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Abstract

The epithelial tissues that line our body, such as the skin and gut, have remarkable regenerative 

prowess and continually renew throughout our lifetimes. Owing to their barrier function, these 

tissues have also evolved sophisticated repair mechanisms to swiftly heal and limit the penetration 

of harmful agents following injury. Researchers now appreciate that epithelial regeneration and 

repair are not autonomous processes but rely on a dynamic cross talk with immunity. A wealth of 

clinical and experimental data point to the functional coupling of reparative and inflammatory 

responses as two sides of the same coin. Here we bring to the fore the immunological 

signals that underlie homeostatic epithelial regeneration and restitution following damage. We 

review our current understanding of how immune cells contribute to distinct phases of repair. 

When unchecked, immune-mediated repair programs are co-opted to fuel epithelial pathologies 

such as cancer, psoriasis, and inflammatory bowel diseases. Thus, understanding the reparative 

functions of immunity may advance therapeutic innovation in regenerative medicine and epithelial 

inflammatory diseases.
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INTRODUCTION

Tissue damage is central to the pathology of injury, infection, autoimmunity, and cancer. 

These assaults result from both external threats (e.g., pathogens, noxious agents, trauma) 

and internal perturbations (e.g., mutations, unchecked immune activity) and profoundly 
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disrupt tissue homeostasis. Damage can be discrete in the case of localized injury such 

as a cut or scrape or extend across the entire organ and compromise function. Ultimately, 

persistent damage or a failure to engage effective repair mechanisms of vital organs can 

be catastrophic and result in death. For instance, respiratory failure and the ensuing fatality 

of the COVID-19 pandemic were traced to ineffective engagement of lung epithelial repair 

programs (1, 2). Thus, in addition to pathogen control, engaging repair mechanisms is 

essential for mitigating tissue pathology and restoring organ structure and function. Indeed, 

an astounding 45% of all deaths in the Western world can be attributed to reparative failures 

and fibrosis (3).

While immune cells are often the purveyors of damage and destruction, they 

also possess remarkable healing powers. Clinical observations of impaired repair in 

immunocompromised individuals underscore a central role for immunity in wound healing 

(4). The presence of immune cells at the site of injury was first noted by Elie Metchnikoff 

over a century ago (5). Metchnikoff famously observed phagocytes (macrophages) after 

poking starfish larvae with a rose thorn. Extending Metchnikoff’s findings to mammalian 

systems, early studies examining the cellular contexture of rabbit ear wounds also noted an 

enrichment of macrophages and monocytes (6). In the 1970s and 1980s, researchers used 

depleting antimacrophage serum to examine the function of macrophages and monocytes 

in repair (7-9). These landmark studies identified delays in dermal fibroblast responses, 

vascular responses, and collagen synthesis. Importantly, these findings shifted views of 

macrophages from merely big eaters that phagocytosed microbial and cellular debris to 

cells that provided vital signals that direct tissue growth. Further insights into the role of 

macrophages in wound repair were inferred from studies of worm and parasite infections, 

which led to a dichotomous view of proinflammatory M1 and pro-repair M2 macrophages 

(10). The field has since embraced a more nuanced understanding of the macrophage state, 

as the mechanistic underpinnings of the initial observations of macrophages and other innate 

cells in repair have unfolded (11, 12).

In the last 20 years, researchers have uncovered the remarkable complexity of the adaptive 

immune system, including numerous subsets of innate-line and adaptive lymphocytes that 

permanently reside in tissues and actively converse with the surrounding stroma (13). 

Whereas the field of wound repair has historically focused on innate immune cells, a 

flurry of recent literature points to a role for adaptive immune cells in dialoguing with 

the epithelia at steady state and in orchestrating epithelial repair following injury. As our 

understanding of noncanonical tissue regulatory functions of adaptive immunity deepens, 

there is a growing appreciation for the functional coupling of reparative and inflammatory 

responses as two sides of the same coin.

Here we provide a comprehensive overview of the immunological mechanisms underlying 

homeostatic epithelial regeneration and tissue repair (Tables 1, 2). We focus on the skin and 

small intestine epithelia, two tissues that continually regenerate in health and are prone to 

injury, infections, and inflammation that cause damage. Thus, both the skin and gut evolved 

sophisticated repair mechanisms that are geared to rapidly restore epithelial barrier function. 

We first discuss the homeostatic dialogue between immune cells and the epithelium as it 

relates to barrier maintenance. We then delve into the repair mechanisms that are engaged 
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upon barrier breach. These occur in distinct but temporally overlapping phases and are 

heavily influenced by immunity. In particular, we focus on re-epithelialization following 

injury and also touch upon the conversations that take place between immune cells and 

other tissue constituents (e.g., endothelium, neurons, mesenchyme) to support this process. 

When unchecked, epithelial repair programs are co-opted in autoimmune conditions and 

cancers. Finally, we discuss the pathological repair mechanisms driving these diseases and 

the tremendous potential of leveraging the immune-epithelial cross talk therapeutically. As 

knowledge of immune-epithelial conversations expands, so too will opportunities emerge 

for reparative therapies and treatments for chronic inflammatory diseases that propel 

regenerative medicine to new heights.

IMMUNE-EPITHELIAL CROSS TALK IN HOMEOSTATIC REGENERATION

The skin and gut epithelia are naturally self-renewing tissues. Human skin epithelium 

remarkably turns over every 42 days (8 to 10 days in mice) (14). Gut epithelial cells 

are replaced every 2–6 days in adult mammals (15, 16). Herein, we refer to this baseline 

epithelial turnover as homeostatic regeneration. Stem cells (SCs) and progenitor cells of the 

interfollicular epidermis reside in the (basal) layer of the epidermis, and SCs of the intestinal 

epithelia reside in intestinal crypts [intestinal SCs (ISCs)] and locally fuel homeostatic 

regeneration (17, 18) (Figure 1). As SCs differentiate into various lineages, they move 

upward to eventually be sloughed off the skin’s surface or into the intestinal lumen (Figure 

1a,b). Specialized hair follicle SCs (HFSCs) undergo cyclical bouts of rest (telogen) and 

regeneration (anagen), which coincide with hair growth (19). SCs are highly attuned to 

their environment or niche and adjust their behavior in response to niche-derived signals. 

Immune cells have surfaced as dominant members of the SC niches in the skin and gut, 

particularly under duress (20). Emerging evidence also supports a role for homeostatic cross 

talk between immune and various epithelial SC populations (19).

