
Elevated enhancer-oncogene contacts and higher oncogene 
expression levels by recurrent CTCF inactivating mutations in 
acute T cell leukemia

Willem K. Smits1,10, Carlo Vermeulen2,3,4,10, Rico Hagelaar1,2,10, Shunsuke Kimura5, Eric 
M. Vroegindeweij1, Jessica G.C.A.M. Buijs-Gladdines1, Ellen van de Geer1, Marjon J.A.M. 
Verstegen2,3, Erik Splinter6, Simon V. van Reijmersdal1, Arjan Buijs7, Niels Galjart8, 
Winfried van Eyndhoven9, Max van Min6, Roland Kuiper1,7, Patrick Kemmeren1, Charles 
G. Mullighan5, Wouter de Laat2,3, Jules P.P. Meijerink1,11,*

1Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands

2Oncode Institute, Utrecht, the Netherlands

3Hubrecht Institute-KNAW, Utrecht, the Netherlands

4Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands

5Laboratory of Pathology, St. Jude’s Children’s Research Hospital, Memphis TN, USA

6Cergentis BV, Utrecht, the Netherlands

7Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands

8Department of Cell Biology, Erasmus University Medical Center Rotterdam, Rotterdam, the 
Netherlands

9Diagnostics and Genomics Group, Agilent Technologies, Amstelveen, the Netherlands

10These authors contributed equally

11Lead contact

SUMMARY

Monoallelic inactivation of CCCTC-binding factor (CTCF) in human cancer drives altered 

methylated genomic states, altered CTCF occupancy at promoter and enhancer regions, and 

deregulated global gene expression. In patients with T cell acute lymphoblastic leukemia (T-ALL), 

we find that acquired monoallelic CTCF-inactivating events drive subtle and local genomic effects 
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in nearly half of t(5; 14) (q35; q32.2) rearranged patients, especially when CTCF-binding sites are 

preserved in between the BCL11B enhancer and the TLX3 oncogene. These solitary intervening 

sites insulate TLX3 from the enhancer by inducing competitive looping to multiple binding sites 

near the TLX3 promoter. Reduced CTCF levels or deletion of the intervening CTCF site abrogates 

enhancer insulation by weakening competitive looping while favoring TLX3 promoter to BCL11B 
enhancer looping, which elevates oncogene expression levels and leukemia burden.

In brief

Smits et al. report that TLX3 chromosomal translocations in T cell acute lymphoblastic leukemia 

patients recurrently include intervening CTCF-binding sites in the breakpoint area. Pressure to 

acquire inactivating aberrations in CTCF abrogate consequential enhancer insulation that promotes 

TLX3 promoter to BCL11B enhancer looping boosts higher oncogene expression levels and 

leukemia burden.

Graphical Abstract

INTRODUCTION

The CCCTC-binding factor (CTCF) is a highly conserved and constitutively expressed 

transcription factor containing 11 zinc fingers (ZFs) that binds into the major groove of 

DNA. Over 40,000 target sites in the human genome have been identified across tissues 

that depend on the variable use of ZFs.1–5 Unlike other transcription factors, CTCF binds 
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more distantly from transcriptional start sites (TSSs).6 Various other roles in addition to 

functioning as a transcriptional repressor or activator have been assigned to CTCF including 

regulation of antigen receptor or T cell receptor recombination events and serving as a 

regulator for genomic imprinting. CTCF promotes the formation of DNA loops,4,7–20 as 

first shown at the β-globin and the Igf2/H19 locus,21–25 and is recognized as a most 

dominant chromatin looping factor in mammalian cells. It often binds to and forms loops 

between the boundaries of self-interacting chromatin domains, also called topologically 

associating domains (TADs), structural entities of up to a megabase in size that are 

appreciable from chromosome conformation capture studies.26–29 Chromatin topology is 

considered a key factor in gene regulation, with CTCF-mediated loops facilitating promoter-

enhancer contacts and preventing unwanted contacts.30,31 CTCF-mediated looping depends 

on the cohesin complex,32–38 and complete removal of CTCF or cohesin results in loss 

of TADs and chromatin looping.31,39–41 The ring-shaped cohesin complex is composed 

of structural maintenance of chromosomes 1A and 3 (SMC1A and SMC3, respectively) 

and RAD21 proteins that are stabilized by STAG2. Cohesin complexes are loaded onto 

the chromatin fiber and are believed to actively extrude chromatin loops until stalled at 

CTCF-bound sites.42–45 Therefore, cohesin is found to be enriched at CTCF-bound sites in 

chromatin immunoprecipitation (ChIP) sequencing experiments.32,46–50 CTCF-binding sites 

are directional, and loops are predominantly stabilized among convergent, inward-oriented 

binding sites.43,51 Stable loops are released by the cohesin disassembly factor WAPL.52

Genetic mutations in cohesin components or the cohesin chromatin loader protein nipped-B-

like (NIPBL) protein are recurrently found in patients with Cornelia de Lange syndrome. 

Somatic mutations in STAG2 are recurrently found in patients with bladder cancer, 

glioblastoma, melanoma, or acute myeloid leukemia (AML)49,53 and, in patients with 

Ewing’s sarcoma, affects the EWS/FLI1 oncogenic program that enhances migration and 

invasion properties.54,55 In the hematopoietic system, inactivation of cohesin components 

results in the expansion of hematopoietic stem progenitor cells (HSPCs), increasing 

genomic accessibility near ERG, RUNX1, and GATA2 binding sites and elevating replating 

efficiencies.56,57 Heterozygous deletions of SMC3 increase cellular transformation by FLT3-

ITD, which drives myeloproliferative diseases in mice.58

CTCF is located on chromosomal band 16q22.1, and its inactivation has also been associated 

with cancer. Heterozygous loss of Ctcf predisposes mice to develop spontaneous or 

chemicalinduced invasive tumors with high proliferation potential.59 Monoallelic deletions 

of CTCF or inactivating missense mutations in specific ZFs have been identified in many 

human cancers including sporadic breast cancer, prostate cancer, Wilms tumors, and acute 

lymphoblastic leukemia (ALL).60–64 Heterozygous deletions or point mutations have been 

identified in 57% and 2.7% of patients with breast cancer and in 24% and 21% of patients 

with uterine endometrial cancers, respectively.59,65 In these tumors, CTCF depletion has 

been associated with large global changes in DNA methylation of divergent CpG islands 

and poor survival,59,66 although the precise role of CTCF aberrations in pathogenesis 

remains poorly understood.62 In this study, we investigated the functional significance and 

molecular-cytogenetic associations of CTCF aberrations in patients with T cell ALL.
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RESULTS

CTCF aberrations are abundant in patients with TLX3-rearranged T-ALL

DNA copy-number analysis on diagnostic biopsies of 181 pediatric patients with T cell 

ALL (T-ALL) using array-comparative genomic hybridization and/or multiplex ligation-

dependent probe amplification (MLPA) revealed recurrent monoallelic deletions affecting 

the chromosomal band 16q in sixteen patients (9%; Table S1). The minimal deleted area 

(MDA) affected exons 3 to 6 of the CTCF gene (Figures 1A and 1B). We then screened 146 

out of these 181 patients for CTCF mutations using singlemolecule molecular inversion 

probe (smMIP) sequencing67 (Table S2) and identified an additional 11 patients (8%) 

harboring mutations with variant allele frequencies of 34% or higher that were considered 

heterozygous mutations (Table S1), including missense mutations (2 patients), a nonsense 

mutation (1 patient), and insertion mutations that lead to frameshifts (5 patients). None of 

the patients had biallelic inactivation of CTCF. Furthermore, heterozygous mutations at the 

−2 or the −12 positions near the splice sites of exons 5 and 8 were identified in three patients 

(Figure 1B) and resulted in alternative out-of-frame CTCF splicing (Figures 1C and 1D). 

Therefore, CTCF aberrations were detected in at least 15% of all patients with T-ALL.

T-ALL is characterized by specific driving oncogene rearrangements that delineate 4 to 5 

subtypes that harbor unique expression signatures.63,69–71 CTCF aberrations were especially 

frequent in patients with T-ALL with TLX3-rearrangements (53%) compared with patients 

with other driving oncogenic rearrangements (6%, p = 2.2 3 10−16; Figure 1E). In relation 

to T-ALL subtypes as distinguished by unsupervised cluster analysis of gene expression data 

(n = 117),71 CTCF aberrations were particularly identified in patients belonging to the TLX 

subtype (9 out of 30), which is highly enriched for TLX3-rearranged patients. Only nine 

out of 87 patients belonging to other subtypes harbor CTCF aberrations (p = 0.01; Figure 

S1). Patients with CTCF deletions expressed roughly half of CTCF levels compared with 

CTCF wild-type patients (Figure 1F; p < 0.0135). No significant differences were identified 

between wild-type and CTCF mutant patients. CTCF expression levels for 5 patient-derived 

xenograft (PDX) models derived from 1 CTCF-mutated, 1 CTCF-deleted, and 3 wild-type 

patients were conserved between each primary patient sample and its corresponding PDX 

model (Figure S1).

