C, distribution of SNP frequency within autosomal chromosome, binned by 1 Mb windows. D, SNP-gene pairs with genotype-dependent expression in
cardiac tissue. Each dot represents a SNP-gene pair with genotype-dependent expression in the heart atrial appendage or left ventricle in one or more
populations. rs6715570-BARD1, rs61872084-METTL10, rs59310144-RNASEH2B, rs7612445-GNB4, and rs7790964-TBX20 are SNP-gene pairs that were eval-
uated in vitro in Figure 3. CVD, cardiovascular disease; LD, linkage disequilibrium; SNP, single nucleotide polymorphism.

Prioritizing SNPs altering NKX2-5 and TBX5 DNA binding
prioritize noncoding SNPs that are biologically relevant in the
development of human diseases (25). To address this chal-
lenge, we applied a GKM-SVM–based model to identify and
prioritize potential CVD-causing variants for experimental
validation. We leveraged on public data from the GWAS
catalog and extracted SNPs that were associated with cardio-
vascular disease or traits and included variants in LD from
multiple populations (EUR, AFR, SAS, EAS, and AMR). The
distribution of the identified CVD-associated SNPs was not
uniform throughout the genome (Fig. 1, B and C). This sug-
gests that certain chromosomes, or specific loci, are enriched
with CVD-associated SNPs and may contribute to the cardiac
phenotype. SNPs in eQTL were identified to prioritize variants
with genotype-dependent expression in cardiac tissue (left
ventricle and atrial appendage). Through this approach, we
aimed to narrow the extensive list of noncoding variants and
identify SNPs that may contribute to CVDs.

To further prioritize variants that may contribute to a car-
diac phenotype, we trained a GKM-SVM classifier to identify
SNPs that disrupt NKX2-5 and TBX5-DNA binding. Because
TFs regulate gene expression in a tissue-specific manner (43,
44), we trained the predictive model with ChIP-seq data from
NKX2-5 and TBX5 collected in HIPSC-CM. After testing the
model by scoring all possible 11-mers, we generated PWMs for
both models resulting in DNA binding motifs in agreement
with previously described motifs for NKX2-5 and TBX5
(Fig. S1) (40–42). The GKM-SVM model was successful at
identifying binding sites within heart DGF for both NKX2-5
DBD and full-length TBX5 (Fig. 2, B and C). Our results
suggest that the LS-GKM SVM model will be able to
J. Biol. Chem. (2023) 299(12) 105423 3



Figure 2. Training and testing of LS-GKM SVM predictive model. A, schematic of model training with NKX2-5 and TBX5 ChIP-seq data from HiPSC-CM. B,
scoring of �520,000 DGF that occur in heart enhancers with the NKX2-5 (top) and TBX5 (bottom) predictive models. C, in vitro testing of predictive model for
highest, middle, and lowest scored sequences for NKX2-5 (top) and TBX5 (bottom). For NKX2-5, we tested chr22:25,120,040 to 25,120,058 (circle with blue
line), chr3:8,596,782 to 8,596,800 (triangle with green line), and chr7:101,950,814 to 101,950,832 (square with red line). For TBX5, we tested chr2:30,359,836 to
30,359,854 (circle with blue lines), chr1:57,623,182 to 57,623,200 (triangle with green line), and chr4:119,047,319 to 119,047,337 (square with red line). HiPSC-
CM, human-induced PSC-derived cardiomyocytes; LS-GKM, large-scale gapped k-mer; SVM, support vector machine; TF, transcription factor.

Prioritizing SNPs altering NKX2-5 and TBX5 DNA binding
successfully predict changes in binding affinity between
reference and variant DNA sequences that alter cardiac TF-
DNA binding. Functional genomics studies have identified
millions of putative enhancers, but the identity of most bound
TFs is unknown (33). Our study can contribute to identifying
transcriptional regulators active in specific tissues or
environments.