HFSCs and the cycling hair follicle are an ideal system for studying immune-epithelial 

cross talk during homeostatic regeneration. Immune cells dynamically localize to the 

perifollicular region over the course of the natural hair cycle and exert their influence 

on HFSCs. In particular, two tissue-resident immune cell types, macrophages and Foxp3+ 

regulatory T cells (Tregs), have emerged as key instructors of HFSC behavior. Macrophages 

influence the hair follicle cycle in a number of distinct ways. During telogen, a subset 

of perifollicular TREM2+ macrophages accumulate around the resting HF bulge. These 

TREM2+ macrophages secrete oncostatin M to maintain HFSC quiescence and restrain the 

hair cycle (21). The transition from telogen to anagen is facilitated by dying macrophages 

that release Wnt ligands to induce HFSC activation (22). In addition, macrophages also 

serve as an essential source of iron for HFSCs. Specific depletion of an iron exporter, 

ferroportin, disrupts the hair cycle, leading to hair loss (23). Whether these diverse functions 

are carried out by distinct subsets of macrophages or whether the same population of 

perifollicular macrophages dynamically change their behavior over the course of the hair 

cycle is unclear.

Treg regulation of HFSCs is evident after hair follicles are coaxed into cycling by 

hair plucking or depilation, an injury-like state commonly used to probe mechanisms 
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of HFSC activation and differentiation. Following depilation, perifollicular Tregs provide 

essential Jag1 signals and induce Notch-mediated HFSC differentiation (24). More recently, 

glucocorticoid signaling was shown to collaborate with the canonical Treg transcription 

factor Foxp3 to induce TGF-β (transforming growth factor beta) production and HFSC 

proliferation (25). Whether and how Tregs contribute to the natural hair follicle cycle is still 

unclear. Additionally, under duress, hair follicles express a number of different chemokines 

to summon immune cells to their vicinity (26, 27). Whether resting and active follicles 

express distinct chemokines to control the composition of the perifollicular immune milieu 

during homeostatic regeneration remains to be tested.

In the intestine and skin, homeostatic lymphocytes constitutively express IL-17 in response 

to colonizing microbiota (28, 29). Systematic deletion of an IL-17 receptor (IL-17RA) 

on distinct epithelial cells revealed a critical role for IL-17 signaling in promoting 

differentiation of secretory cells from Lgr5+ ISCs and bolstering epithelial structure (30). 

On the other hand, IL-10 from in vitro–generated Tregs preserves stemness by promoting 

ISC self-renewal in intestinal organoids through a yet undefined mechanism (31). IL-10-

deficient animals are particularly susceptible to experimental colitis, and single-nucleotide 

polymorphisms at the IL-10 locus are associated with early-onset colitis, suggesting that 

homeostatic IL-10 signaling may be essential for maintaining barrier function (32, 33). 

In contrast to the intestine, however, the role of immune-derived signals in fueling the 

homeostatic turnover of the interfollicular epidermis is unexplored. IL-17A from skin-

dwelling CD8+IL-17A+ T cells (Tc17) cells drives the expression of antimicrobial peptides 

in the intact epidermis (20). Thus, it is tempting to speculate that epidermal turnover may 

be dynamically regulated by resident immune cells. SCs robustly express many cytokine 

receptors and immunomodulatory factors; however, studies examining the roles of these 

factors have largely been performed using organoid models, which lack tissue context (31). 

Similar to the cell-specific IL-17R depletion strategies employed by Lin et al. (30), probing 

the role of IL-10R (and other cytokine receptors) in skin and gut epithelial SCs at steady 

state is sure to yield insight into the dynamic regulation of barrier tissue fitness and function 

in health.

TISSUE REPAIR: NATURE’S LESS THAN PERFECT SOLUTION

Many vertebrates and invertebrates possess the extraordinary ability to regenerate functional 

organs even after injury. These organisms are able to perfectly restore tissue architecture and 

functionality to their preinjury state (34). By contrast, mammals heal primarily via repair, 

a process that differs vastly from homeostatic regeneration. This largely imperfect response 

relies on rapid and haphazard deposition of extracellular matrix (ECM) to plug the damage, 

and it results in the generation of a nonfunctioning mass of fibrotic tissue known as a scar 

(35). Scarring repair may have arisen from an evolutionary “need for speed” to restore 

barrier function and protect from dangers looming in the terrestrial environment. Supporting 

this notion, early in gestation, humans and other mammals can perfectly regenerate certain 

tissues (36). Embryonic skin transitions from scarless healing during the first two trimesters 

to scar formation late in gestation (37). Importantly, however, not all fetal tissues engage 

regenerative responses, as early gestational wounds of the gastrointestinal tract form scars 

(38).
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Inflammation is a key distinguishing feature of the fetal regenerative and adult repair 

responses. In contrast to adult wounds, for instance, fetal wounds do not elicit neutrophils 

or other proinflammatory mediators (39). Inoculating fetal wounds with bacteria induced 

inflammation and diverted responses to adult-like fibrotic repair, suggesting that microbial 

and other environmental triggers divert responses from regeneration toward repair (40). 

Paradoxically, studies in immune development and cell mapping efforts have noted the 

presence of immune cells across many fetal tissues, including skin and gut tissues (41, 42). 

Developing in the yolk sac, macrophages dominate the gestational immune milieu (43). 

In highly regenerative species, like the salamander, depletion of macrophages early after 

limb amputation hinders regrowth and results in the formation of a fibrotic stump (44). 

The role of fetal macrophages in regeneration after wounding has yet to be examined. 

These immune cells are known to engage in cross talk with distinct tissue components 

and perform developmental functions including neuronal synaptic pruning in the brain, 

endothelial connections in the kidney, and lymphatic patterning in the heart (45-47). Thus, 

it is tempting to speculate that developmental macrophages may uniquely promote fetal 

regeneration. Decoding the regenerative powers of developmental macrophages and the 

mechanisms of their cross talk with developing tissue could open the door to harnessing 

macrophage-based regenerative therapies throughout life.

PHASES OF TISSUE REPAIR

As discussed above, mammalian tissue repair is a rapid process typified by inflammation 

and fibrosis. Repair occurs in a series of stages that are common to all wounds but regulated 

by different cell types and factors based on the type of damage and organ involved. 