CTCF aberrations in T-ALL do not affect global DNA methylation, gene expression, CTCF 
chromatin binding, or TAD formation patterns

As monoallelic CTCF inactivation in cancer has been associated with strong global changes 

in gene expression levels and DNA methylation patterns,59 we studied whether CTCF 
aberrations would drive similar global effects in patients with TLX3-rearranged T-ALL. 

For this, we compared overall gene expression levels of nine CTCF-aberrant patients 

with 11 CTCF wild-type patients. Remarkably, we did not identify a single differentially 

expressed gene among these patients (Figure S2A). To further identify global effects 

on DNA methylation, we compared methylation patterns for 4 CTCF-deleted versus 3 

CTCF wild-type patient samples (Table S1) and identified only a single significant and 

differentially methylated CpG-island probeset out of a total of 853,307 probesets (Figure 

S2B). So, within the detection limits of our methods, monoallelic loss of CTCF in patients 
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with TLX3-rearranged T-ALL therefore does not seem to cause consistent global changes in 

DNA methylation or gene expression levels.

We then investigated differential CTCF recruitment to chromatin binding sites using ChIP 

sequencing (ChIP-seq) in these same 6 TLX3-rearranged patients with T-ALL with (n = 

4) or without (n = 2) CTCF aberrations. Two patients with T-ALL who harbored TLX1 
or NKX2–1 oncogenic rearrangements were included as controls (Table S1). We found 

only 41 differentially called CTCF-binding peaks out of a total of 31,840 called peaks 

(Figures 2A and S2; Table S3). Interestingly, 5 out of these 41 binding peaks that were 

conserved in CTCF-deleted patients correspond to the TCRAD locus and were lost in CTCF 
wild-type patients with T-ALL due to TCRD recombination (Figure 2B). This result is in 

line with the involvement of CTCF in looping distant TCRAD V-gene segments to the 

recombination center during T cell receptor (TCR) assembly35,72–74 and demonstrates that 

CTCF-inactivated patients are compromised in establishing functional rearrangements of 

the TCRA locus. We did not find any further differences in CTCF binding at upstream 

TSSs (uTSSs), long non-coding RNAs (lncRNAs), or enhancer regions (Figure S2). To 

further investigate potential global effects of reduced CTCF levels in these 6 patients 

with TLX3-rearranged T-ALL (Table S1), we performed HiC to visualize TAD boundaries 

(Figure 2C). In line with data from Ctcf loss-of function mouse models that preserve TAD 

structures at minimal CTCF levels as low as 15% of normal levels,31 we did not find obvious 

differences in TAD boundaries among CTCF-inactivated versus wild-type patients (Figure 

2C). The calculated insulation scores for each 50 Kb bin from one CTCF wild-type patient 

compared with one CTCF-deleted patient using HiCExplorer75 highly correlated with an 

overall Spearman correlation of 0.92 over all bins (Figure 2D). Therefore, our data suggest 

that heterozygous loss of CTCF in TLX3-rearranged T-ALL does not lead to significant 

global changes in gene expression, DNA methylation, CTCF chromatin binding, or TAD 

formation.

Heterozygous loss of CTCF promotes γδ T cell development

CTCF aberrations are especially found in TLX3-rearranged patients, a disease entity 

that is associated with γδ T lymphoid lineage development.76,77 Most TLX3-rearranged 

patients harbor t(5; 14) (q35; q32) translocations that position the TLX3 oncogene in close 

proximity to the BCL11B enhancer, which inactivates one functional BCL11B allele.78 The 

BCL11B transcription factor is a critical regulator for T cell αβ-lineage commitment, and 

Bcl11b knockout mice demonstrate reduced numbers of αβ T cells but increased numbers 

of TCRγδ+ thymocytes.79,80 The BCL11B enhancer is located approximately 800 Kb 

downstream of the BCL11B gene, and CTCF is essential for Bcl11b expression during 

normal T cell development in mice by facilitating BCL11B enhancer to promoter loops.81 

In line with these results, we found that Ctcf conditional knockout mice crossed on the 

Lck-Cre transgenic and T lineage-specific background strongly reduced CTCF levels during 

early T cell development. While the percentage of TCRαβ+ thymocytes seemed unaffected 

in Ctcf heterozygous knockout mice, these dropped to 50% in homozygous knockout mice 

(Figures 3A and 3C). Despite an overall drop in total thymocyte numbers (Figure 3B), 

total TCRγδ+ thymocyte numbers in heterozygous and homozygous Ctcf knockout mice 

strongly increased compared with control littermates (Figures 3A and 3D). Furthermore, the 
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proportion of early thymocyte subsets including double-negative (DN) thymocytes (DN1–3), 

CD8 intersingle positive thymocytes increased in heterozygous versus homozygous Ctcf 
knockout mice, respectively, which is in line with a partial early T cell development block 

(Figure S3).

CTCF inactivation coincides with chromosomal breakpoint locations and increased TLX3 
levels

Given the importance of CTCF as a BCL11B regulator, we questioned whether CTCF 
inactivation would negatively impact BCL11B and TLX3 oncogene expression levels that 

are driven from the BCL11B enhancer on the wild-type or translocated alleles in TLX3-

rearranged patients, respectively. We determined the exact molecular DNA breakpoints for 

23 patients with TLX3-BCL11B-translocated T-ALL and for 2 TLX3-rearranged T-ALL 

cell lines (HPB-ALL and DND41) using targeted locus amplification (TLA).82 For this, 

TLA was performed on diagnostic patient samples using TLX3 and BCL11B promoter 

sequences as viewpoints (Table S4). These data were further complemented by whole-

genome sequencing breakpoint data from 8 additional patients with TLX3-rearranged T-

ALL.63 For 27 out of 31 patients and both cell lines, TLX3 was translocated to the BCL11B 
locus at 14q32 with breakpoints located in or just distal of the RANBP17 locus that is 

centromeric to TLX3 at 5q35 and distal of the BCL11B enhancer at 14q32. Most of these 

breakpoints preserved the DNase hypersensitivity sites HS3 and HS4 and “major peak” in 

the enhancer region that were identified as pivotal enhancer elements by others before83,84 

(Figures 4A and 4B). Remarkably, breakpoints in patients P3, P18, and PSJ5 preserved 

HS3 but not HS4 and major peak, indicating that HS4 and major peak are not essential 

for enhancer activity (Figure 4C). Three other patients had breakpoints telomeric to TLX3, 

resulting in the insertion of the complete BCL11B enhancer downstream of TLX3 in patient 

P14 (Figure 4C). One patient (P29) had evidence for a complex translocation to regulatory 

regions of the CAPSL locus at 5p13.2 (Table S4).

Using qRT-PCR, we found an overall strong correlation between TLX3 and BCL11B 
expression levels (Figure S4; p = 0.0002), suggesting that the BCL11B enhancer drives 

TLX3 or BCL11B by a similar mechanism from the translocated or the wild-type allele, 

respectively. We noticed that multiple CTCF-binding sites are present in the BCL11B 
enhancer region that are complementary (convergent) to those found in the transcriptional 

regulatory regions of BCL11B and TLX3 (Figure 4A). Seventeen out of 31 patients and 

both cell lines contained CTCF deletions or mutations, whereas 14 patients were CTCF 
wild type. Calculating exact genomic distances between the BCL11B enhancer and the 

TLX3 TSS revealed that in CTCF-aberrant patients, these genomic distances were generally 

larger than in CTCF wild-type patients (Figure 4D; p = 0.064). The more distally located 

breakpoints from TLX3, found in CTCF-inactivated patients, kept CTCF-binding motifs in 

the neighboring RANBP17 locus in cis and therefore in between the BCL11B enhancer and 

the TLX3 oncogene (Figure 4A). We hypothesized that these intervening CTCF-binding 

sites insulate the TLX3 promoter from the BCL11B enhancer, possibly through the 

formation of alternative or competitive DNA loops, and that CTCF inactivation is required 

to alleviate insulation and enable oncogenic TLX3 expression levels. Remarkably, we indeed 

found that CTCF-inactivated patients expressed lower BCL11B levels than CTCF wild-type 
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patients but expressed higher TLX3 levels that point to efficient TLX3 promoter interactions 

with the distal BCL11B enhancer in CTCF-inactivated patients (Figure S4). Calculating the 

TLX3 to BCL11B expression ratios revealed significantly higher ratios for CTCF-aberrant 

patients than for wild-type patients (Figures 4E [p = 0.0073] and S4). This enhanced 

oncogene activity may explain the higher white blood cells counts at disease diagnosis as 

noted for CTCF-inactivated patients (Figure 4F; p = 0.017).

BCL11B enhancer to TLX3 loops by chromatin conformation capture sequencing

We then studied promoter interactions of TLX3 and BCL11B with the CTCF sites within 

the distal BCL11B enhancer on the der(14) and the normal chromosome 14, respectively. 