We tested five SNPs that altered NKX2-5- (rs59310144,
rs6715570, and rs61872084) and TBX5-(rs7612445 and
rs7790964) DNA binding activity and associated with
genotype-dependent expression (RNASEH2B, BARD1,
METTL10, GNB4, and TBX20, respectively) in cardiac tissue
(Fig. 3, C and D). Four of the variants (rs6715570, rs61872084,
rs76122445, and rs7790964) effect allele’s impact on gene
expression were proportional to the changes in TF-DNA
binding activity. Inversely, the effect allele of variant
rs59310144 increased gene expression, while TF-DNA binding
decreased. RNASEH2B, BARD1, GNB4, and TBX20 have been
previously identified to be differentially expressed in the heart
atrial appendage when variants rs59310144, rs6715570,
4 J. Biol. Chem. (2023) 299(12) 105423
rs7612445, and rs7790964 (respectively) occur. RNASEH2B,
which has been previously found to be differentially expressed
in CVD risk events, is upregulated when the alternate allele of
variant rs59310144 is present (45). NKX2-5 can act as either
an activator or repressor (46–48). Benaglio et al. (2019) used a
combination of EMSA, luciferase reporter assays, and CRISPRi
to describe how the stronger TF-binding allele (rs590041) was
associated with reduced SSBP3 expression. In contrast, the
stronger TF binding allele (rs3807989) increased CAV1 and
CAV2 expression (19). This suggests that disruption of the
NKX2-5 binding site by rs59310144 could increase RNA-
SEH2B expression. BARD1 has also been identified as upre-
gulated when the alternate allele of variant rs6715570 occurs
in the heart atrial appendage. Copy number alterations in the
BARD1 locus have been associated with developmental delays,
including coarctation of the aorta during early organogenesis
and heart development (49). Variant rs61872084 has been
identified in the heart’s left ventricle when METTL10 (meth-
yltransferase-like protein 10) is downregulated when the
alternate allele occurs. Accumulation of METTL10 methylated



Figure 3. CVD-associated SNPs alter NKX2-5 and TBX5 in vitro binding. A, DelstaSVM score distribution of the 14,218 CVD-associated SNPs for NKX2-5
(top) and TBX5 (bottom). B, representative EMSA gel for rs59310144 reference/noneffect (Ref) and alternate/effect (Alt) alleles. Source image is available in
Fig. S3. C, binding curves of rs59310144, rs6715570, rs61872084, rs76122445, and rs7790964. Experiments were performed in triplicates and binding curves
show average bound fraction (X) and error bars are standard error. D, cardiac tissue eQTL analysis of RNASEH2B, BARD1, METTL10, GNB4, and TBX20
expressed in heart atrial appendage or left ventricle when rs59310144, rs6715570, rs61872084, rs76122445, and rs7790964 occur, respectively. CVD, car-
diovascular disease; SNP, single nucleotide polymorphism.

Prioritizing SNPs altering NKX2-5 and TBX5 DNA binding
products, such as S-adenosyl-L-methionine, S-adenosyl-L-ho-
mocysteine, and homocysteine have been correlated with
kidney dysfunction and CVDs in patients with type 2 diabetes
(50). G protein subunit beta 4 (GNB4) has been previously
associated with the regulation of heart rate stability and
identified in patients with higher cardiovascular mortality risk
(51). TBX20, a cardiac TF regulated by TBX5, is essential for
proper heart development with mutations that have been
associated with congenital heart diseases (52).

