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Abstract

A visible light-induced palladium-catalyzed homologative three-component synthesis of allylic 

amines has been developed. This protocol proceeds via a unique mechanism involving two 

distinct cycles enabled by the same Pd(0) catalyst: a visible light-induced hybrid radical alkyl 

Heck reaction between 1,1-dielectrophile and styrene, followed by the “in dark” classical Tsuji–

Trost-type allylic substitution reaction. This method works well with a broad range of primary 

and secondary amines, aryl alkenes, dielectrophiles, and in complex settings. The regiochemistry 

of the obtained products is primarily governed by the structure of 1,1-dielectrophile. Involvement 

of π-allyl palladium intermediates allowed for the control of stereoselectivity, which has been 

demonstrated with up to 95:5 er.
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1. INTRODUCTION

It is hard to overstate the importance of amine functionality in bioactive molecules and 

drugs.1 The allylic amine motif is one of the privileged fragments found in these molecules 

(Scheme 1a). Traditionally, allylic amines are synthesized via substitution reactions or 

reductive amination protocols.2 However, these operationally simple methods suffer from 

several drawbacks, including over-substitution side reaction, lack of stereocontrol, and 

necessity to employ highly reactive reagents. These problems hamper the use of the 

aforementioned methods for the construction of complex or densely substituted molecules.

Accordingly, the development of general and efficient methods toward allylic amines from 

various precursors has been extensively explored.3 Arguably, the Pd-catalyzed Tsuji–Trost 

reaction is one of the most powerful modern approaches toward allylic amines, which 

allows for mild and general construction of allylic amines with high degrees of regio- and 

stereocontrol (Scheme 1b I).4 In this protocol, the range of leaving groups is significantly 

expanded compared to that in classical substitution reactions.5 A newer version of this 

approach expanded the range of electrophilic components of this reaction to 1,3-dienes 

(II).6 Probably, one of the most important modern developments of the π-allyl palladium 

amination chemistry relies on the C–H functionalization approach (III).7 Under this more 

atom-economic scenario, the amination of non-prefunctionalized allylic C–H bonds greatly 

increases the pool of substrates. This direction has gained attention recently8 with the 

discovery of alternative mechanistic approaches in palladium catalysis (IV).9 Nonetheless, 

all current π-allyl palladium approaches toward allylic amines rely on a certain chemical 

space, revolving around allylic electrophiles possessing a leaving group at the allylic 

position (I), a diene moiety (II), or an allylic C–H bond (III, IV). Assembling allylic amines 

from different types of electrophiles diversifies the range of tools available to synthetic 

and medicinal chemists toward these important motifs. In this light, homologative synthesis 

of amines directly from alkenes, which do not possess an allylic moiety, is a valuable 

alternative (Scheme 1c). Thus, MacMillan introduced a photocatalytic method toward allylic 

amines, proceeding via the radical addition/elimination pathway.10 Although it requires a 

pre-functionalized alkene, employment of various tertiary amines, as well as amino acid 

derivatives, allows for synthesis of branched products. Huang reported an elegant route 
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toward allylic amines via the Heck-type C–H alkylation reaction of styrenes with aminals.11 

This approach does not require pre-functionalization of alkene; however, it is restricted to 

the methylene-substituted aminals, which limits the scope of the obtained products to linear 

allylic amines. Moreover, the aminal route precludes the use of primary amines in this 

transformation. Although these homologative methods (Scheme 1c) expand the scope of 

allylic amine precursors, they share a two-component C–C bond disconnection logic, which 

leaves out the possibility of engaging a large and diverse feedstock of primary and secondary 

amines.

To address the aforementioned limitations, we propose an alternative approach toward allylic 

amines, which relies on a homologative three-component assembly of allylic amines from 

vinyl arenes and heteroarenes, primary or secondary amines, and dielectrophiles. This mild 

method proceeds via unique for Pd chemistry dual catalytic cycle, including light-induced 
Pd 0/I/II cycle and a traditional “dark” Pd 0/II manifold. Importantly, this approach, which 

presumes a new three-component route to the key π-allyl palladium intermediate, gives 

access to branched allylic amines, including complex and bioactive molecules, and offers 

opportunity toward diastereo- and enantioselective versions of this reaction (Scheme 1d).