For this, we applied chromatin conformation capture sequencing (4C-seq) analysis to viable 

diagnosis leukemia cells from 9 pediatric patients with (TLX3-rearranged) T-ALL, of whom 

7 had CTCF aberrations, using viewpoints (VPs) located closely to the TLX3 or BCL11B 
promoters.85 To facilitate data interpretation, we performed CTCF and SMC3 ChIP-seq 

on these patient samples and plotted their binding profiles alongside the 4C-seq chromatin 

contact profiles (Table S1; Figure 5). For the wild-type BCL11B allele, evidence for DNA 

loops between the BCL11B promoter and its 900 kb downstream distal enhancer was 

found in all these patients with T-ALL. We also found an additional longdistance loop 

centromeric of the BCL11B enhancer at base-pair position 98,444,890. All 4C-predicted 

DNA loop interactions coincide with CTCF- and cohesin-bound sites. Remarkably, no 

BCL11B promoter loops were identified to sequences in the 900 kb intervening region in 

between BCL11B and the distal enhancer that lacked CTCF- or cohesin-bound sites.

When analyzing the chromatin contacts of the TLX3 gene promoter, we indeed observed 

in all patient cells that TLX3 on the translocated allele specifically contacted the BCL11B 
enhancer across the breakpoint. This specific contact was readily appreciable even if the 

gene and enhancer were far apart, as seen in CTCF-aberrant patients (Figure 5). ChIP-seq on 

CTCF-aberrant patient cells with a distal BCL11B enhancer confirmed binding of CTCF and 

cohesin to the remaining intervening CTCF motifs, despite the lower CTCF levels in these 

patients. 4C-seq further showed that in these patients, the TLX3 promoter forms secondary 

loops with these intervening CTCF sites. We therefore hypothesized that these intervening 

CTCF sites compete with the distal BCL11B enhancer for looping to the TLX3 gene.

Restoring CTCF levels in HPB-ALL enhance competitive loop formation

To test this hypothesis, we developed a functional model system based on HPB-ALL cells. 

As displayed in Figure 4A, this t(5; 14) (q35; q32.2)+ cell line has preserved a local 

intervening CTCF-binding site in the translocation breakpoint area in between TLX3 and the 

distal BCL11B enhancer and has inactivated one CTCF allele due to a deletion. To increase 

CTCF levels i contacts with the distal na controlled manner in these HPB-ALL cells, 

they were lentivirally transduced with a doxycycline-inducible CTCF-blue fluorescence 

protein (mTagBFP) expression construct (iCTCF). To exclude potential lethal effects by 

altering TLX3 levels as demonstrated before for DND41 cells86 following CTCF induction 

in HPB-ALL cells, we introduced a constitutive Venus-tagged TLX3 rescue construct via 

a secondary round of lentiviral transduction (denoted as HPB-ALL-iCTCF/TLX3 cells; 

Figure 6A). In addition to bulk cells, G4 and E3 single-cell clones were produced that 
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express moderate and high CTCF (BFP) levels upon doxycycline treatment, respectively 

(Figure 6B). As visualized in Figure 6C, induction (+doxycycline [dox]) of CTCF in HPB-

ALL-iCTCF/TLX3 bulk cells reduced the contacts between the TLX3 promoter and the 

BCL11B enhancer but increased contacts with the intervening CTCF site and other proximal 

sequences just upstream of TLX3. Induction of moderate CTCF levels (clone G4) had a 

similar effect, while induction of higher CTCF levels (clone E3) even further promoted 

contacts of TLX3 with its proximal sequences, at the expense of its contacts with the 

distal BCL11B enhancer. To further investigate the role of the intervening CTCF-binding 

site in these competitive TLX3 contacts, we removed this site in E3 cells by CRIPSR-Cas9-

mediated genome editing (Figure 7A). This eliminated the competitive TLX3 contacts 

with their proximal sequences, restored efficient contacts with the distal BCL11B enhancer 

(Figure 7B), and led to higher endogenous TLX3 expression levels (Figure 7C).

DISCUSSION

Impaired maintenance of TAD structures can form the basis of cellular transformation 

and cancer and has been shown to activate oncogenes from enhancers that are normally 

located in separate TADs.87–89 Recurrent alterations in CTCF binding due to aberrant 

hypermethylation states in various cancers result in a general loss of CTCF binding near 

gene promoters while increasing binding near enhancers, often in concert with oncogenic 

transcription factors that drive expression of their downstream target genes as shown for 

NOTCH1 in T-ALL.90

In addition to boundary loss due to hypermethylation, recurrent inactivation of CTCF 

by genetic alterations has been observed in up to 50% of patients with breast cancer, 

endometrium cancer, Wilms tumors, or colon cancer.59,61,62 Monoallelic Ctcf loss in 

knockout mice creates a tumor-prone phenotype. In patients, it drives a hypermethylated 

phenotype and global changes in gene expression levels that enhance survival of cancer 

cells. For endometrium cancer, it results in altered cellular polarity and poor outcome.59,66,91

We here demonstrate that CTCF aberrations are identified in nearly 15% of pediatric 

patients with T-ALL, in line with previous studies.63 CTCF aberrations are predominantly 

associated with T-ALL driven by the TLX3 oncogene. This disease entity is associated 

with γδ-lineage development.77,92 To date, no consistent oncogenic mechanism for loss-of 

function CTCF aberrations in T-ALL has been described. In contrast to solid tumors and 

within the detection limits of the methods used, we here demonstrate that monoallelic 

CTCF aberrations in T-ALL do not globally change DNA methylation, gene expression 

levels, or TAD organization. Global CTCF genome binding was almost identical among 

patients with TLX3-rearranged T-ALL with or without CTCF aberrations, except for the 

TRA locus, which remains unrearranged in CTCF-aberrant patients. CTCF and cohesin 

have been shown essential for productive TRA-recombination events that facilitate locus 

contraction by looping distant V-gene segments into the vicinity of other gene segments 

near the VDJrecombination center.35,72,93 These results are in line with observations in Ctcf 

conditional knockout mice in the T cell lineage that result in reduced numbers of γδ T 

cells.7 Upon further inspection of these Ctcf knockout mice, we here reveal that loss of αβ T 

cells is accompanied by increased numbers of γδ T cells.
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We identified an unexpected mechanism where monoallelic CTCF loss contributes to 

increased oncogene expression levels by reducing the insulation strength of intervening 

CTCF sites in the translocation breakpoint region of TLX3-BCL11B-rearranged patients. In 

nearly 50% of TLX3-rearranged patients, breakpoints in the RANBP17 locus, which flanks 

the TLX3 oncogene, result in the preservation of intervening CTCF-binding sites in between 

the BCL11B enhancer and the TLX3 oncogene. CTCF deletions, frameshifts, or splice site 

mutations are almost exclusively found in those patients that preserve these intervening 

CTCF-binding sites in the breakpoint area.Onlya few patientsfor whom wefailed to identify 

CTCF aberrations had retained intervening CTCF motifs in between TLX3 and the distal 

BCL11B enhancer. As we did not identify inactivating mutations in the intervening CTCF 

motifs in these patients that impair CTCF binding, one may speculate that these patients may 

have alternative but functionally equivalent mutations in cohesin components such as STAG 

2.

During the t(5;14) chromosomal rearrangement, the TLX3 oncogene is aberrant placed in 

the vicinity of the BCL11B enhancer that activates TLX3 expression. This expression may 

be insufficient to drive full oncogene potential as the result of preservation of intervening 

CTCF binding sites in the breakpoint area that form competitive loops with the TLX3 

promoter. Indeed, restoration of higher CTCF levels in the T-ALL line HPB-ALL, which has 

inactivated one functional copy of CTCF, results in increased competitive loop formation 

between the intervening CTCF-binding site and TLX3, which insulates TLX3 from the 

TLX3 enhancer. Elimination of the intervening CTCF-binding site impairs competitive 

loop formation even at higher CTCF levels, resulting in enhanced TLX3 expression levels. 

Therefore, our work is in line with a model where preservation of CTCF-binding sites in 

the genomic breakpoint area of patients with TLX3-rearranged T-ALL yields only moderate 

TLX3 activation in preleukemia cells. We hypothesize that this provides a selective pressure 

on preleukemia cells to reduce CTCF expression levels by acquiring deletions or mutations 

that raise productive loop formations between TLX3 and the BCL11B enhancer and 

thus drive higher oncogene expression levels. As demonstrated by 4C-seq, formation of 

productive loops between TLX3 and the BCL11B enhancer involves multiple convergent 

CTCF sites. As shown by others, clustered CTCF sites form chromatin loops more robustly 

than isolated sites.94 Higher TLX3 expression levels in CTCF-aberrant patients will boost 

oncogenic activity, and these patients present with higher numbers of leukemia cells in 

peripheral blood and bone marrow biopsies at disease diagnosis. As no intervening CTCF-

binding sites are found in the normal BCL11B locus, this explains the lower BCL11B levels 

in CTCF-aberrant patients.

