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ABSTRACT

Ca2 (0.1-1.0 millimolar) accelerated dark-induced stomatal closure
and reduced stomatal apertures in the light in epidermal peels of Com-
melina communis L. In contrast, ethyleneglycol-bis4(8-aminoethyl ether)
N,N'tetraacetic acid (EGTA) (2 millimolar) a Ca2" chelator, prevented
closure in the dark and accelerated opening in the light. EGTA did not
promote significant opening in the dark. It is therefore concluded that
EGTA does not increase ion uptake into guard cells, but rather prevents
ion efflux. Addition of EGTA to incubating solutions with 10 millimolar
KCI resulted in steady state apertures of 15.6 micrometers, whereas in
the absence of EGTA similar apertures required 55 millimolar KCI and
150 millimolar KCI was needed in the presence of 1 millimolar CaC12.
The results demonstrate the importance of Ca2' in the regulation of
stomatal closure and point to a role of Ca2" in the regulation of K' efflux
from stomatal guard cells.

Stomata continuously regulate gas exchange in leaves, in re-
sponse to environmental changes. Stomatal opening is the result
ofsolute accumulation in the guard cells with K+ the main cation
involved (1 1, 17). It is commonly held that light increases active
efflux of protons, thereby generating an electrical potential. K+
accumulates in guard cells following its electrochemical gradient
(28). Ensuing increases in guard cell turgor and stomatal opening
result from the lower osmotic potential and water uptake. Mech-
anisms involved in stomatal closure are less known; however,
evidence indicates that stomatal closure does not result only
from a cessation of K+ uptake, but it also involves metabolic
mechanisms causing active K+ efflux (13, 26).
The involvement of Ca2" in the control ofK+ fluxes is known

both in animal (1) and plant tisues (21). Through its control of
K+ flux, Ca2" plays an important role in the regulation of cell
volume (7, 9). In stomata of Vicia faba the presence of Ca2"
increases guard cell specificity for K+, over other monovalent
ions (8). At concentrations of0.1 to 1 mm Ca2" caused inhibition
of opening and partial or total closure in stomata from different
species (5, 18, 22, 25, 27). Fujino (5) showed that in Commelina,
Ca2" was the only divalent cation inhibiting opening and that
EDTA, a Ca2+ chelator, prevented the closure of open stomata
held in the dark for at least 1 h.
Much evidence has been recently presented showing the im-

portance of cytoplasmic Ca2" concentration as a regulatory
mechanism for different enzymic activities. Cytoplasmic Ca2+
concentrations are primarily regulated by the activity of a Ca2"
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ATPase which modulates Ca2+ fluxes. This ATPase activity is
likely to be modulated by plant hormones and light. It is generally
accepted that a primary mode of action of Ca2+ is often by its
binding to Calmodulin, a Ca2+ binding protein (3).
The work reported in this paper investigates the role of Ca2'

in the regulation of stomatal movements. Obtained results dem-
onstrate that stomatal closure is markedly affected by CaCl2
concentrations as well as EGTA, a specific chelator of Ca2".