2. REACTION DESIGN

In 2017, our group disclosed a visible light-induced Pd-catalyzed alkyl Heck reaction 

between structurally diverse alkyl halides and vinyl arenes.12 The success of this 

transformation relied on a novel activation mode of electrophiles, involving formation of 

hybrid Pd-radical intermediates. The follow-up reports from our group and others have 

significantly expanded this chemistry and types of electrophiles used.13 We hypothesized 

that this platform could be applied to some 1,1-dielectrophiles, which could engage in 

the alkyl Heck-type transformation for the in situ generation of an allylic intermediate 

i, a capable precursor for a subsequent Tsuji–Trost amination step. Considering that the 

conditions for the alkyl Heck and Tsuji–Trost reactions could be similar in terms of requisite 

Pd precursors and ligands, we hoped to achieve both transformations using a single catalyst 

system.

3. RESULTS AND DISCUSSION

3.1. Reaction Optimization.

Study commenced with identifying capable dielectrophiles. Attempts at employing 

dibromomethane in the reaction with styrene and piperidine under blue light irradiation 

in the presence of the Pd(PPh3)4 catalyst (Table 1, entry 1) resulted in exclusive formation 

of aminal 3′, a product of the double SN2 alkylation reaction. We embarked on solving this 

problem by employment of sterically more congested α-halomethyl ammonium salts 4–9. 

These dielectrophiles seemed promising for the designed transformation since α-halomethyl 

ammonium salts were previously used for generation of radical species by homolysis of the 

C–halogen bond.14 Moreover, allylic ammonium salts, the expected intermediates of the first 

step of the sequence, are prominent electrophiles for the Tsuji–Trost reaction.15 Gratifyingly, 

employment of DABCO-derived salt 4 led to formation of the desired product 3, albeit in 

low yield (entry 2). Further optimization revealed that structurally simpler salt 5 can also 
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be employed in this reaction (entry 3). DPEPhos appeared to be the most effective ligand 

(entry 5) and diisorpopylamine (DIPA) the most effective base (entry 6, Conditions A). 

A control experiment revealed that light was crucial for this transformation (entry 7). Use 

of structurally varied ammonium salts 7–9, including a diiodomethane-derived compound 

(9), resulted in similar outcomes under standard conditions (entry 8). Salt 5 was chosen 

as a benchmark dielectrophile for introduction of the methylene unit due to the ease of 

preparation as well as due to the volatility of the trimethylamine byproduct.

Next, potential use of substituted dielectrophiles was explored. Gratifyingly, homologues 

of dibromomethane, such as 1,1-dibromoethane, did not suffer from double SN2 alkylation 

reaction. However, the reaction conditions optimal for ammonium salts have proven to 

be ineffective for dibromides (entry 9). Performing the reaction in 1,4-dioxane somewhat 

improved the yield (entry 10). Ligand screening revealed that triphenylphosphine did not 

promote the desired transformation (entry 11), whereas switching to Xantphos dramatically 

improved the reaction outcome (entry 12). Notably, formation of the minor regioisomeric 

allylamine 3″ was also observed. The selectivity of amination was improved under more 

diluted conditions (entry 13, Conditions B). A control experiment revealed that light is 

crucial for this transformation (entry 14). Attempts to use geminal diiodide 10 resulted in 

complete decomposition of the starting material (entry 15), whereas dichloride 11 remained 

intact (entry 16).

3.2. Substrate Scope.

Evaluation of substrate scope began with testing various primary and secondary amines in 

reaction with ammonium salt 5 and styrene under Conditions A (Scheme 2). Employment 

of basic amines resulted in good yields of products (12–15). Use of HCl salt of piperidine 

was also successful, albeit with marginal loss in efficiency (14, 72 vs 66%). Gratifyingly, 

this reaction showed wide functional group tolerance, as variably substituted amines reacted 

uneventfully (16–23). Importantly, alkyl chloride-containing product 17 was synthesized 

without compromising the C–Cl bond, which otherwise was demonstrated under light-

induced Pd-catalyzed reactions.16 Employment of a weak amine base ensures that base-

sensitive functions such as ketone (16), sulfone (20), and secondary amide (23) do not 

form alternative nucleophilic centers. Amino acid derivatives turned out to be capable 

reaction partners to deliver the corresponding allyl amine products 26 and 27 in reasonable 

yields. Importantly, this three-component allylic amination reaction performed well with 

complex densely substituted amines (28–34). Of note, under Conditions A, the products 

derived from small-ring nitrogen-containing heterocycles, such as aziridine and azetidine, 

where not stable. Potentially, in the polar medium, ring-opening reactions may lead to the 

decomposition of the products. However, these products can be obtained under Conditions B 
(35, 36). Primary amines can equally efficiently be used under both conditions (37, 39).