Therefore, the frequent association of CTCF aberrations that we find, especially with 

patients with t(5; 14) (q35; q32.2)-rearranged T-ALL who maintain TLX3-proximal CTCF 

sites, reflects a necessity to neutralize these sites in order to topologically enable the distal 

TLX3 enhancer to interact with the TLX3 oncogene and to boost its expression.

Limitations of the study

In this study, we have identified and characterized the interplay between genetic CTCF 
aberrations and the regulation of the TLX3 oncogene that is activated by the t(5; 14) 
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translocation in T-ALL. While focusing on CTCF aberrations, we did not investigate 

whether functional-equivalent mutations may exist in other components of the chromatin 

organization machinery such as cohesin or WAPL.

Given the relative large areas of chromosomal breakpoint regions in patients with t(5; 14)-

translocated T-ALL and the rarity of patients with T-ALL with this translocation (~20%–

25% of pediatric patients with T-ALL), we were limited in the number of available primary 

patient samples for genetic analysis. The unavailability of fresh patient samples also limited 

the inclusion of additional patient samples for DNA methylation analysis.

Quantitative measurements of CTCF protein levels in living cells did not yield consistent 

expression levels over different patient samples that related to the copy-number status of the 

CTCF gene. We therefore quantified CTCF mRNA levels in relation to the copy number 

or mutational status of the CTCF alleles. For the HPB-ALL model system as developed, 

restoration of CTCF levels using an inducible expression construct may exceed normal 

physiological CTCF levels.

STAR+METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Dr. Jules P.P. Meijerink 

(jules.meijerink@acerta-pharma.com).

Materials availability—Plasmids generated in this study are available upon request via the 

lead contact.

Data and code availability—Data generated by HiC, 4C, BeadChip, array CGH, ChIP-

seq, TLA and WGS data have been deposited at GEO and are publicly available as of the 

date of publication. Accession numbers are listed in the key resources table.

This paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient samples—Primary leukemia samples from 189 pediatric T-ALL patients were 

used (for patient details see Table S1). Eighty-five patients enrolled in the Dutch Childhood 

Oncology Group (DCOG) ALL-7 (n = 4), ALL-8 (n = 26), ALL-9 (n = 42) and ALL-10 

(n = 13) study protocols. Ninety-six patients enrolled in the German Co-operative Study 

Group for Childhood Acute Lymphoblastic Leukemia (COALL)-97 (n = 30) and COALL-03 

(n = 66). Breakpoint data from 8 selected pediatric T-ALL patient samples from the St 

Jude Research hospital were obtained. Functional analysis was performed on enriched, 

viably frozen leukemia cell fractions isolated from diagnostic bone marrow or peripheral 

blood biopsies. Leukemia blasts were enriched to 90–100% purities. The patient’s parents 
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or legal guardians provided informed consent to the use of leftover diagnostic material for 

research purposes and is approved by the institutional review boards of the Erasmus Medical 

Center (Rotterdam) and the Princess Má xima Center for Pediatric Oncology (Utrecht) in 

accordance with the Declaration of Helsinki.

Patient derived xenograft (PDX) models—Leukemic cells (1–10×10e6 cells) from 

pediatric T-ALL patients were intravenously transplanted into 8–12 weeks old female 

NOD scid gamma (NSG) mice96,97 that were purchased from Jackson’s Laboratory (Bar 

Harbor, ME). Six weeks after transplantation and onwards, mice were bled on a weekly 

basis to monitor the percentage of human chimerism in the peripheral blood. At 80% 

human chimerism or at overt illness, mice were sacrificed and hematopoietic cells from 

the spleen and bone marrow were isolated and viably frozen or used for second rounds of 

transplantation.

Cell lines—The t(5; 14)-containing cell line HPB-ALL was obtained via cell repository 

DSMZ. The cell line was passaged twice per week at 0.35 × 106 cells per mL in 90% 

RPMI 1640 medium containing 1x Glutamax, and 10% heat-inactivated FBS and grown in a 

humidified incubator at 37C and 5% CO2. Integrity of the cell line was checked regularly via 

short tandem repeat (STR) profiling.

Mice—The Ctcff/fl mice7 were provided by Rudi Hendriks (Erasmus Medical Center 

Rotterdam). The Lck-cre mice95 were purchased from Taconic (Rensselaer, NY). Further 

details are listed in the key resources table. The mice were bred and/or maintained at the 

animal care facilities of the Erasmus Medical Center Rotterdam and the Hubrecht Institute. 

Experimental procedures were approved by the Ethical Committees of Animal Welfare of 

the Erasmus University and Hubrecht Institute. Female and male mice were analyzed at 8–9 

weeks of age, unless specified differently in figure legends.

METHOD DETAILS

Copy number analysis using array-comparative genomic hybridization—Array-

comparative genomic hybridization was successfully performed for diagnostic patient 

samples of 94 pediatric T-ALL patients using the 2×400k array-CGH microarrays (Agilent 

Technologies, Santa Clara, CA; Design_ID 014698, 013282, and 021850) as generated using 

the manufacturer’s protocol in a dye-swap experimental design to minimize false positive 

results as described before.98 TIF images obtained by Agilent Scanner (model B and C) 

were analyzed with Cytogenomics v5.0.0.38 software to detect and visualize copy number 

variations at specific loci (or associated with the CTCF locus), employing settings in the 

Default Analysis Method – CGH v2 (ADM-2 algorithm with a threshold of 6.0, minimum 

of 3 consecutive statistically aberrant probes, and a minimum absolute amp/ del average of 

log2ratio 0.25). Data is available at GEO repository (key resources table).

Single molecule molecular inversion probe (smMIP)—For detection of CTCF 
mutations, we applied single molecule Molecular Inversion Probe (smMIP) technology 

according to the original protocol with minor adaptations.67 MIPgen software v1.2.1 

was used to design Molecular Inversion Probes (MIPs) for all coding exons of CTCF 
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(NM_006565).99 Regions of 100bp were targeted for capture. Each MIP contained a 20–

24 nucleotide ligation arm, an 8nt molecular tag, a 30nt linker sequence and a 16–20nt 

elongation arm, for a total of 78 nucleotides per ssDNA molecule. Every position in the 

region of interest (ROI) was covered by at least two MIPs. Molecules were produced on a 

25nm scale and provided in a TE solution (100μM) (Integrated DNA Technologies, Leuven, 

Belgium). Genomic DNA (100ng) from individual T-ALL patients was hybridized with 

phosphorylated MIPs and subsequently elongated and ligated; 33000 molecules of the ROI 

are expected in this reaction. MIPs were added in a 800-fold molar ratio to the genomic 

template, together with polymerase and ligase. Single-strand DNA circles were formed by 

a 60°C overnight incubation followed by nuclease treatment to remove non-ligated DNA 

molecules. Individual samples were barcoded and amplified in a 19-cycle PCR amplification 

step. Pooled libraries were cleaned up using AMPure XP beads (Beckman Coulter) to 

enrich for ≥277bp fragments. Sequencing was performed on the Illumina NextSeq500 

Desktop Sequencer using 2×150bp paired-end sequencing. Custom index and sequence 

primers were added during this procedure. Mutations were called by the SeqNext plugin of 

SeqPilot software using standard settings (JSI, Ettenheim, Germany), using a minimum of 

40 consensus reads that are covered by at least two independent MIPs. All primer and MIP 

sequences can be found in Table S2.

Gene expression profiling analysis—Affymetrix U133 Plus2 microarray data for the 

117 patients as previously published71 was normalized using Robust Multichip Average 

(RMA), using Affy package.100 Data is available at GEO repository (key resources table). 

From this cohort we selected TLX3-rearranged T-ALL patients with CTCF aberrations (n = 

9) and CTCF wild type (WT) (n = 13) patients. CTCF-aberrations were compared to WT 

using Limma.101 p < 0.05, FDR < 0.1 and a Log fold-change of >1 was used as cut-off. 

Results are visualized in a volcano plot using the “ggplot2” package.

DNA methylation arrays—DNA methylation is measured on 853,307 CpG sites for 

seven samples using Illumina Methylation EPIC BeadChip Infinium microarray, resulting in 

raw intensity data (idat) files. Quality control on idat-files was performed using an in-house 

protocol. One sample had several independent and dependent probe failures that were 

removed from further analysis. Three of seven T-ALL patient samples were CTCF wild type, 

having either BCL11B-CTCF translocations (n = 2) or the CAPSL-TLX3 translocation (n 

= 1). The remaining samples from 4 BCL11B-TLX3 translocated T-ALL patients harbored 

CTCF deletions (n = 3) or a CTCF mutation (n = 1). Differential methylation analysis 

was performed comparing CTCF wild type patients to patients harboring CTCF aberrations 

based on the betavalues using dmpFinder from R-package minfi (version 1.28.3). The log2 

values of mean probe intensities are calculated for both groups. The output of the differential 

methylation analysis was flagged for all probes using significance cut-off values of p < 0.05, 

q < 0.1 and a fold change >1. Data are available at GEO repository (key resources table).