MATERIALS AND METHODS

Plants of Commelina communis L. were grown from seeds in
the phytotron of the Faculty of Agriculture in Rehovot. Incident
sunlight radiation was reduced by about 30% during the summer
months (May-November) using shade nets. Temperature was
27°C during the day (0800-1600) and 22°C at night. Natural day
length was lengthened to 16 h with incandescent lamps. The
plants were grown in trays in a mixture of vermiculite, volcanic
tuff, and peat (2:2:1), watered daily with tap water, and fertilized
twice a week with a half strength Hoagland nutrient solution.
The two top fully open leaves from plants 5 to 7 weeks old were
used for the experiments. All experiments were conducted during
the morning and were concluded not later than 1500. For the
experiments beginning with open stomata, the stomata were
induced to open in the intact detached leaves. The detached
leaves were immersed in a Petri dish, 14 cm in diameter, con-
taining tap water and held below the water surface with a
transparent plastic screen. The bottom of the dish was immersed
in a constant temperature water bath kept at 27°C and illumi-
nated by a bank of cool-white WS Gro-Lux fluorescent tubes
(200 umol m-2 s' PAR). These conditions led to stomatal
opening and apertures rcached 16 to 18 ,m after 2 h. Strips of
the abaxial epidermis were removed and floated in the light or
in the dark for about 30 min on a solution containing 60 mm
KCI, 10 mm Mes adjusted to pH 6.1 with Cholin bicarbonate
(Fluka AG). The epidermal peels were then transferred to the
treatment solutions in Petri dishes, kept at 27°C, and either
illuminated with white light (100 Mtmol m-2 s-I PAR), or held in
the dark. The treatment solutions contained 10 mm Mes with or
without 2 mm EGTA, adjusted to pH 6.1 with Cholin bicarbon-
ate. KC1 and CaCl2 concentrations were as indicated in "Re-
sults." Each point represents the mean of at least 180 apertures
and the standard error did not exceed +4% of any of the
represented values.

RESULTS
Closure rates and the different stomatal apertures were ana-

lyzed as a function of CaCl2 concentration or in the presence of
2 mM EGTA in the bathing solutions (Fig. 1, A and B). At the
onset of the experiment, average stomatal aperture were 17.6
Mm. In the light, 1 mm CaCl2 caused the most marked reduction
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in aperture, 15 Am within 60 min, with 0.1 mM CaCl2 showing
a less pronounced effect. Stomata treated with 0.01 mM CaCl2
maintained apertures similar to the controls (Fig. 1A). In the
dark, stomata closed faster in the presence of CaCl2 whereas the
presence of 2 mm EGTA in the bathing solution, was found to
prevent closure (Fig. IB).
The effect of EGTA upon the rate of stomatal opening and

steady state apertures is presented in Figure 2. In the dark, 2 mm
EGTA increased stomata apertures above control levels by 2.8
Mm within 3 h. In the light, EGTA enhanced both opening rates
(13.7 um in the 1st h as compared with 8.1 ,m in the 1st h in
the absence of EGTA) and steady state apertures (3.6 gm above
controls). When epidermal peels were transferred from light to
darkness, stomata reduced their aperture by 8.4 ,um within 1 h
in the absence of EGTA but remained open for at least 3 h in
the presence of the chelator.

Interactions between CaCl2, EGTA, and KCI in the mainte-
nance of steady state apertures were also tested. Epidermal peels
with a mean stomatal aperture of 15.6 ,m were incubated in
solutions of different KCI concentrations, with or without 2 mM
EGTA, or with 1 mM CaCl2. Stomatal apertures were then
measured after 1 h of incubation in white light 100 ,umol m-2
s-' (Fig. 3). The results showed that in the presence of 2 mm
EGTA, 10 mM KCI was required to prevent stomatal closure
while in its absence a concentration of 50 to 60 mM KCI was
needed. In the presence of 1 mm CaCl2 more than 150 mm KC1
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with open stomata were transferred to solutions containing 70 mM. KC1,
10 mM Mes together with either CaC1k or 2 mM EGTA, adjusted to pH
6.1 with cholin bicarbonate, in the light (A) and in the dark (B).
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FIG. 2. Stomatal opening in epidermal peels in the light (0, A) and
in the dark (0, a). The bathing solution contained 70 mM KCI and 10
mM Mes with (0, 0) or without 2 mM EGTA (A, A) adjusted to pH 6.1
with Cholin bicarbonate.