Physiological tissue repair is classically divided into four distinct yet overlapping phases: 

hemostasis, inflammation, proliferation, and remodeling (34). Failure to engage these 

responses results in a range of nonhealing conditions or reparative pathologies, which we 

discuss in the section titled Immune-Mediated Epithelial Pathologies of Repair. Importantly, 

while inflammation is described as a separate phase of repair, burgeoning evidence supports 

a role for immune cells in nearly every facet of healing.

Hemostasis, the first phase, occurs immediately after traumatic damage, leading to platelet 

activation, a fibrin mesh, and the formation of a blood clot over the wound area. This 

sequence of events ceases blood flow and prevents excessive red blood cell loss from the 

circulation and produces a provisional scaffold for cells in a wound bed (48).

During the inflammatory phase, damaged tissues place an emergency call to alert the body 

by releasing danger-associated molecular patterns (DAMPs), reactive oxygen species, and 

alarmins (49). In addition, barrier organs such as the skin and gut organs must also cope 

with translocating microbes and their by-products or pathogen-associated molecular patterns 

(PAMPs). Collectively, these signals recruit neutrophils and monocytes from circulation and 

usher in the inflammatory phase of repair. Here it is important to note that the skin and the 

gut house a myriad of resident immune cells capable of sensing early danger signals emitted 

by tissue damage (13). Although the relative contribution of damaged epithelium versus 

resident immune cells to sensing early molecular signatures of damage and initiating the 

inflammatory phase is unclear, it is highly probable that optimal repair demands cooperation 
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of these two cellular compartments. Wound inflammation is critical to prevent infection, 

clear debris, and supply growth factors and other signals that facilitate the proliferative phase 

of repair.

The proliferative phase involves a massive expansion of various cell types in both the 

epidermis and dermis to generate new tissue. During the proliferative phase, epithelial 

healing occurs in a process called re-epithelialization, which involves the proliferation of 

epithelial cells at the wound’s edge and their subsequent migration into the wound bed 

(50). Simultaneously the underlying mesenchymal cells of the dermis or lamina propria 

generate new connective or granulation tissue by fibroblast proliferation and differentiation 

and deposition of fibrotic ECM. Human wounds heal predominantly via re-epithelialization. 

By contrast, in mice and other mammals with loose skin that does not adhere to underlying 

structures, wound repair predominantly involves contraction mediated by the panniculus 

carnosus (51). To supply this newly generated tissue with oxygen and nutrients, optimal 

repair requires neovascularization, which occurs primarily through angiogenesis.

As the newly formed tissue matures, the remodeling phase of repair ensues to restore 

homeostasis. Apoptosis slows the massive expansion of epithelial, endothelial, fibroblast, 

immune, and other cells in the wound bed (52). How do tissues know when to stop 

growing and how much to reduce their size? The precise triggers and mediators of this large-

scale reduction are poorly understood. However, decreased cellularity and excess collagen 

deposition drive the evolution of granulation tissue into a scar, ultimately compromising the 

tissue’s architecture and function (53).

While the stages of repair are universal, rebuilding each organ requires consideration 

of its unique cellular constituents, structure, and function. The skin and gut epithelia 

both house resident microbes. The skin, however, is lined by a multilayered stratified 

squamous epithelium, while the gut comprises a single layer of columnar epithelia with 

many specialized cell types that are extensively reviewed in Reference 19 (Figure 1). Below 

we discuss how resident and recruited immune cells help reconstruct the epithelial barrier 

following injury.

IMMUNE SIGNALS IN RE-EPITHELIALIZATION

To limit the penetration of harmful agents, restitution of the epithelial barrier following 

erosion is of paramount importance in the skin and gut. As noted above, this is achieved 

through a process called re-epithelialization, which involves two key steps: (a) epithelial 

proliferation to expand cellularity for new tissue and (b) migration of epithelial cells to 

seal the breach. Remarkably these epithelial responses are spatially segregated into distinct 

compartments often referred to as the proliferative zone and the migratory zone, separated 

by a transition zone (Figure 2a). Thus, distinct molecular programs are sequentially 

engaged to induce epithelial proliferation and then migration, and wound immune cells 

are increasingly recognized as being involved in inducing these programs.

Guenin-Mace et al. Page 6

Annu Rev Immunol. Author manuscript; available in PMC 2023 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Immune Cells Supply Proliferative Factors

In homeostasis, SC self-renewal and proliferation are dynamically regulated by gradients of 

Wnt, Notch, BMP, and Hippo signals from their local niche (reviewed in References 18 and 

54). β-Catenin signaling induced by Wnt ligands is especially critical for SC proliferation 

(55). At steady state, both mesenchymal niche cells and the epithelium itself produce 

Wnt ligands to fuel regeneration. Macrophages have been identified as critical sources of 

mitogenic Wnt ligands after injury (56). In vitro studies first identified Wnt1 expression 

in macrophages isolated from ulcerative colitis patients (57). Macrophage-specific deletion 

of porcupine O-acyltransferase, an integral component of the Wnt secretion machinery, 

rendered mice vulnerable to radiation-induced intestinal injury (58). This failure to heal 

was traced to loss of ISCs and was only evident following damage. In addition to directly 

producing Wnts, macrophage-derived IL-10 also promotes proliferation by stimulating 

WNT1-inducible signaling protein 1 expression in ISCs (59). Macrophage-derived TNF-α 
can also induce β-catenin to prompt HFSC proliferation in a Wnt-independent manner, 

revealing a convergence of inflammatory and developmental signaling in repair (60).

Pioneering studies by Havran and colleagues first revealed that, in addition to 

immunosurveillance, epidermal resident lymphocytes also participate in repair (61). The 

very first evidence that lymphocytes were a potent source of epithelial mitogens came 

from studies coculturing dendritic epidermal γδ T cells (DETCs) with keratinocytes. 

DETCs produced keratinocyte growth factor 2, which was capable of promoting epithelial 

proliferation in vitro (55). This pro-healing function was also observed in vivo. Mice 

globally lacking γδ T cells had a severe reduction in the wound’s proliferative response. 

Analogous production of insulin-like growth factor (IGF) was observed in human skin-

resident αβ and γδ T cells (62). Since these early studies, our understanding of lymphocyte 

populations has vastly expanded and the mechanisms by which they facilitate repair have 

been illuminated.