Chromatin Immunoprecipitation (ChIP) and peak calling—ChIP-seq was 

performed according to the SimpleChIP® Enzymatic Chromatin IP kit #9003 (Cell Signaling 

Technologies, Danvers, MA) procedure. Briefly, viably frozen diagnostic patient samples or 

patient-derived xenograft (PDX) cells were thawed and cross-linked in 1% formaldehyde 
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(Merck, St. Louis, MO) for 10’. The chromatin was sheared using the Bioruptor Pico 

(Diagenode, Liege, Belgium; 7 cycles of 30′ on, 30′ off). After sonication, samples were 

divided and ~4×10e6 cells were used for each ChIP experiment. Antibodies were added to 

concentrations as recommended by the manufacturer and incubated overnight at 4°C under 

continuous rotation. Anti-CTCF, anti-SMC3 and normal rabbit IgG antibodies are listed in 

the key resources table. DNA was pelleted with ChIPgrade Protein G Magnetic Beads and 

washed according to the manufacturer’s protocol. After reverse cross-linking, DNA was 

purified with spin columns from the SimpleChIP kit or the Qiaquick PCR Purification Kit 

(Qiagen, Hilden, Germany). DNA concentrations were measured using the Qubit HS DNA 

sensitivity kit (ThermoFischer, Waltham, MA). Libraries were prepared using the NEXTflex 

Rapid DNA Sequencing Kit (PerkinElmer). Samples were PCR amplified, checked for size 

and the absence of adaptor dimers on 2% agarose gel. Barcoded libraries were sequenced for 

75 bp at a single end using the Illumina NextSeq500 sequencer.

BAM files from sequenced samples were merged using samtools if the total coverage was 

insufficient in a single sequence run.102 BAM files were used for peak calling. Peaks were 

identified by comparing results for ChIP samples versus input DNA control samples using 

MACS v2.1.1.20160309.103 A q-value of 0.01 was applied while other settings were kept at 

default. We then classified CTCF peaks into:

i. TAD-associated CTCF peaks located in <3 kb distance from TAD borders.

ii. Upstream regions (<5kb) from transcriptional start sites (uTSS) of genes as 

present in the UCSC genome browser (https://genome.ucsc.edu ).104,105

iii. Upstream regions (<5kb) from transcriptional start sites of long non-coding RNA 

genes (uLnc) as present in DeepBase106,107 and Lncpedia.108

iv. CTCF-peaks within enhancer (Enh) regions as present in GeneHancer.109

v. Not classified.

BEDTools was used to create bed files for each category and Deeptools110,111 was used to 

create centered heatmaps. RPKM values from each CTCF peak were visualized with color 

package “paired” using a scaling between 0 and 50. Following peak calling, we then looked 

for differentially-bound CTCF peaks comparing data from CTCF wild type patients to 

patients with evidence for heterozygous inactivation of CTCF due to deletions or mutations 

using the edgeR package.112 The resulting p values were corrected for false discovery rate 

(FDR) using a Benjamini-Hochberg correction for multiple testing.113 Sites with an FDR 

<0.05 were considered for further analysis. This differential binding analysis and plots were 

performed using DiffBind, an R-package created by Rory Stark and Gordon Brown (2011). 

The package BEDTools114 was used to identify nearest upstream and downstream genes. 

Data are available at GEO repository (key resources table).

Chromatin conformation capture on chip (4C)—4C template was prepared following 

as described in the updated 4C-seq protocol85 using DpnII (New England Biolabs (NEB), 

Ipswich, MA) as the primary restriction enzyme and Csp6I as the secondary restriction 

enzyme (NEB). With several small adaptations using 10 million viable cells as input: 

Ethanol precipitations of the template were replaced by on-bead Isopropanol precipitation 
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using NucleoMag P-beads (Macherey-Nagel, Düren, Germany). Inverse PCR was performed 

in two rounds, initially 16 cycles of PCR were performed with viewpoint specific primers. 

The PCR product was purified, and size selected using 0.6x AMPure XP beads (Beckman 

Coulter). Subsequently a second round of PCR (20 cycles) was performed with universal 

indexed primers. Sequencing was performed on the Illumina Nextseq platform using single-

end sequencing (75bps). Data was mapped and analyzed using our in-house pipeline, as 

described before115. All 4C plots indicate the mean coverage rolling windows spanning 

21 restriction fragments. For each sample, 2 × 107 cells were thawed and split into two 

replicates prior to crosslinking. For primary patient samples, single 4C experiments were 

performed. For all 4C experiments performed on cell lines, a minimum of 2 replicate 

experiments were performed. To compare relative interaction frequencies as indicated in 

Figures 6 and 7 between conditions, we summed the total 4C signals within a given region, 

i.e., enhancer region (chr14:98,602,411–98,675,204), competitive peak (chr5:170,716,369–

170,756,369) or viewpoint (VP; chr5:170,653,532–170,710,663). The resulting frequencies 

were then divided by each other, and the resulting relative frequencies were compared 

between the different conditions. Data are available at GEO repository (key resources table).

Hi-C sequencing—The Hi-C protocol was adapted from the in situ Hi-C protocol 

as published.30 Hi-C libraries were sequenced using Illumina Nextseq Paired-End 75bp 

sequencing. FastQ files were mapped to the human genome (GRCh37) using bwa-mem116 

and filtered with removal of duplicates using HiCCUP v0.5.10.117 Chromosomal interaction 

matrices were generated using Juicer118 at 10 kb resolution and normalized by Knight and 

Ruiz’s matrix balancing algorithm. TAD insulation scores for each 50Kb bin were calculated 

using HiCExplorer.75 Data are available at GEO repository (key resources table).

Breakpoint analysis by targeted locus amplification or WGS—For the preparation 

of patient samples and cell lines we made use of the Targeted Locus Amplification,82 

provided as a service by Cergentis BV, Utrecht, the Netherlands. We used the manufacturer’s 

protocol to prepare the samples.119 Briefly, 5–10 million cells were cross-linked by adding 

37% Formaldehyde to a final concentration of 1%. Cells were lysed and DNA was digested 

with NlaIII (New England Biolabs), followed by ligation with T4 DNA ligase. Following 

a crosslink removal step, the DNA was purified and digested using NspI (New England 

Biolabs) and ligated. The DNA was purified and a TLA PCR was performed with primers 

that were specifically designed for this study. The PCR product was purified by AMPure 

XP beads (Beckman Coulter, Brea, CA) and prepared for Next Generation Sequencing. 

Sequence data by Illumina MiSeq has been deposited at the Sequence Read Archive (SRA) 

(key resources table). The breakpoints of 3 T-ALL patients (#10929, #9319, #9452) have 

been determined before using Complete Genomics WGS sequencing platform120 and are 

available from the European Nucleotide Archive database (http://www.ebi.ac.uk/ena) (key 

resources table). Breakpoint for the St Jude T-ALL patients have been determined by 

Illumina HiSeq 2000 WGS before,121 and are accessible through the European Genome-

phenomen Archive (key resources table).

Cloning of plasmids and virus production—SFFV promoter, IRES and mCherry 
reporter were stripped from lentiviral pLEGO-iC2 via ApaI/PciI sites to include a Gateway 

Smits et al. Page 14

Cell Rep. Author manuscript; available in PMC 2023 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ebi.ac.uk/ena


compatible attR1-ccdB-Cmr -attR2 cassette. Gateway compatible attL1/attR5-flanked 

pSFFV and attL5/attL2-flanked TLX3-T2A-Venus dsDNA fragments were synthesized, 

and then recombined into the Gateway-compatible pLEGO-iC2 backbone (Figure 6A) to 

generate a TLX3 expression lentiviral transfer vector. Similarly, dsDNA synthesis and 

recombination were performed for attL1/ attR5-flanked doxycycline-inducible promoter, 

attL5/attL4-flanked mTagBFP-Thosea asigna virus 2A peptide (T2A)-CTCF, attR4/attR3-

flanked-WPRE-pSFFV, and attL3/attL2-flanked TETon-T2A-ΔNGFR reporter, to generate 

an inducible CTCF lentiviral transfer vector (Figure 6A). For lentivirus production, 

HEK293T cells were transfected with transfer vector DNA and helper plasmids pMD2.G 

(VSV-G), pMDLg/pRRE, and pRSV-REV (Addgene), using 1μL X-tremeGENE HP DNA 

Transfection Reagent (Roche) per 1μg DNA. Transfection was performed in 90% DMEM 

containing 1× Glutamax, 1% penicillin/streptomycin, and 0.25 mg/mL Fungizone, and 

10% heat-inactivated fetal calf serum (FCS) and cultured for 20 h at 37°C and 5% CO2. 