Next, the scope of alkenes was studied (Scheme 3). Under Conditions A, electron-rich 

vinyl arenes(heteroarenes) (40, 41, 43, 44, 46) reacted smoothly, whereas their electro-

poor counterparts were less reactive (42, see the Supporting Information for additional 

details). Apparently, this reactivity trend can be attributed to high electrophilicty of 

the formed methylene ammonium radical intermediate.14 Complementarily, the reactions 
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with 1,1-dibromoethane, which is the precursor for more nucleophilic α-bromo carbon 

centered radical (Conditions B),17 were more effective with electron-deficient vinyl 

arenes(heteroarenes) (48, 49, 50, 52, 53). The robustness of this protocol was highlighted 

by efficient carboamination of structurally complex alkenes (47, 54, 56, 57). Notably, albeit 

with moderate efficiency, indene can also be engaged in this transformation (45). Attempts 

to perform this reaction intermolecularly with unactivated olefins have been unsuccessful, so 

far.

Upon study of 1,1-dielectrophiles (Scheme 4), it was shown that employment of deuterated 

ammonium salt 58 allows for accessing deuterated piperidine derivative 59 as well as 

deuterated naftifine (60). 1,1-Dibromoethane (61) performed well with both cyclic and 

acyclic amines, resulting in products 6218 and 63, respectively. Furthermore, it was 

discovered that in reactions with a weak aniline nucleophile under Conditions B, geminal 

bromoacetate 6419 can also be employed as a dielectrophile to deliver product 38 in 

moderate yield. Dibromide 65 containing longer alkyl chains also gave the desired product 

66, albeit in diminished yield. When employing dielectrophile 67 containing a benzoate 

group, product 68 was obtained as a mixture of regioisomers with amine attached to 

a benzylic position in the major isomer. Apparently, the observed switch of selectivity 

of amination is governed by sterics. This effect was further exposed in the formation 

of products 70 and 72, where additional substituents shifted regioselectivity completely. 

The same outcome was observed employing (dibromomethyl)trimethylsilane (73), which 

led to 74, an ambiphilic molecule possessing allylic amine and vinyl silane moieties. 2,2-

Dibromo-1,1,1-trifluoroethane (75) also yielded benzylic amine 76, an expected product 

of the Tsuji–Trost reaction.20 Given that intermolecular alkylamination with unactivated 

alkenes so far was unsuccessful, the intramolecular version was tested. Expectedly, two-

component reaction of allylsilyl ether 7721 with piperidine underwent 1,5-exotrigcyclization 

followed by allylic substitution to produce 78 in reasonable yield. In contrast to dibromide 

electrophiles, geminal diiodides were incompatible with the reaction conditions. However, 

the corresponding dichloride proved to be a capable reaction partner under slightly modified 

conditions (79 → 66).

After establishing this three-component coupling strategy with dielectrophiles, amines, and 

styrenes, the possibility of engagement of electron-deficient alkenes, such as acrylic esters 

and amides, in this transformation was explored (Scheme 5). Obviously, due to polarity 

matching,17 these alkenes prefer to react with nucleophilic radicals. It was found that bromo 

acetates, the precursors of the relatively nucleophilic α-acetoxy C-centered radical, could 

be viable substrates for this reaction. Thus, bromoacetate 64 smoothly reacted with acrylic 

esters (80, 82) and amides (83–87), including those under more complex settings (85, 87). 

The corresponding dibromide can also be engaged in the reaction (81) though with a lower 

efficiency. However, less reactive amines, such as anilines (80, 82–88) or tert-butylamine 

(81), must be employed in this reaction to prevent premature Michael addition.

Next, the feasibility of inducing a stereocontrol has been validated (Scheme 5). 

Understandably, substituted dibromide electrophiles, which allowed for introduction of a 

stereogenic center at the allylic position, were employed. First, a diastereoselective version 
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of this reaction employing a chiral amine component was examined under slightly modified 

conditions22 to those previously developed for allylic C–H amination reaction8 (Scheme 6a, 

conditions C). Thus, several amino acids derivatives underwent smooth three-component 

coupling reaction with styrene and 1,1-dibromoethane or 1,1-dibromopropane to afford 

allylic amines 88–91 with good stereocontrol. Note that a chiral ligand must be employed 

to achieve reasonable diastereocontrol as use of Xantphos leads to low selectivity (89). 

Naturally, a much more significant, enantioselective version of this reaction was explored 

next (Scheme 6b). Gratifyingly, it was found that under conditions D enantiocontrol of up to 
95:5 er could be achieved! Experiments indicated that under these conditions, employment 

of dibromide possessing a longer alkyl chain (65) was essential for achieving high 

enantioselectivity. Primary isopropylamine (92–96) and benzylamine (97) were efficient. 