In contrast to pathogen responses that take upwards of a week to evoke antigen-specific T 

cells, injury responses are rapid and engage preexisting tissue lymphocytes. Many of these 

homeostatic populations are solicited by commensal microbes and rapidly proliferate at the 

site of injury (63). Indeed, systematic mapping of repair-associated lymphocytes revealed an 

expansion of innate lymphoid cells (64), mucosal-associated invariant T cells, γδ T cells, 

and Tregs as early as three days after injury (65). Moreover, these tissue-resident cells were 

sufficient for re-epithelialization, as treating mice with FTY720, which blunts migration of 

circulating lymphocytes, did not alter epithelial healing.

Resident lymphocytes are exquisitely positioned to integrate signals from damaged 

epithelium to induce pro-repair factors. In dextran sodium sulfate (DSS)-induced colitis, 

TGF-β from damaged epithelium triggered fibroblast growth factor 2 (FGF2) production 

in Tregs. In combination with IL-17A produced by Th17, FGF2 promoted epithelial 

proliferation (66). IL-17RA signaling can also synergize with epidermal growth factor 

receptor (EGFR) to stimulate epithelial proliferation (67). The precise signaling mechanisms 

of such cooperation between inflammatory and growth factors remain elusive. For instance, 

EGFR dimerization enables its activation and signal transduction (68). Similarly, IL-17RA 

requires the SFER domain of IL-17RC in order to signal (69). The mechanisms by which 
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the IL-17RA and EGFR interact and signal to promote proliferation of epithelial cells thus 

warrant further study.

Damaged epithelia robustly secrete alarmins such as IL-18 and IL-33. IL-18 signaling in 

epidermal resident Tc17 cells rapidly induces expression of the transcription factor GATA3 

and the cytokine IL-13 (70). Similarly, epithelial IL-33 activates the STR2 receptor on 

Tregs and stimulates production of amphiregulin (AREG), a potent EGFR ligand (71-74). 

In addition to providing growth factors, wound Tregs must also sustain their canonical 

immunoregulatory function to limit further damage. Indeed, Treg-derived AREG limits 

inflammation in muscle repair (75). Intriguingly, Tregs themselves express EGFR, and 

Treg-specific Egfr deletion results in heighted IFN-γ and inflammatory macrophages in skin 

wounds, suggesting that AREG could autonomously regulate Treg function in wounds (76). 

This anti-inflammatory role of Tregs is not absolute, as recent reports by Rosenblum and 

colleagues revealed that TGF-β from Tregs early after Staphylococcus aureus infection 

signals into epithelium to recruit neutrophils (77). Microbe-fighting neutrophils stall 

epithelial repair until the pathogen is cleared.

The transcription factor STAT3 has emerged as a central regulator of injury-induced 

epithelial proliferation. In some cases, STAT3 can entirely compensate for β-catenin signals 

and independently stimulate SC proliferation (78). IL-6 and IL-22 are key upstream inducers 

of STAT3 following injury. Acute IL-6 from intraepithelial lymphocytes instigates epithelial 

proliferation (79). In fact, delayed healing in old mice was traced to a failure of aged 

DETCs to produce IL-6 (80). Conversely, overexpression of the active form of an IL-6 

receptor, gp130, drives epithelial proliferation (81). Surprisingly, however, hyperactive 

gp130 induces the Hippo pathway by triggering the transcription factor YAP to control 

cell growth independent of STAT3. Whether the magnitude or duration of gp130 activation 

results in divergent signaling and transcriptional effectors remains to be seen. Additionally, 

examining whether and how other STAT3-inducing factors, including IL-19, IL-20, and 

IL-24, modulate to epithelial proliferation during repair could yield insights into context-

specific activators of this critical process (82).

Type 3 innate lymphoid cells (ILC3s) of the intestinal lamina propria are a critical source 

of IL-22, which concomitantly induces ISC proliferation and antimicrobial production 

in differentiated epithelial cells (78, 83-85). ILC3s are also capable of inducing ISC 

proliferation independent of IL-22/STAT3 by activating the Hippo-YAP pathway (86). 

Notably, ILC function in repair has largely been studied in the absence of adaptive immunity 

in mice, and may represent a compensatory mechanism or early response that can also be 

fulfilled by other innate-like lymphocytes. Given the paramount importance of repair to 

organismal survival, building cellular redundancy into the lymphocyte-epithelial cross talk 

may thus represent a cautionary feature of multicellular repair (87).

Immune Cells Fuel Epithelial Differentiation and Migration

The contribution of epithelial SC proliferation to repair largely depends on the magnitude of 

damage, as smaller wounds are able to heal without cellular expansion. Repair, in this case, 

occurs through a process called epithelial restitution that relies entirely on differentiation 

and migration of epithelial cells at the wound’s edge (88, 89). Unlike immune cells that 
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are highly mobile, epithelial cells are adherent and thus move via collective migration (90). 

That is, they maintain continuous attachment to their neighbors and move as a group, rather 

than individually migrating into the wound bed. In cutaneous wounds, a contiguous group 

of migrating epithelial cells is called a migrating tongue, and in intestinal wounds these 

cells are commonly referred to as wound-associated epithelial cells (87, 91) (Figure 2). 

Molecular characterization of migrating epithelial cells has revealed that these specialized 

repair cells are distinct from steady-state SCs and their differentiated progeny. Mobilized 

epithelial cells are enriched for signatures of epithelial to mesenchymal transition, hypoxia, 

and inflammation (87).

Disrupted vasculature from tissue damage results in oxygen deprivation in wounds. 

In addition, infiltrating neutrophils potentiate a hypoxic environment by competing for 

molecular O2 and producing hypoxia-promoting reactive oxygen species (92). Hypoxia-

inducible factors (HIFs) are highly conserved transcription factors that mediate cellular 

adaptation to low-oxygen microenvironments (93). Stabilizing HIF1α in migrating epithelial 

cells is vital for epithelial restoration in both skin and gut repair (94, 95). Moreover, 

augmenting HIF1α in nonhealing diabetic wounds kick-starts repair (96). In addition to 

regulating genes involved in metabolic adaptation, HIF1α enhances the epithelial expression 

of intestinal trefoil factor 3, to bolster epithelial barrier function and facilitate repair upon 

damage (97), underscoring the central role of this transcription factor as a master regulator 

of repair-associated epithelial differentiation and migration.