Lentivirus particles were collected in Opti-MEM1 (Thermo Fisher Scientific) without serum 

for up to 48h. Culture medium containing lentiviral particles was filtered through a 0.45μm 

filter and concentrated 22-fold using a VIVASPIN 20 concentration column (Sartorius).

Virus transduction and CTCF induction—For transduction, one volume of TLX3-

expression lentivirus was mixed with one volume of HPB-ALL cells (1 × 106 cells/mL) 

in RPMI 1640 at an end concentration of 1% FCS and incubated for 16 h in a humidified 

incubator at 37°C and 5% CO2. Two volumes of 20% FCS-RPMI were added to limit 

further transduction. Medium was refreshed twice a week, until cell growth was observed 

under a microscope. Cells were then further cultured as described earlier. Three weeks after 

transduction, cells were purified for Venus positivity on a cell sorter (Sony Biotechnology, 

San Jose, CA, USA). Next, this HPB-ALL TLX3-Venus line was similarly transduced 

with a lentivirus containing doxycycline inducible mTagBFP-T2A-CTCF and a constitutive 

truncated NGFR. Three weeks after transduction, cells were stained with PE-CD271 

(ME20.4–1.H4) (Miltenyi, Bergisch Gladbach, Germany) according to manufacturer’s 

instructions, and purified for PE via cell sorting. Single cell clones were then grown out 

through a limiting dilution, and clones were chosen for further research based on robust 

mTagBFP expression on a flow cytometer. For these, and subsequent, experiments four days 

of exposure to doxycycline at a concentration of 200 ng/μL was used.

Genome editing—An mTagBFP-CTCF expressing subclone of HPB-ALL was chosen 

to delete an intervening CTCF binding site on the TLX3 locus via CRISPR-Cas9 

mediated technology. Four gRNAs were designed targeting ~150 bp up and downstream 

of the predicted CTCF site at Hg37:chr5:170,736,369, but also in the coding region op 

HPRT1 (Table S3); disrupting HPRT1 allows selection of NHEJ-repaired cells, thus also 

successfully transfected cells, via addition of 6-thioguanine (6-TG) to the culture medium. 

3μg Cas9 recombinant protein and a cocktail of 5 gRNA’s (4.4pmol each) were mixed in 

a 2 μL reaction volume and incubated at room temperature for 20 min to generate RNP 

complexes. 0.1 million cells in 8μL were added to the RNP complex, and electroporated 

with a Neon Electroporator with program 1400V, 10 ms, 1 pulse. Cells were allowed to 

recover for seven days in previously described 1mL culture medium. Following this, 0.25 

μg/mL 6-TG was added during culture for ten days to select for cells without HPRT1 
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expression. Single cells were then grown out through a limiting dilution. DNA was extracted 

from 1 million cells of each outgrowing clone with EchoLUTION Cell Culture DNA Kit. 

Genotype, predicted as a 330 bp deletion, was determined on 20 ng DNA, using AmpliTaq 

Gold polymerase at recommended reaction conditions, modified to 2.5 mM MgCl2, 58°C 

annealing for 32 cycles. Primers are listed in the key resources table. PCR products were 

assessed on a 1.5% agarose gel.

DNA and RNA isolation and cDNA synthesis—DNA and RNA was isolated 

with TRIzol reagent (Thermo Fisher) according to the guidelines of the manufacturer 

with minor modifications as described before.98 Briefly, an additional phenol-chloroform-

isoamylalcohol (25:24:1, pH = 4.0) extraction step was performed for RNA purification to 

remove residual DNA and the RNA was precipitated using isopropanol along with 1μg of 

(20 μg/mL) glycogen (Roche, Almere, the Netherlands). After precipitation, RNA pellets 

were dissolved in 20 μL RNAse-free TE-buffer (10mM Tris-HCl, 1mM EDTA, pH = 8.0). 

RNA concentrations were measured using a spectrophotometer. For reverse transcription 

of RNA into cDNA, 1mg of RNA was denaturated for 5′ at 80C, and reverse transcribed 

using a mix of random hexamers (2.5 μM, Life Technologies) and OligodT primers (20nM, 

Life Technologies). The RT-reaction was performed in a total volume of 25 μL containing 

0.2 mM dNTPs, 200U Moloney murine leukemia virus reverse transcriptase (Promega, 

Madison, WI, USA) and 25U RNAsin (Promega). Conditions for the RT-reaction were 37C 

for 30° and 42C for 15° followed by an enzyme inactivation step at 94C for 5’. The cDNA 

was diluted to a final concentration of 1–8 ng/mL and stored at 80C.

Real time quantitative PCR—A DyNAmo HS SYBR Green PCR kit (Thermo Fisher, 

Waltham, MA) and CFX384 Touch® Real-Time PCR detection system (Biorad, Hercules, 

CA) was used for QRT-PCR in the presence of 3.75 pmol primers and a final concentration 

of 4 mM MgCl2 in a total volume of 12.5 μL. Primers used in this study are listed in Table 

S2.

Flow cytometry—Antibodies used were diluted according to the manufacturer’s 

instructions in staining buffer (PBS supplemented with 1% FBS), and included all 

conjugated anti-mouse antibodies in the key resources table. Cells were stained for 20–30 

min on ice, in the dark. After staining the cells were washed and taken up in staining buffer 

supplemented with DAPI (Biolegend). Flow cytometry analysis was performed on an LSRII 

(BD Bioscience) and analyzed with FlowJo software (BD Bioscience).96,97

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests have been described in text of figure legends with the number of replicates 

specified. Differences in CTCF levels among patients have been determined using the 

Mann-Whitney U test using SPSS Statistics 26 software. Significant differences based on 

flow cytometry analyses as used in Figure 3 and for relative TLX3 expression levels in 

Figure 7 have been determined using an unpaired t test. Differences among patients in 

genomic distances between TLX3 and the BCL11B enhancer in t(5; 14) breakpoint (Figure 

4D), relative TLX3 expression to BCL11B expression levels (Figure 4E) and white blood 

cell counts (Figure 4F) was done using the Kruskal-Wallis test using SPSS software. The 
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p value corrections for false discovery rate (FDR) for various genomic analyses was done 

using a Benjamini-Hochberg correction for multiple testing113 in the statistical environment 

R and have been described in the corresponding sections in STAR Methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. CTCF aberrations are abundant in pediatric patients with TLX3-rearranged T-ALL
(A) Array comparative genomic hybridization (array-CGH) results of 7 pediatric patients 

with T-ALL with loss of heterozygosity of chromosomal arm 16q (GRCh37). Heterozygous 

deletions are displayed (red bars). The minimal deleted area (MDA; see inset) affects the 

CTCF locus including all 11 zinc fingers.

(B) Positions of heterozygous point mutations in or near splice acceptor sites (in dark blue) 

and missense (in light blue), nonsense (in orange), and insertion mutations (in red) in the 

coding regions of CTCF transcript ENST00000264010. Exon boundaries are indicated by 
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vertical dashed lines, and the 11 zinc finger domains are displayed by numbered gray blocks, 

whereas the position of the MDA (see A) is shown by a red bar. Bottom: positions of 

30 mutations as identified in children with hematopoietic malignancies from the St. Jude 

Research Hospital ProteinPaint database.68

(C) Reverse transcription PCR results from 3 patients with T-ALL with alternative exon 4 

to 6 (P61) or exon 7 to 9 (P2) splicing due to (−2) splice acceptor site mutations upstream 

of exons 5 or 8, respectively. P41 demonstrates alternative exon 7 to 8 splicing due to a C 

to G transversion mutation at the −12 position upstream of exon 8 that creates a new splice 

acceptor site. PCR product sizes in base pairs (bps) have been indicated. The 1 kb plus 

ladder (New England Biolabs) is displayed, with band sizes starting from 100, 200, 300, and 

higher bps.

(D)The alternative exon 7 (green sequence) to exon 8 (black sequence) splicing (E7-aE8) is 

displayed for P41. Bases from the intron that are misspliced are shownin red.

(E)Relative distribution of CTCF deletions (percentage, marked in gray), mutations (marked 

in orange), or wild type (marked in blue) as displayed for patients withT-ALL harboring 

specific oncogene rearrangements.

(F)Relative CTCF expression levels normalized to housekeeping gene GAPDH as 

determined by qRT-PCR in diagnostic leukemia cells from pediatric patients with TLX3-

rearranged T-ALL who are CTCF wild type (n = 13, blue circles) or who harbor mutations 

(n = 4, orange circles) or deletions (n = 13, gray circles). Each circle represents two 

technical replicates. Median expression values are displayed by red bars. qRT-PCR results 

for the patient who has the smallest CTCF deletion affecting exons 3 to 6 is indicated by 

an open gray circle; this deletion falls outside the exons used for qRT-PCR analysis. CTCF-

deleted patients express significantly lower CTCF levels than CTCF wild-type patients 

(Mann-Whitney U test), with exclusion of data from the patient with the smallest CTCF 
deletion.
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Figure 2. CTCF aberrations in T-ALL do not affect global DNA methylation, gene expression, 
CTCF chromatin binding, or TAD formation patterns
(A)Volcano plot of differentially CTCF-bound DNA sites for patients as described in (B). 