Likewise, secondary acyclic (98, 99) and cyclic amines (100) were also capable reaction 

partners. The enantioselectivity of this reaction was not sensitive to the electronic factors 

at vinyl arenes (92–95). However, employment of electron-rich substrates diminished the 

regioselectivity (93, 94).

3.3. Mechanistic Investigations.

By design, this tandem reaction expected to proceed via the alkyl-Heck reaction first. 

However, monitoring the reaction profile revealed no detectable products of this reaction. 

This outcome may be rationalized in terms of the higher rates of the subsequent Tsuji–Trost 

substitution reaction step, thus preventing the buildup of the first step intermediate. This 

assumption was validated by the following experiment (Scheme 7). α-Methyl styrene 101 
was subjected to the standard reaction conditions (Conditions B), which was expected to 

result in homoallylic bromide 102 via a more facile β-H elimination from the less hindered 

site of v.21,23 Indeed, 102 was obtained in 30% NMR yield, thus supporting the above 

assumption. Subjecting cinnamyl electrophiles 103 to reaction with piperidine (2) even 

in the absence of light validated a rapid rate of Tsuji–Trost substitution as quantitative 

formation of product 104 was observed within 5 min.24 Additionally, a radical probe 

experiment with cyclopropyl-containing styrene 105 led to a radical cyclization product 

106 via radical addition/ring opening/cyclization sequence. This result not only validates 

the initial alkyl Heck reaction but also supports the radical nature of the reaction. The 

presence of radicals was further verified by TEMPO- and spin-trapping experiments.22 The 

above data validate consecutive involvement of two different cycles catalyzed by the same 

Pd catalyst: the light-induced cycle and the thermal cycle. A combination of two distinct 

light/dark catalytic cycles has been reported.25 However, in all these cases, in the light 

cycle, the transition metal serves as a photocatalyst, either via SET or energy transfer, 

thus not participating in the bond breaking/forming event. To the best of our knowledge, 

cases where the same transition-metal catalyst performs two different catalytic reactions 

in light and dark cycles are unprecedented. Based on the above mechanistic experiments 

and literature reports,12,13 the following mechanism was proposed for this three-component 

homologative amination reaction. It begins with the SET from photoexcited Pd(0) complex 

to a dielectrophile to generate a hybrid Pd(I)/radical species A. A subsequent radical 

addition (B) and β-H elimination (“Heck cycle”) produces intermediate (INT) and recovers 

the Pd(0) catalyst. Then, both are engaged in the second, “Tsuji–Trost cycle” to generate 

π-allyl Pd complex D, which upon nucleophilic attack leads to an allylic amine product 
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(PR). The regioselectivity of substitution is governed primarily by the structure of π-allyl 

complex substituents and nature of the amine.

4. CONCLUSIONS

In summary, we developed a protocol for rapid homologative assembly of allylic amines 

from alkenes, dielectrophiles, and amines under mild visible light-induced Pd-catalyzed 

conditions. This reaction operates via unprecedented merging of light/dark catalytic 

cycles performed by the same Pd(0) species. Wide variability of the reaction partners 

enables access to a broad range of differently substituted allylic amines, including 

complex compounds, which would be difficult to access via previously reported protocols. 

Initial attempts indicated the feasibility to perform this transformation in diastereo- and 

enantiocontrolled fashion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 

Kvasovs et al. Page 11

J Am Chem Soc. Author manuscript; available in PMC 2024 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 2. 
Scope of Aminesa

a0.4 mmol scale. bAmine·HCl salt used, 3 equiv of base. cAmine·HCl·hydrate used, 3 equiv 

of base. d0.2 mmol scale.
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Scheme 3. 
Scope of Alkenesa

a0.4 mmol scale. b0.2 mmol scale. c1 equiv of alkene, 1.2 equiv of amine.
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Scheme 4. 
Scope of Dielectrophilesa

a0.4 mmol scale. b1.2 equiv of dibromide. c0.2 mmol scale. dConditions B, 0.3 M. 
eConditions B, DMA as solvent. f1 equiv of dibromide, 1.2 equiv of piperidine. g0.2 mmol 

scale, 1 equiv of amine, 1.5 equiv of styrene, 1.2 equiv of dichloride, Pd(OAc)2 5 mol %, 

PPh3 30 mol %, 1 equiv of tetrabutylammonium bromide, 2 equiv of diisopropylamine, 

DMA (0.3 M).
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Scheme 5. 
Scope of Acrylic Esters and Amidesa

a0.3 mmol scale. b61 used as a dielectrophile. c0.1 mmol scale. d1 equiv of alkene.
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Scheme 6. 
Stereoselective Examplesa

a0.1 mmol scale.
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Scheme 7. 
Elucidation of Mechanism
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