Owing to its name, HIF1α in wounds was largely attributed to hypoxia. Yet, single-

cell sequencing studies identified coexpression of inflammatory and hypoxia-responsive 

signatures in epithelial migrating tongues, raising the intriguing possibility that these two 

processes are interconnected (87). Indeed, we found that loss of dermal RORγt+ γδ T 

cells or epithelial-specific loss of IL-17RC impaired formation of the migrating tongue 

(65). Surprisingly, levels of hypoxia were comparable in wild-type mice and those lacking 

RORγt cells. Supplying exogenous IL-17A rescued the re-epithelialization and HIF1α 
defects in RORγt-deficient animals. Thus immune-derived secondary signals are necessary 

for sustaining HIF1α-induced migratory programs and could be productively leveraged to 

drive repair in nonhealing wounds.

The epithelial edges of nonhealing wounds appear stuck in a perpetual proliferative cycle, 

unable to activate migratory programs (50). Paradoxically, in nonhealing wounds, epithelial 

cells robustly express MHC-II and CCL20 and illicit IL-17A-producing immune cells (98, 

99). Why, then, do these wounds not heal? One possibility is that too much of a good thing 

may backfire. Indeed, in a mouse model of injury, depletion of Tregs leads to exuberant 

T helper 17 (Th17) responses, inducing CXLC5-mediated neutrophilia and consequently 

impairing repair (100). Here it is also important to note that Th17 cells, unlike tissue-

resident Tregs and innate-like lymphocytes, expand late in the repair process (65). Indeed, 

nonhealing diabetic wounds are typified by persistent neutrophils, and their substrates 

obstruct re-epithelialization (101). This is in contrast to physiological healing, where first-

responder neutrophils whose job it is to control microbes do not linger throughout repair. 

Thus, the same immune cells and signals that kick-start healing early promote nonhealing 

states when unchecked. Defining the molecular and immunological signals that usher 
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wounds through phases of repair thus remains an open challenge in tackling nonhealing 

wounds.

IMMUNE-TISSUE INTERACTIONS FACILITATE RE-EPITHELIALIZATION

The skin and gut are multilayered barriers in which epithelia are supported by mesenchymal 

cells (fibroblasts, adipocytes) that define tissue topology through ECM production and 

provide insulation (102); vascular and lymphatic endothelia that deliver nutrients, oxygen, 

and immune cells; a myriad of neurons that perform critical sensory functions (103); and 

other components. As such, each of these distinct cellular compartments must be rebuilt 

following damage to ensure tissue functionality, and each of these systems communicates 

with and receives instructive cues from immune cells.

Mesenchyme-Immune Interactions

Neutrophils and macrophages are the predominant wound-associated immune cell 

populations. Neutrophils have recently been appreciated for their surprising role in 

regulating fibroblasts and ECM in several ways. They robustly produce growth factors 

that influence fibroblasts, endothelial cells, and macrophages (104). In addition, fibroblast 

interactions with neutrophils, even transiently, induced TGF-β1 and consequently ECM 

production (105). In addition to ECM produced by dermal fibroblasts in the wound edge, 

fibroblasts from the underlying fascia plug skin wounds by dragging the ECM as well as 

surrounding vessels, immune cells, and nerves upward (106). Neutrophils interact with and 

transfer wound matrices via integrin AM and β2 (107). How do neutrophils perform such 

diverse functions in wounds? Neutrophil heterogeneity is increasingly evident in health and 

disease (108). Wound neutrophils may either develop with distinct functionalities or adopt 

these features in response to signals in the local wound microenvironment. For instance, heat 

shock factor produced in wounds triggers neutrophil- and integrin-mediated matrix transfer 

(107). Given the multifaceted roles of neutrophils, one area begging for clarity is precisely 

how developmental versus wound signals contribute to neutrophil functional heterogeneity.

For nearly a century, the intimate interactions between macrophages and fibroblasts have 

been a subject of fascination and a canvas for the discovery of key cellular survival and 

growth factors (109). These interactions are particularly evident in wounds and evolve over 

the course of repair. Lucas et al. (110) used a temporal depletion strategy to examine 

the stage-specific contribution of macrophages to repair. Early ablation after wounding 

profoundly impaired granulation tissue formation, vascularization, and re-epithelialization. 

Midstage deletion resulted in wound hemorrhaging, and late depletion did not affect the 

repair response or scarring.

Arising from myofibroblast progenitors, adipocytes are critical components of the dermal 

mesenchyme that participate in both homeostatic regeneration of the epithelium and tissue 

repair (102). CD301b+ macrophage-derived IGF and platelet-derived growth factor C 

(PDGFC) induce proliferation of adipose precursors and facilitate healing. The adipose-

macrophage cross talk is a two-way street, as inhibiting lipolysis compromises wound 

macrophage function and derails repair (111).
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Endothelial-Immune Interactions

Restoration of vascular architecture in wounds occurs via angiogenesis and depends 

critically on immune-derived signals (112, 113). Surprisingly, wound macrophages, not 

epithelial cells, are the predominant source of vascular endothelial growth factor A 

(VEGFA) (110, 114). Proangiogenic macrophages appear to be transcriptionally distinct 

from inflammatory or repair macrophages and arise from circulating CCR2+Ly6C+ 

monocytes (115). Live imaging of angiogenesis in murine and zebrafish wounds revealed 

that neutrophils are only transiently drawn to the tips of damaged vessels, whereas 

macrophages are persistently associated with vessels and direct remodeling and regression 

(116). The role of the adaptive immune system in angiogenesis is well documented in the 

context of myocardial repair (117-119); however, it is unclear whether and how the adaptive 

immune system contributes to wound angiogenesis at epithelial barriers. Though formally 

untested in repair, T cells have been shown to secrete VEGFA in vitro and influence the 

behavior of macrophages via IFN-γ (120, 121).

In addition to vasculature, lymphatic vessels are also disrupted in wounds (122). Physical 

damage of lymphatic vessels can lead to accumulation of interstitial fluid, and restoration of 

tissue homeostasis requires recovery of lymphatic drainage through vessel regeneration. 

Lymphedema profoundly delays wound healing, suggesting that proper drainage of 

interstitial fluids is vital for healing (123). Wound lymphangiogenesis is stimulated by 

VEGFC or VEGFD signaling and occurs in parallel with vascular angiogenesis (124). 

Recruited macrophages and activated platelets produce VEGFC and VEGFD in wounds 

(125-128). However, how other immune cells and released mediators support lymphatic 

regeneration during tissue repair remains an open question. In addition, lymphatic 

endothelial cells produce paracrine signals that regulate homeostatic intestinal and skin 

SC behavior (129, 130), cardiac growth (131), and thermogenesis of brown adipose tissue 

(132), raising the possibility that lymphatics may also be a source of growth factors during 

re-epithelialization.