Significant binding peaks (significance levels < 0.05, false discovery rate [FDR] < 0.1, and 

fold change > 1) are indicated in red.

(B)Visualization of the 41 differentially bound CTCF peaks for patients as described in (C) 

and two control patients with T-ALL with TLX1 or NKX2–1 oncogene rearrangements. 

TCRA locus binding peaks are marked by the red square. Different peak intensity levels are 

indicated by colors as shown.
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(C)The collapsed HiC interaction profile revealing TADs within a representative 

chromosomal region (chr10:75–117 Mb region [GRCh37]) for the 2 samples frompatients 

with CTCF wild-type versus 4 samples from patients with CTCF-inactivated T-ALL (as also 

used for the data in B of Figure S2).

(D) TAD insulation scores for each 50 Kb bin for a patient with CTCF wild-type versus 

a patient with CTCF-aberrant, TLX3-rearranged T-ALL as calculated using HiCExplorer. 

Blue dots refer to the bins from the chr14:98,000,000–99,000,000 region (GRCh37/hg19) 

that encompass the BCL11B enhancer region. Patient characteristics as used for this study 

have been summarized in Table S1.
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Figure 3. Ctcf loss impairs αβ T cell, but not γδ T cell, development
(A) TCRαβ and TCRγν thymocyte development in Lck-cre:Ctcffl/fl or Lck-cre:CtcfWT/fl 

mice compared with CtcfWT/fl or Ctcffl/fl control littermates at 9 weeks of age. Relative 

distribution (percentage) of CD3+ TCRαβ+ or TCRγν+ thymocytes are displayed for 

representative examples from Lck-cre:Ctcffl/fl (n = 4), Lck-cre:CtcfWT/fl (n = 7), or CtcfWT/fl 

or Ctcffl/fl control mice (n = 5) are shown.

(B–D) Total thymic cellularity (B), total numbers of TCRαβ+ thymocytes (C), and total 

numbers of TCRγν+ thymocytes (D) are displayed. Significance levels are determined by 

using an unpaired t test: *p < 0.05, **p < 0.005, and ***p < 0.0005.
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Figure 4. CTCF inactivation coincides with chromosomal breakpoints and increased TLX3 levels
TLA breakpoints (arrows) from derivative chromosomes 14 or 5 for 30 pediatric patients 

with t(5; 14) (q35; q32)-translocated T-ALL and cell lines HPB-ALL and DND41 as 

displayed on the 5q35.1

(A) and 14q32 (B) chromosomal regions. Positions of genomic breakpoints (indicated by 

arrows) in patient blasts or the HPBALL or DND41 cell lines in the intervening region 

in between the BCL11B enhancer and the BCL11B gene and centromeric to TLX3 (black 

arrow, translocation type A) and telomeric to TLX3 (red arrow, translocation type B) are 
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shown. Flags connected to arrows point to the direction of sequences that are included in 

the der14 (n = 27) or the der5 (n = 3, red arrows) chromosomal junctions. Patients with 

T-ALL or cell lines with heterozygous CTCF deletions (gray patient numbers) or mutations 

(yellow patient numbers) or who are CTCF wild type (black patient numbers) are displayed. 

Green and yellow arrow points mark the relative position and orientation of CTCF-binding 

sites that are bound by CTCF using chromatin immunoprecipitation sequencing (displayed 

in Figure 5). DNase hypersensitivity sites (HS3 and HS4) and major peak (MP) have been 

indicated.

(C)Summary of TLX3 translocation types as found for the 30 pediatric patients with T-ALL 

as displayed in (A) and (B).

(D)Genomic distances between the TLX3 oncogene and the BCL11B enhancer for 22 

pediatric patients with CTCF wild type (blue circles), CTCF mutant (yellow circles), 

or CTCF-deleted (gray circles) TLX3-rearranged T-ALL (St. Jude patients not included). 

Genomic distances for HPB-ALL and DND41 are indicated by a gray or a yellow square, 

respectively.

(E)Relative TLX3 expression levels compared with BCL11B expression levels for patients 

as described in (D). Each circle represents two technical replicates.

(F)Whitebloodcellcountsatdisease presentationfor patientswithT-ALL asdescribed in(D). p 

valueshavebeendetermined using Kruskal-Wallissignificance testing.
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Figure 5. BCL11B enhancer to TLX3 loops by chromatin conformation capture sequencing
(A) The average chromatin conformation capture (4C) interaction plots of the BCL11B 
promoter to local or distant BCL11B enhancer sequences (loop interaction) is displayed 

for the wild-type BCL11B locus from 4C data of 7 pediatric patients with TLX3-

translocated (t(5; 14) (q35; q32)) T-ALL with heterozygous CTCF-inactivating events and 

mirrored against the average interaction plot for two patients with t(5; 14)-translocated 

T-ALL that are CTCF wild type. The 4C viewpoint was positioned in the BCL11B 
promoter. Averaged and stacked CTCF and cohesin (SMC3) chromatin binding peaks 
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by chromatin immunoprecipitation (ChIP)-seq for indicated CTCF-deleted/-mutated and 

wild-type patients are displayed above or below the corresponding 4C tracks, respectively. 

The BCL11B enhancer region (4C interaction region) has been indicated by a black line 

above the tracks, and the GRCh37/hg19 positions of MP (red box), lncRNAs, and the 

BCL11B (legend continued on next page) gene have been indicated. lncRNA and BCL11B 
reading frames that are positioned in telomeric (brown) or centromeric (green) orientations 

have been indicated. CTCF-binding sites in telomeric (red bar) or centromeric (blue bar) 

orientations are displayed in between 4C tracks.

(B) Mirrored average 4C interaction plots for the der14 chromosome of the same patients 

with TLX3-translocated (t(5; 14) (q35; q32)) T-ALL as used in (A) are displayed. The 4C 

viewpoint was positioned in the TLX3 promoter. 4C interaction tracks that cover 5q35 

genomic sequences are indicated in blue, whereas interaction tracks that cover 14q32 

genomic sequences are displayed in gray. Patient numbers and their relative 5q35 or 14q32 

sequences and breakpoint involved in the der14 chromosomal junctions are displayed for 

each patient. Averaged and stacked CTCF and cohesin (SMC3) binding peaks for parental 

HPBALL cells and the relative positions of MP (red box), lncRNAs, genes, and CTCF-

binding sites are indicated as described in (A).
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Figure 6. Increased CTCF levels in HPB-ALL enhance competitive loop formation
(A)Schematic overview of the lentiviral doxycycline-inducible blue fluorescent protein 

(BFP)-T2A-CTCF construct and the constitutively active Venusgreen-T2ATLX3 rescue 

construct are displayed that have been used to produce the HPB-ALL derivative HPB-ALL-

iCTCF/TLX3 bulk line.

(B)Flow cytometry analysis of single-cell clones G4 and E3 that have been derived from 

bulk HPB-ALL-iCTCF/TLX3 cells and that constitutively express TLX3 (in addition 

to endogenous TLX3 oncogene expression) as visualized by Venusgreen intensities but 
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moderate (G4) or high (E3) CTCF expression levels (as determined by BFP expression) 

following doxycycline exposure.

(C)Display of representative examples of normalized 4C interaction plots for the der14 

chromosomal region of HPB-ALL-iCTCF/TLX3 bulk cells or the G4 or E3 single-cell 

clones that were cultured in the absence (−dox, blue tracing) or presence (+dox, red 

tracing) of doxycycline for 2 days. Gray tracing represents equal levels of interactions 

among −dox and +dox conditions. The 4C viewpoint was positioned in the TLX3 
promoter as indicated. The relative positions of the BCL11B enhancer, the chromosomal 

breakpoint, and the regions that were used to calculate changes in chromosomal looping 

for the enhancer loop (enh) area (Hg37:chr14:98,602,411–98,675,204), the competitive loop 

area (comp; Hg37:chr5:170,716,369–170,756,369), and the proximal viewpoint (VP) area 

(Hg37:chr5:170,653,532–170,710,663) have been indicated. Relative gain in competitive or 

proximal VP loops related to BCL11B enhancer loops has been indicated for the +dox 

(induced CTCF) versus the dox conditions. Stacked CTCF-binding peaks for parental 

HPB-ALL cells by ChIP-seq and the relative Hg37 positions of lncRNAs, genes, and 

CTCF-binding sites have been indicated.
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Figure 7. Competitive loops are lost upon removal of intervening CTCF-binding sites and 
enhance TLX3 expression levels
(A)Genotype PCR results for CRISPR-Cas9 genome edited HPB-ALL-iCTCF/TLX3 clone 

E3 derived single-cell clones (#E3–99, #E3–113, and #E3–116) to removethe competitive 

intervening CTCF-binding site (Hg37:chr5:170,700,483–170,700,501) are displayed. HPB-

ALL-iCTCF/TLX3 bulk cells and single-cell clone E3 cells serve as controls.