Our findings suggest that NKX2-5 regulation of the RNA-
SEH2B (repression), BARD1 (activation), and METTL10
(activation), and TBX5 regulation of GNB4 (activation) and
TBX20 (activation), genes are possible mechanisms that can be
further explored to establish rs59310144, rs6715570,
J. Biol. Chem. (2023) 299(12) 105423 5



Prioritizing SNPs altering NKX2-5 and TBX5 DNA binding
rs61872084, rs76122445, and rs7790964 as causal CVD risk-
variants. Although the etiology of human diseases is complex
and multifactorial, this approach can provide crucial infor-
mation that can be implemented during in vivo experiments or
clinical research to address genetic diseases caused by non-
coding SNPs. In summary, we believe this bioinformatic
approach, which considers tissue-specific eQTL analysis and
SVM-based TFBS classification, is a scalable method that can
be applied to multiple types of human diseases.

Experimental procedures

Data

ChIP-seq data sets for NKX2-5 and TBX5 from HiPSC-CMs
were collected from the ChIP-Atlas (34) and Remap (35) da-
tabases. DNase I hypersensitivity footprints for fetal heart tissue
(left atrium, right ventricle), heart fibroblast, and differentiated
cardiomyocytes were obtained from ENCODE (ENCS-
R764UYH) (33). Putative heart enhancers were downloaded
from the supplementary files from Dickel et al. (37) Disease or
trait-associated SNPs were downloaded from the GWAS cat-
alog (gwas_catalog_v1.0-associations_e0_r2022–11–29.tsv).

Model training

LS-GKM was implemented to perform predictions on TF-
DNA binding affinity for NKX2-5 and TBX5 (53, 54). LS-
GKM was downloaded through the Comprehensive R
Archive Network for Linux, Mac OS, and Windows platforms.
For each TF ChIP-seq bed file, peaks were sorted by intensity,
and the top 1000 peaks were used as a positive set for training
the models. The genNullSeqs function from the gkmSVM
package in R was used to generate negative training by
selecting unbound sequences of the same length, chromo-
some, and GC content as the positive training file. The
gkmtrain function was used to train the SVM classifiers. The
following parameters were used to train the model using a 5-
fold cross-validation: word length (l) = 11 and the number of
informative positions (k) = 7 (gkmtrain -x 5 -L 11 -k 7 -d 3 -C 1
-t 2 -e 0.005). Model performance was assessed via receiver
operator characteristic and precision-recall curves area under
the curve using the gkmSVM package in R.

Sequence scoring

The models for each TF were used to predict TF-DNA
binding through weighted scoring. The gkmpredict function
was used to score 18 bp sequences within 519,540 DGF from
cardiac tissue that were found within previously identified
human heart enhancers. These sequences were identified by
intersecting genomic coordinates of �1.6 million DGFs from
cardiac tissue with �80,000 putative enhancers active in fetal
and adult human hearts (36, 37). Parameters were set to their
default values, and gkmpredict was used to generate an output
file listing all sequences and their respective assigned scores by
the classifier model for NKX2-5 and TBX5 binding pre-
dictions. Positive scores predicted TF-DNA binding, while
negative scores predicted no binding activity.
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Position weight matrix from LS-GKM models

We scored and sorted every possible 11-mers and selected
the top 1000 sequences for the generation of a PWM using the
multiple Em for motif elicitation (55) web-based tool default
parameters to generate a logo.

Cardiovascular disease-associated risk-variants identification

Variants from the GWAS catalog (gwas_catalog_v1.0-
associations_e0_r2022–11–29.tsv) were downloaded and
filtered to identify CVD or trait-associated SNPs. Insertions,
deletions, and incomplete entries from the GWAS catalog
were removed. Variants were filtered from the “DISEASE/
TRAIT” column using the following function:

grepl(‘heart|cardiac|aortic|atrial|ventric|cardio|vascular|ar-
tery|coronary|myocardial|valve|cardio|cardium|stroke’, `DIS-
EASE/TRAIT`)

CVD SNPs were intersected with human putative enhancers
active in the human heart and DGF from the fetal heart. CVD-
associated SNPs that occur within human heart enhancers and
footprints were expanded to include variants in LD using the
LDLinkR package (56). CVD-associated SNPs and variants in
LD with genotype-dependent expression in cardiac tissue
(heart atrial appendage and left ventricle) were identified
through the GTEx Portal database. The GTEx portal reports
permutation-adjusted p-values for each gene for the most sig-
nificant SNP per gene. The r2d_threshold was set to >0.8, and
the p_threshold argument was left at default (p-value < 0.1).