Neuro-Immune Interactions

The skin and gut barriers are densely innervated with many types of neurons that mediate 

sensation and relay information to the brain. We now appreciate that in addition to canonical 

sensory function neurons engage in bidirectional communication with immune cells to 

facilitate repair (133-135). Sensory neurons robustly express receptors for inflammatory 

cytokines including IL-1R, IL-17RA, IL-6R, IL-4R, and TNFR, resulting in pain or itch 

signaling upon inflammation (136). Immune cells in turn express receptors for neuropeptides 

and transmitters such as dopamine, substance P, and neuropeptides such as calcitonin gene–

related peptide (CGRP) (137). Illustrative of this cross talk, ligation of the neuroregulatory 

receptor RET in intestinal ILCs triggers IL-22 production (138). During intestinal worm 

infection, IFN-γ-activated enteric glia release CXCL10, resulting in the regulation of 

granulomas (139). Close interactions between neurons and macrophages regulate barrier 

integrity and intestinal physiology, but how these interactions contribute to repair is an open 

question (140, 141). In the skin, however, exchanges between the nervous and immune 

systems are vital to recover from sunburn-induced injury. TAFA4 from mechanosensory 

neurons induces macrophage IL-10 and limits inflammation (142). Physical parameters 
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such as pressure or touch in wounds may be essential in activating such mechanosensory 

neurons, just as noxious agents trigger nociceptors. Recently, microbial metabolites have 

been shown to drive repair after sciatic nerve damage. Indole-6-phosphate from intestinal 

microbiota promotes axonal regeneration and epidermal innervation. This response is 

mediated by neutrophil chemotaxis to the nerve bodies in the dorsal root ganglion, where 

they presumably supply regenerative factors (143).

There is much yet to be discovered about multisystem repair. The aforementioned 

interactions between immune cells and the tissue parenchyma only scratch the surface. 

Systematically charting the myriad of interactions as tissues are rebuilt may require us to 

zoom out and start unbiasedly tracking tissue responses. Moreover, it is unclear whether 

repair engages the same mechanisms as development when tissues are first built, or whether 

the rules of rebuilding tissues are entirely rewritten with age.

IMMUNE-MEDIATED EPITHELIAL PATHOLOGIES OF REPAIR

Given their importance to organismal survival, repair responses have been reinforced with 

a high level of molecular and cellular redundancy (34). However, a number of diseases 

arise from either a failure to launch repair programs (e.g., nonhealing wounds and cancers) 

or exuberant repair (e.g., epithelial inflammatory diseases). Unsurprisingly, the immune 

system has a hand in driving these pathologies, and the same players identified in the 

repair process often underlie epithelial diseases. Below we focus on epithelial cancers 

and two inflammatory conditions, psoriasis and inflammatory bowel disease (IBD), which 

are wound-like states that are excessively healed or undergo cycles of injury and repair, 

respectively (144).

Cancer: Wounds That Do Not Heal

In 1863 Rudolf Virchow proposed his chronic irritation theory, concluding that irritation 

and subsequent inflammation lead to formation of neoplastic tissues (145). Over a century 

later, Harold Dvorak observed the tumor stroma and famously referred to tumors as “wounds 

that do not heal” (144). A wealth of data identifying shared molecular and cellular features 

of wounds and tumors now support Dvorak’s notion that tumors are stuck in a form of 

persistent damage and accordingly are chronically inflamed (146).

Early observations of links between inflammation and cancer were made when chickens 

infected with the Rous sarcoma virus developed tumors when wounded (147). These 

observations in tumorigenesis have since been traced to the same inflammatory pathways 

(IL-1, IL-6, IL-17, and IL-22) that underlie repair (148-153). Studies using chemically 

induced skin carcinogenesis have pinpointed a requirement for IL-17A signaling in cancer 

cells to drive tumor growth (67). Not only are immune factors shared between wounds and 

tumors, but these two processes also engage the same SCs. Lineage tracing revealed that 

Lrig1+ SCs that direct repair in response to IL-17 signaling also constitute the majority of 

tumor mass (67). In the intestine, IL-17 signaling similarly enhances the proliferation and 

survival of enterocytes with a mutation in the tumor suppressor APC gene, contributing to 

adenoma formation (152). A growing body of evidence also supports a role for IL-22 from 

Th17 cells and ILC3s in tumor development (153-155). IL-22 enhances cancer stemness and 
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tumorigenic potential in colorectal cancer by promoting STAT3 activation and expression 

of the histone 3 lysine 79 (H3K79) methyltransferase DOT1L (153). Thus, immune signals 

that instigate repair programs are also evident in the tumor microenvironment and reinforce 

unchecked proliferation caused by tumor mutations that enable cancer cells to overcome 

cell-cycle checkpoints.

Epithelial Inflammatory Diseases: Psoriasis and Inflammatory Bowel Disease

Psoriasis and IBD are prototypic chronic remitting and relapsing inflammatory diseases 

of the skin and gut, respectively (156). Though the pathologies of these two diseases 

are driven by similar inflammatory cytokines, IL-17A, IL-22, and TNFα, they arise 

from very different manifestations of repair. Psoriatic pathology involves epidermal 

hyperthickening, hypervascularization, innervation, and aberrant mesenchymal response, 

which are reminiscent of an amplified repair response, or “over healing” (157-159). By 

contrast, in inflammatory bowel diseases, and in particular Crohn disease, pathology is 

mediated by repeated cycles of epithelial injury and repair, or “recurrent healing” (160, 161). 

These contrasting repair pathologies also provide insight into therapy responsiveness or lack 

there of in the two diseases. IL-17 blockade has been lauded for its success in psoriasis, 

likely due to restraint of the epithelial hyperproliferative and differentiation pathology (162, 

163). In other words, blocking the inflammatory responses in psoriasis patients limits over 

healing. By contrast, in IBD where IL-17 signals may be crucial to boost epithelial repair 

and cope with recurrent injury, biologics that target this cytokine have exacerbated disease 

symptoms (164). Thus, defining the immune milieu in inflammatory epithelial diseases is 

likely not sufficient to determine optimal interventions, as these factors may be either causal 

in driving disease or consequential in coping with pathology. Instead, understanding the 

impact of immune factors on tissue function and repair will help inform rational and lasting 

therapies.