was required to prevent closure. In the presence of EGTA and
only 5 mM KCI, average apertures were of 6 Am, with KCl
concentrations higher than 10 mm causing further opening above
the base line levels. In the absence of EGTA, 20 mm KC1 was
the lower concentration preventing complete closure while a
concentration higher than 60 mm KC1 required to cause further
opening above the base line.
The possibility that EGTA directly affects membrane perme-

ability rather than by means of chelating the Ca2", and thus
reducing its concentration, was also examined. Epidermal peels
with open stomata were incubated in the dark in different CaC12
concentrations, in the presence of either 1 or 2 mm EGTA (Fig.
4). Without EGTA, stomata had apertures of 3.7 Mm and 2.6 Am
after 60 min in 0 and 0.01 mm CaCl2, respectively, and were
completely closed at higher CaC12 concentrations. At 1 mm,
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FIG. 3. Effect of KCI concentration on aperture of initially open

stomata (- --). The peels were floated in the light on solutions containing
10 mM Mes alone (0), and with 2 mM EGTA (0), or with 1 mm CaC12
(A), adjusted to pH 6.1 with Cholin bicarbonates. Apertures were meas-

ured after 60 min.
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FIG. 4. Effect ofCaCl2 concentration on the maintenance ofstomatal
aperture (initially open of 16 Mm). The bathing solution contained 70
mM KCI, 10 mM Mes (0) and I mM EGTA (A), or 2 mM EGTA (0)
adjusted to pH 6.1 with Cholin bicarbonate. Apertures were measured
after 60 min in the dark.
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CaCl2 caused complete closure in the presence ofEGTA (2 mM).
These results indicate that in order to inhibit closure at least all
the added Ca2" has to be chelated.

DISCUSSION
Ca2" (0.1-1 mM) accelerates stomatal closure in the dark and

causes closure in the light by inducing osmoticum efflux, with
K4 being its main component (Fig. 1, A and B). The prevention
of closure in the dark (Figs. 1 and 2) is the sole result of Ca2"
chelation, as indicated by the fact that higher CaCl2 concentra-
tions (>0.1 mM), probably above the chelation capacity of the
EGTA at these conditions, allowed stomatal closure (Fig. 4).
Intracellular and apoplastic Ca2" concentration in guard cells is
presently unknown, but apoplastic Ca2' chelation probably re-
duces its concentration in sites where K+ efflux is controlled, on
the plasmalemma or in the cytoplasm, and stops K4 efflux. Ca2"
concentration in guard cells and the mode of its regulation is
presently unknown. The fact that the optimal KCI concentration
needed for stomatal opening in Commelina is several times
higher than that in Vicia faba is consistent with the higher
sensitivity of Commelina to Ca2" (21). V. faba guard cells may
have more effective means to reduce Ca2" concentration and
thus K+ efflux. It is possible that the relatively high KCI concen-
tration required by Commelina compensates for K+ efflux which
takes place simultaneously with its influx during the opening
process. Cessation of K+ efflux can also explain the faster opening
rate and wider apertures in the presence of EGTA (Fig. 2).
The observation that in the dark EGTA does not induce

significant opening, indicates that it does not affect ion influx
directly. The response to EGTA contrasts with that of fusicoccin,
which causes rapid opening of stomata (10, 16) even under
conditions generally unfavorable for opening (24). Apparently,
fusicoccin induces proton extrusion from cells, generating an
electrochemical gradient and ion influx (15). Recent evidence
showed that K+ efflux from guard cells is not a passive process
(12). Similarly, stomatal closure is not necessarily accompanied
by a cessation of K+ uptake but rather is caused by increased
effiux (14). These facts are compatible with earlier findings in
connection with the inhibition of stomatal closure by metabolic
inhibitors, such as azide, KCN, and DNP (5, 19, 20).
The presence of single ion channels which showed high selec-

tivity for K+ has been recently demonstrated in the plasmalemma
of guard cell protoplasts of V. faba (23). Available information
does not indicate whether Ca2e is actively involved in K+ efflux
or in the gating of channels through which K+ is released. A Ca2"
requirement for K+ fluxes is well documented in animal tissues
(1, 6, 7) and plant tissues (3) as a component of the mechanism
regulating cell volume. On the other hand, Ca2" both reduces K+
efflux and increases influx (2, 4) in some plant tissues.
Our findings emphasize the crucial role of Ca2" in the control

of stomatal aperture through its involvement in the regulation
of closure. The data also point to the usefulness of EGTA for
studies of stomatal movements in which influx and efflux proc-
esses can be distinguished by the specific effect of Ca24 chelation
on K4 efflux.
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