NKX2-5 and TBX5 expression and purification

The NKX2-5 homeodomain gene (Asp16 to Leu96) was
cloned in pET-51(+) expression vector containing an N-ter-
minal Strep�Tag II and a C-terminal 10 × His�Tag through
Gibson Cloning and purified through Ni-NTA affinity chro-
matography, as previously described (18). The TBX5 T-box
domain gene (Met51 to Ser248) was cloned into a pET
expression vector with a 6× His�Tag (VectorBuilder Inc) and
purified through Ni-NTA affinity chromatography, as previ-
ously described (18) (Fig. S4A). The human TBX5 gene (Clone
ID HsCD00079979, DNASU Plasmid Repository) was cloned
in pEU-E01-GST-TEV-MCS-N1 (Cambridge Isotope Labora-
tories, Inc CFS-PEU-V1.0) vectors using Gibson Assembly
(New England Biolabs, Inc). Clones were verified by Sanger
Sequencing from the University of Wisconsin Biotechnology
Center DNA Sequencing Facility. TBX5 was expressed using
the Wheat Germ Cell-Free Protein Expression from the Cell-
Free Sciences Co following the manufacturer’s protocol. Pro-
tein expression was confirmed through SDS-PAGE followed
by Western Blot using Anti-GST HRP-conjugated (dilution:
1:10,000) NB100–63173) antibody (Novus Biological) (Fig.
S4B).

Electrophoretic mobility shift assay

NKX2-5 and TBX5 binding were evaluated using 20 bp
genomic sequences centered on the candidate SNP plus 20 bp
constant sequence for primer binding and extension. The
primer contained IR-700 fluorophore. All oligonucleotides
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were purchased from Integrated DNA Technologies, Inc and
sequences are in Table S1. The IR-700 fluorophore was added
through a primer extension reaction and purified using
EconoTaq Plus (Lucigen, 30,035–2), the QIAquick PCR Pu-
rification Kit (Qiagen 28,106). Twenty microliter binding re-
actions were performed in binding buffer (50 mM NaCl,
10 mM Tris-HCl (pH 8.0), and 10% glycerol) and 5 nM fluo-
rescently labeled dsDNA. Five concentration points were used
for purified NKX2-5 homeodomain and TBX5 T-box ranging
from 50 nM to 2000 nM. Cell-free expressed TBX5-DNA
binding was evaluated using four TBX5 dilutions (1, one-
fifth, 1/10, and 1/25) of the cell-free extract. Binding re-
actions were incubated for 30 min at 30 �C followed by 30 min
at room temperature before loading onto a 6% polyacrylamide
gel in 0.5× TBE (89 mM Tris/89 mM boric acid/2 mM EDTA,
pH 8.4). The gel was pre-ran at 85 V for 15 min, loaded at
30 V, and resolved at 75 V for 1.5 h at 4 �C. Gels were imaged
with Azure Sapphire Bio-molecular Imager with 658 nm
excitation and 710 nm emission.

Binding curves were generated by first quantifying the
fluorescence signal in each DNA band using ImageJ (57).
Background intensities obtained from blank regions of the gel
were subtracted from the band intensities. The fraction of
bound DNA was determined using Equation 1. The fraction of
bound DNA was plotted versus the TF concentration. Binding
curves were obtained by “one-site–specific binding” nonlinear
regression using Prism software.

Equation 1. Binding affinity from the integrated density of
bound and unbound bands.

Fraction bound¼ bound
ðboundþunboundÞ

Data availability

All data and supplementary material generated for this
study are publicly available at https://github.com/
joshuagmedina/cardioDisease_riskVariants.
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