CONCLUSIONS AND PERSPECTIVE

As scientists eavesdrop on the conversations between immune and epithelial cells, they 

overhear increasingly intricate discussions in a variety of contexts. In homeostasis, immune 

cells that reside in the skin and gut not only surveil the tissue for interlopers but also 

act as local sources of growth factors to sustain the epithelium. This convergence of 

immune and regenerative programs may represent a cost-saving measure on the part 

of the host, as bolstering the physical epithelial barrier may be more energetically 

efficacious than mounting repeated inflammatory responses to penetrating pathogens. The 

evolutionary alliance between immune cells and the epithelium strengthens further following 

injury. Immune signals amplify epithelial cell functions (proliferation, differentiation, and 

migration) to expedite repair, and these same features are co-opted pathologically by 

inflammatory diseases and cancers.

A burgeoning area in the context of immune-epithelial communications and repair is that 

of inflammatory memory. We and others have found that epithelial SCs of the skin and gut 

maintain a memory of their inflammatory encounters that fundamentally alter their tissue 

repair functions (165, 166). Memory of inflammation in SCs is encoded at the level of 
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chromatin, by maintaining accessibility and histone modifications at key stress-responsive 

loci (167). These memory domains are bookmarked by both general stress-responsive 

transcription factors like FOS-JUN and inflammatory transcription factors like STAT3. 

Indeed, in the intestine, ablating epithelial IL-6 was sufficient to abrogate the memory 

response (165). In addition, epithelial memory of inflammation was also responsible for 

setting the inflammatory tone of the intestine and controlling the numbers of homeostatic 

Th17 cells. However, studies with repeated limb amputations in highly regenerative axolotls 

or following intestinal damage in flies and mice have revealed that there are limits to 

the reparative boost provided by inflammatory memory (168, 169). The immunological 

factors underlying these reparative roadblocks over time and experience require clarification. 

Nevertheless, it is tempting to speculate that accumulating inflammatory factors over time, 

reminiscent of inflammaging, tip the reparative scales away from healing (170). Indeed, 

aging is associated with profound defects in epithelial repair, which have at least in part been 

attributed to a breakdown of normal immune-epithelial cross talk.

Targeting immune-epithelial communication to boost repair or mitigate inflammatory 

pathologies represents a new frontier in the treatment of inflammatory diseases. In this 

regard, synthetic immunology is emerging as an exciting new discipline to modulate the 

function of immune mediators. Saxton and colleagues (171) exemplified the power of 

manipulating cytokine structure to obtain defined outcomes. They developed synthetic IL-22 

agonists that preserved the tissue-regenerative function of this cytokine by inducing STAT3 

signaling without involving any of the inflammatory factors induced by STAT1. Another 

exciting application of synthetic immunology may be the use of immune cell therapies in 

repair. CAR (chimeric antigen receptor) T cell therapies that localize to and kill tumors 

have revolutionized cancer therapy. Recently, this same technology was used to target 

fibrosis following cardiac injury (172). In addition, engineering cells to supply growth 

or antimicrobial factors in hard-to-treat and infected wounds could help deliver highly 

localized payloads. Epithelial SC–derived tissue engraftments have been clinically and/or 

experimentally successful in the skin and the gut to treat epithelial genetic disorders or 

inflammatory conditions that compromise barrier function in isolated cases (173). Yet, the 

scalability of such approaches remains limited, in part because engraftment in the context 

of inflammation is challenging. Thus, reprogramming the inflammatory tone of tissues 

and priming them for engraftment by dampening proinflammatory factors and augmenting 

pro-repair factors could transform SC-based repair modalities.

Immune-epithelial cross talk stands out as an exemplar of multicellularity and the systems 

of cooperation that ensure rapid repair. Decoding the fascinating dialogue not just in the 

skin and gut epithelia but in all epithelial cells of the body is sure to reveal their unique 

and universal features. Finding unique tissue-specific repair mechanisms may enable the 

development of focal repair therapies, while universal reparative programs could unravel 

systemic therapies. Defining the immune contexture and functionality of repair is both a 

century-old question and an exciting new frontier in immunology and regenerative medicine.
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Figure 1. 
Immune-epithelial cross talk in homeostatic regeneration of the (a) skin and (b) gut. (a) 

HFSCs reside in the hair follicle bulge and fuel the hair cycle, while epidermal stem 

and progenitor cells differentiate from the basal (lowermost) layer to sustain homeostatic 

epidermal turnover. Perifollicular macrophages and Tregs dynamically modulate HFSC 

behavior. TREM2+ macrophages secrete oncostatin M to maintain HFSC quiescence and 

promote telogen, or the resting phase of the hair cycle. Macrophages supply iron to HFSCs 

via the transmembrane receptor ferroportin, and apoptotic macrophages release Wnts to 

activate HFSCs during the transition from telogen to anagen. In response to glucocorticoid 

signaling, Tregs produce TGF-β3, which supports HFSC proliferation. Tregs express Notch 

ligand Jag1, which promotes HFSC differentiation. The epidermal SC immune niche 

comprises Th17 cells, Tc17 cells, dermal γδ T cells, CD8+ Trm cells, and (in mouse skin) 

DETCs. Though the role of these cells in homeostatic epidermal turnover is unclear, Tc17 

cell–derived IL-17A induces production of antimicrobial peptides by the intact epidermis. 

(b) Residing at the base of the crypt, Lgr5+ intestinal SCs differentiate upward into 

progenitors called transit-amplifying cells that further give rise to the differentiated cell 

types (including enterocytes, goblet cells, entero-endocrine cells, tuft cells, and Paneth 

cells). Treg-derived IL-10 has been shown to promote intestinal SC self-renewal in vitro. 

Homeostatic IL-17 signals from an undefined source(s) are sensed by IL-17RA on intestinal 

SCs and induce differentiation to secretory lineages via the transcription factors NF-κB 

and ATOH. Abbreviations: AMP, antimicrobial peptide; DETC, dendritic epidermal γδ T 

cell; HFSC, hair follicle SC; IEL, intraepithelial lymphocyte; ILC3, type 3 innate lymphoid 

cell; MAIT, mucosal-associated invariant T; SC, stem cell; Tc17, CD8+IL-17A+ T; TGF-β3, 

transforming growth factor β3; Th17, T helper type 17; Treg, regulatory T cell; Trm, 

resident memory T. Figure adapted from images created with BioRender.com.
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Figure 2. 
Immune-epithelial cross talk drives re-epithelialization of the (a) skin and (b) gut following 

damage. (a) Skin re-epithelization in proliferative and migratory zones. In the mouse 

skin, DETCs sustain epithelial proliferation by producing KGF2 and IL-6, which induces 

STAT3. In humans, resident αβ and γδ T cells produce IGF. Damaged epithelia secrete 

the alarmin IL-18, which signals resident Tc17 cells to express the transcription factor 

GATA3 and produce IL-13. Tregs require EGFR signaling to limit aberrant inflammation. 