(B)Display of representative examples of normalized 4C interaction plots for the der14 

chromosomal region of HPB-ALL-iCTCF/TLX3 clone E3 cells or derivative#E3–116 cells 

that were cultured in the absence (–dox) or presence (+dox) of doxycycline for 2 days. 
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The 4C VP was positioned in the TLX3 promoter. Tracing colors, the relative positions 

of the BCL11B enhancer, the chromosomal breakpoint, the location of the competitive 

CTCF-binding site, and the 4C VP as well as the regions to calculate the relative gain in 

comp or proximal VP loops relative to BCL11B enhs are as described in the legend of 

Figure 6C. The bottom 4C interaction plot compares the 4C interactions from the TLX3 

VP for the E3 and E3–116 clones following induction of CTCF (+dox). Competitive and 

proximal interactions for clone E3 (blue tracing) are lost in clone E3–116 (red tracing) upon 

removal of the single intervening CTCF-binding site, which results in enhanced BCL11B 
enhancer interactions. Stacked CTCF chromatin binding peaks for HPB-ALL by ChIP-seq 

and the relative Hg37 positions of lncRNAs, genes, and CTCF-binding sites have been 

indicated.

(C)Relative change in endogenous TLX3 oncogene expression levels as measured by qRT-

PCR for doxycycline-induced versus non-induced E3 cells or derivative single-cell clones as 

described in (A). Significance levels as indicated are calculated by an unpaired t test. Circles 

and brackets represent the mean with its standard deviation of three technical replicates, 

respectively.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-human CTCF; clone D31H2 Cell Signaling Technology Cat# 3418; RRID:AB_2086791

anti-human SMC3 Abcam Cat# ab9263; RRID:AB_307122

Normal rabbit IgG CellSignaling Technology Cat# 2729; RRID:AB_1031062

anti-mouse CD8a VioGreen; clone 53–6.7 Miltenyi Biotec Cat# 130–102-805; 
RRID:AB_2659890

anti-mouse CD4 Alexa Fluor 488; clone GK1.5 BioLegend Cat# 100425, RRID:AB_493520

anti-mouse TCRyd PE; clone GL3 BD Biosciences Cat# 553178; RRID:AB_394689

anti-mouse TCRb PE-Cy5; clone H57–597 BD Biosciences Cat# 561080; RRID:AB_10584335

anti-mouse CD3e PE-Cy7; clone 145–2C11 BD Biosciences Cat# 552774; RRID:AB_394460

anti-mouse CD117 APC; clone 2B8 BD Biosciences Cat# 561074; RRID:AB_10563203

anti-mouse CD25 APC-Cy7; clone PC61 BD Biosciences Cat# 561038; RRID:AB_2034002

anti-mouse CD45R/B220; clone RA3–6B2 BioLegend Cat# 103211; RRID:AB_312996

anti-human CD271 (LNGFR) PE; clone ME20.4–1.H4 Miltenyi Biotec Cat# 130–113-421, 
RRID:AB_2733795

Chemicals, peptides, and recombinant proteins

Ampure XP Reagent Beckman Coulter Cat# A63880

Formaldehyde solution Merck Cat# 252549; CAS: 50–00-0

NlaIII New England Biolabs Cat# R0125S

T4 DNA ligase New England Biolabs Cat# M0202S

NspI New England Biolabs Cat# R0602S

TRIzol Reagent Thermo Fisher Technology Cat# 15596026

Acid-Phenol:Chloroform pH4.5 Thermo Fisher Technology Cat# AM9722

Glycogen Roche Cat# 10901393001

M-MLV, RNAse H minus, Point mutant Promega Cat# M3681

RNAsin ribonuclease inhibitor Promega Cat# 2115

DAPI BioLegend Cat# 422801

DpnII restriction enzyme New England Biolabs Cat# R0543S

Csp6I resriction enzyme Thermo Fisher Scientific Cat# ER0211

Nucleomag beads Bioke Cat# 744100.34

Expand long template PCR system Roche Cat# 11681834001

Doxycycline hydrochloride Merck Cat# D3447; CAS: 10592–13-9

X-tremeGENE HP DNA Transfection Reagent Roche Cat# 6366546001

IVSS VIVASPIN 20 centrifugation concentration columns Sartorius Cat# Z614653–48EA

Thioguanine Merck Cat# A4882; CAS: 154–42-7

TrueCut Cas9 Protein v2 Thermo Fisher Scientific Cat# A36498

AmpliTaq Gold Thermo Fisher Scientific Cat# N8080245

Critical commercial assays
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REAGENT or RESOURCE SOURCE IDENTIFIER

SimpleChIP®Enzymatic Chromatin IP Kit Cell Signaling Technology Cat# 9003

QIAquick PCR Purification Kit QIAGEN Cat# 28104

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Cat# Q32851

NEXTflex™ Rapid DNA Sequencing Kit PerkinElmer Cat# NOVA-5144–03

Targeted Locus Amplification Analysis kit Cergentis BV N/A

DyNAmo HS SYBR Green qPCR kit Thermo Fisher Scientific Cat# F410XL

Gateway Vector Conversion System Thermo Fisher Scientific Cat# 11828029

EchoLUTION Cell Culture DNA Kit BioEcho Cat# 010–006-250

Deposited data

GEO superseries containg complete set for: Elevated enhancer-
oncogene contacts and higher oncogene expression levels by 
recurrent CTCF inactivating mutations in acute T cell leukemia

RRID:SCR_005012 GEO: GSE182317

HiC data RRID:SCR_005012 GEO: GSE182316

4C data RRID:SCR_005012 GEO: GSE182315

Bead chip Methylation data RRID:SCR_005012 GEO: GSE182313

Array CGH data RRID:SCR_005012 GEO: GSE182312

ChIPseq data RRID:SCR_005012 GEO: GSE181759

Sequence Read Archive
(breakpoint data by TLA)

RRID:SCR_001370 PRJNA945826

European Nucleotide Archive
(breakpoint data by Complete
Genomics WGS

RRID:SCR_006515 ERS934791

European Genome-phenome Archive
(breakpoint data by Illumina WGS)

RRID:SCR_005012 EGAS00001005250

Experimental models: Cell lines

HPB-ALL DSMZ RRID:CVCL_1820

Experimental models: Organisms/strains

Lck-Cre mice (B6.Cg-Tg(Lck-cre)1Cwi N9) Taconic 4197-M, Lee et al.95

CTCF fl/fl mice Erasmus Medical Center 
Rotterdam, Rudi Hendriks lab

Heath et al.7

Oligonucleotides

Genome editing Genotyping Forward Primer
ATCCAGCACATCTCTCTTCA

IDTDNA N/A

Genome editing Genotyping Reverse Primer
GAACCAGATGGAAATAAAAATATC

IDTDNA N/A

Recombinant DNA

Lego-iC2 Addgene 27345

pMD2.G Addgene 12259

pMDLg/pRRE Addgene 12251

pRSV-Rev Addgene 12253
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MIPgen software v1.2.1 Github (RRID:SCR_002630) RRID:SCR_003325

Sequence Pilot; SeqNext JSI medical systems https://www.jsi-medisys.de/

SAMTOOLS Github (RRID:SCR_002630) RRID:SCR_002105

FlowJo Becton Dickinson RRID:SCR_008520

4C-seq pipeline Krijger et al.85 https://github.com/deLaatLab/
pipe4C

Agilent CytoGenomics software Agilent RRID:SCR_010917

Affy Bioconductor 
(RRID:SCR_006442)

RRID:SCR_012835

Limma Bioconductor 
(RRID:SCR_006442)

RRID:SCR_010943

Minfi Bioconductor 
(RRID:SCR_006442)

RRID:SCR_012830

MACS Github (RRID:SCR_002630) RRID:SCR_013291

UCSC genome browser UCSC RRID:SCR_005780

Deeptools Github (RRID:SCR_002630) RRID:SCR_016366

edgeR Bioconductor 
(RRID:SCR_006442)

RRID:SCR_012802

DiffBind Bioconductor 
(RRID:SCR_006442)

RRID:SCR_012918

BEDtools Github (RRID:SCR_002630) RRID:SCR_006646

Other

MiSeqDx system Illumina (RRID:SCR_010233) Illumina miniseq; 
RRID:SCR_016380

NextSeq 500 Illumina (RRID:SCR_010233) Illumina NextSeq 500; 
RRID:SCR_014983

Bioruptor Pico sonication device Diagenode Cat# B01060010

CFX384 touch thermal cycler Bio-Rad N/A

LSRII flow cytometer Becton Dickinson N/A

SH800S Cell Sorter Sony N/A

Neon Transfection System Thermo Fisher Scientific MPK5000
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