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SUMMARY/ABSTRACT

Delays in the identification of acute kidney injury (AKI) in hospitalized patients are a major 

barrier to the development of effective interventions to treat AKI. A recent study by Tomasev 

and colleagues at DeepMind described a model that achieved a state-of-the-art performance in 

predicting AKI up to 48 hours in advance.1 Because this model was trained in a population of US 

Veterans that was 94% male, questions have arisen about its reproducibility and generalizability. In 

this study, we aimed to reproduce key aspects of this model, trained and evaluated it in a similar 

population of US Veterans, and evaluated its generalizability in a large academic hospital setting. 

We found that the model performed worse in predicting AKI in females in both populations, with 

miscalibration in lower stages of AKI and worse discrimination (a lower area under the curve) in 

higher stages of AKI. We demonstrate that while this discrepancy in performance can be largely 

corrected in non-Veterans by updating the original model using data from a sex-balanced academic 

hospital cohort, the worse model performance persists in Veterans. Our study sheds light on the 

importance of reproducing artificial intelligence studies, and on the complexity of discrepancies in 

model performance in subgroups that cannot be explained simply on the basis of sample size.

INTRODUCTION

Delays in the identification of acute kidney injury (AKI) in hospitalized patients are a 

major barrier to the development of effective interventions to treat AKI.2 By the time 

changes in typical kidney function biomarkers—serum creatinine and blood urea nitrogen

—are detected, damage that is not readily reversed is often already established. This is 

underscored by recent evidence that automated alerts generated upon AKI onset appear 

to be ineffective at changing the trajectory of AKI.3 This has led to multiple efforts to 

develop early warning system scores that predict the onset of AKI with sufficient lead 

times to support potential interventions.4–8 The most promising of these efforts was recent 

work by Tomasev and colleagues from DeepMind describing a state-of-the-art model for 

the continuous prediction of AKI.1 Developed and validated using data from 703,782 US 

Veterans, the primary recurrent neural network model described in the paper achieved an 

area under the receiver operating characteristic curve (AUC) of 92.1% when predicting AKI 

in the next 48 hours. This study was notable for several reasons, including its large sample 

size, high AUC, and a longer lead time, all of which made this model a clear outlier as 

compared to previous studies.

Despite its promise, the model has not been implemented within the Veterans Affairs (VA) 

health system. In this respect, this model represents an example of the “AI chasm,” a 

term used to describe high-performing AI models that fail to reach the bedside due to 

challenges involved in real-world implementation.9 The model described in this study is 

also not publicly available, meaning that it cannot be readily reproduced and evaluated 

in other clinical settings despite knowledge of the underlying methods and software.10,11 

This lack of computational reproducibility among complex AI models in healthcare is a 

well-recognized barrier to sustaining progress in clinical AI applications.12–16 Because the 

model was developed in a Veteran population that is 94% male, concerns have also arisen 
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about the generalizability of this model to females,17 and to non-VA contexts where practice 

patterns may differ. Recent work in medical imaging demonstrates that models trained in 

predominantly male populations fail to perform well in females.18 This was suggested by 

the DeepMind study where a lower AKI episode-level sensitivity was observed in females as 

compared to males (44.8% vs. 56.0%, respectively).

To address these concerns, we sought to evaluate the reproducibility and generalizability of 

the DeepMind AKI model. Drawing on electronic health record (EHR) data from 278,813 

US Veterans, we reproduced key aspects of the DeepMind AKI model, including their 

methods for data pre-processing, feature selection, transformation of hospitalization data to 

6-hour person-period intervals, and outcome definitions. We further assessed the model’s 

generalizability in a large academic center using data from another 165,359 hospitalizations. 

Finding that the model performs worse in females, we evaluated an approach to updating the 

model to correct for this disparity. Both our reconstructed model and the corrected model are 

publicly available.

RESULTS

Cohort Characteristics

We identified 278,813 VA hospitalizations (from 118 VA hospitals) and 165,359 University 

of Michigan (UM) hospitalizations meeting inclusion and exclusion criteria. Only the first 

hospitalization was included for VA patients, whereas all eligible hospitalizations were 

included for 97,506 UM patients. As compared with UM, patients with VA hospitalizations 

were more likely to be male (94% vs. 50%), older (mean 70 vs. 57), Black (20% vs. 11%), 

and to have diabetes (36% vs. 29%). On the other hand, UM patients were more likely to 

have normal baseline kidney function (baseline eGFR ≥ 60 mL/min/1.73 m2, 81% vs. 73%) 

and a longer length of stay (mean 6.6 vs. 5.3 days), leading to more 6-hour periods per 

patient (18 vs. 15) calculated over a maximum of 7 days of hospitalization (Table 1).