Wound Tregs curb Th17 responses that promote neutrophils and impair healing. Resident 

tissue lymphocytes proliferate at the site of injury. Along with MAIT cells, RORγt+ γδ 
T cells produce IL-17A that induces epithelial HIF1α to drive a program of glycolysis 

to fuel migration. (b) Following intestinal injury, IL-6 from IELs and IL-22 from ILC3s 

induce STAT3 activation and epithelial proliferation. Macrophages release mitogenic Wnts 

and IL-10, which stimulate intestinal stem cell proliferation by inducing WISP-1. Tregs 

produce FGF2, which in concert with IL-17A drives proliferation of intestinal epithelial 

cells. Signaling via IL-17RA, a receptor for IL-17A, also induces epithelial differentiation 

to secretory lineages by inducing expression of the transcription factors NF-κB and 

ATOH. IL-33 released from damaged epithelium stimulates Treg amphiregulin production. 

Macrophage-derived prostaglandin E2 induces differentiation of wound-associated epithelial 

cells, which migrate to seal the breach. Neutrophils produce ROS, which induces HIF1α. 

Abbreviations: AREG, amphiregulin; DETC, dendritic epidermal γδ T cell; EGFR, 

epidermal growth factor receptor; FGF2, fibroblast growth factor 2; HIF1α, hypoxia-

inducible factor 1 α; IEL, intraepithelial lymphocyte; IGF, insulin-like growth factor; 

ILC3, group 3 innate lymphoid cell; KGF2, keratinocyte growth factor; MAIT, mucosal-

associated invariant T; PGE2, prostaglandin E2; ROS, reactive oxygen species; Tc17, 

CD8+IL-17A+ T; Th17, T helper 17; Treg, regulatory T cell; WAE, wound-associated 

epithelium; WISP-1, WNT1-inducible signaling protein 1. Figure adapted from images 

created with BioRender.com.
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Table 1

Comprehensive list of mediators of immune-epithelial cross talk in regeneration

Mediator/signaling
pathway Source Target Function Reference

Iron Skin macrophages HFSCs Activation and hair cycle 23

Oncostatin M Skin TREM2+ macrophages HFSCs Sustains quiescence state 21

Wnts Skin macrophages HFSCs Activation and hair cycle 22

Notch signaling through Jag1 Skin Tregs HFSCs Differentiation and proliferation 22

Glucocorticoid receptor–TGF-
β3 axis

Skin Tregs HFSCs Instructs perifollicular Tregs to produce TGF-
β3 and prompt HFSC differentiation

25

IL-17A Gut Th17 cells Lgr5+ ISCs Promotes secretory cell lineage commitment 30, 31

IL-10 Gut Tregs ISCs Supports ISC renewal in intestinal organoids 31

Abbreviations: HFSC, hair follicle stem cell; ISC, intestinal stem cell; Treg, regulatory T cell.
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Table 2

Comprehensive list of mediators of immune-epithelial cross talk in repair

Mediator/signaling
pathway Source Target Function Reference

Epithelial-immune interactions

Wnt ligands, Wnt1 Gut macrophages ISCs Repair after injury 55-57

IL-10 Gut macrophages ISCs Triggers expression of WISP-1 in ISCs to promote 
proliferation

59

FGF2 Gut Tregs Epithelial cells During colitis, microbiota-driven TGF-β1 controls 
FGF2 production in Tregs. FGF2 cooperates with 
IL-17 to promote repair of damaged intestinal 
epithelium

66

IL-33 Gut epithelial cells Tregs Stimulates production of amphiregulin 71-74

IL-6 Gut intraepithelial 
lymphocytes

Intestinal epithelial 
progenitors

Epithelial proliferation and wound repair 79

IL-22 Gut ILC3s ISCs STAT3 activation and β-catenin-independent 
proliferation

79, 83-85

Hippo-YAP1 
induction

Gut ILC3s ISCs Induction of Hippo-YAP1 pathway independently 
of IL-22/STAT3 to preserve ISCs following acute 
damage

86

KGF2 DETCs Keratinocytes Proliferation in vitro 55

TNF-α Skin macrophages HFSCs Wnt-independent β-catenin activation and HFSC 
proliferation

60

IL-17A ? Lrig1+ stem cells IL-17R recruits EGFR for IL-17A signaling in 
Lrig1+ cells to induce their proliferation during 
wound healing and wound-induced tumorigenesis

67

IL-18 Skin epithelial cells Tc17 cells IL-18 from wounded epithelium signals epidermal 
resident Tc17 cells to induce GATA3 expression 
and produce IL-13

70

IL-17A Skin RORγt+ γδ T cells Wound-edge 
epithelial cells

IL-17A supplied by RORγt+ γδ T cells is 
necessary for optimal HIF1α activation in the 
wound-edge epithelium. The IL-17A–HIF1α axis 
directs the metabolic rewiring of damaged 
epithelium toward a program of glycolysis to fuel 
migration

65

Mesenchyme-immune interactions

IGF and PDGFC CD301b+ macrophages Adipose precursors Drive proliferation of adipose precursors and 
facilitate healing

111

Endothelial-immune interactions

VEGF-A Macrophages Endothelial cells Promotes angiogenesis during repair 110, 114

VEGF-C and 
VEGF-D

Macrophages/platelets Lymphatic 
endothelial cells

Promote lymphangiogenesis during repair 124-128

Neuro-immune interactions

Neurotrophic factors Enteric neuroglia ILC3s Ligation to the neuroregulatory receptor RET 
triggers the production of IL-22

138

TAFA4 Skin mechanosensory 
receptors

Macrophages Induces macrophage IL-10 and limits wound 
inflammation

142

Abbreviations: DETC, dendritic epidermal γδ T cell; FGF2, fibroblast growth factor 2; HFSC, hair follicle stem cell; IGF, insulin-like growth 
factor; ILC3, type 3 innate lymphoid cell; ISC, intestinal stem cell; KGF2, keratinocyte growth factor 2; PDGFC, platelet-derived growth factor C; 

Tc17, CD8+IL-17A+ T cell; Treg, regulatory T cell; VEGF-A, vascular endothelial growth factor A.
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