The incidence of AKI differed in two cohorts and in individual sex groups (Extended Table 

1). Among patients without AKI on presentation to the hospital, 10.4% (25,978/250,103) 

developed AKI during their hospitalization at the VA, whereas at UM, AKI occurred in 

16.1% (26,529/164,774) of hospitalizations. Male patients were more likely to experience 

AKI than females in both cohorts (10.6% vs. 5.6% at the VA, and 18.4% vs. 13.8% at UM).

While the model was trained on all windows (including those in which AKI had already 

occurred), the model was evaluated on only those windows in which patients had not yet 

achieved the outcome. At the 6-hour window level, the incidence of new-onset AKI in the 

test set was 3.53% at the VA and 3.76% at UM (Table 2).

Reproducibility of the DeepMind AKI Model

Among eligible 6-hour windows (those in which the outcome had not already occurred), 

our gradient-boosted decision tree (GBDT) model predicted any AKI in the next 48 hours 

with an AUC of 82.0% (95% CI 81.7%, 82.2%) in the VA test set, which was lower than 

DeepMind’s observed AUC for a similar GBDT of 88.9% (95% CI 88.6%, 89.2%). The 

rationale behind our selection of a GBDT model is provided in the Methods. The model’s 
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AUCs for AKI stages 2+, 3+, and 3D were 77.4%, 83.4%, and 95.0%, respectively (full 

details in Table 2). The performance substantially varied between VA hospitals in the test 

set, with AUCs ranging from 61.5% to 98.5%, suggesting that even a high-performing 

model may not generalize across all VA sites (Extended Figure 1). Overall, the model was 

well-calibrated for all levels of AKI (Extended Figure 2a).

However, the model overestimated the risk of AKI 1+ in females as compared to males 

(Extended Figure 2a). The model also had worse discrimination in females when predicting 

AKI 3+ and 3D, with AUCs of 71.1% for AKI 3+ (as compared to 83.9% in males) and 

89.3% for AKI 3D (as compared to 95.4% in males).

Generalizability of the AKI Model at UM

Among eligible windows, the GBDT model predicted any AKI in the next 48 hours in the 

UM test set with an AUC of 84.7% (95% CI 84.5%, 84.8%), which was higher than the 

AUC of 82.0% we observed in the VA test set. In the UM test set, the model’s AUCs for 

AKI stages 2+, 3+, and 3D were 65.5%, 79.8%, and 95.6%, respectively (full details in 

Table 2). While the model appeared to generalize well overall, there was a marked difference 

in AUC for stage 2+ AKI (65.5% at UM vs. 77.4% at the VA).

The model generally overestimated the risk of AKI at all stages, and this finding was worse 

in females as compared to males (Extended Figure 2b). Also, similar to our finding in the 

VA test set, the model performed worse in females when predicting AKI stage 3+, with an 

AUC of 76.3% in females as compared to 82.7% in males (Table 2)

Understanding the Reasons for Differential Performance by Sex

Because the VA population consists of 94% males, one potential reason for the worse 

performance observed in females is the relatively small number of females who progressed 

to AKI stage 3+ (n = 94 in entire VA cohort, Extended Table 1). If the worse performance 

in females was primarily attributable to the lower number of events, then updating the model 

using data from a sex-balanced population should improve the model’s performance in 

females. Thus, starting with our 160-tree GBDT model, we continued to further train it using 

the UM training cohort (in which 50% are females), with early stopping determined based 

on the UM validation cohort (as described in the Methods). This process added 10 trees to 

the original model, and we refer to this updated model as the “extended model” to highlight 

that this 170-tree model contains the original 160 trees within it, and is thus an extension of 

the original model.

Remarkably, this small extension to the original model improved the performance in the 

UM test set both overall and between sexes (Table 3). Whereas the original model had 

poorly predicted AKI 2+ at UM (AUC 65.5%), the extended model performs much better 

on the UM test set (AUC 81.8%). At AKI stage 3+, where the original model exhibited 

the largest difference between females and males (AUC 76.3% vs. 82.7%), the performance 

was much more similar in the extended model (AUC 85.5% for females and 88.6% for 

males). The overall calibration was also better in the UM test set (Extended Figure 3). While 

this mechanism of updating a base model in a local population is a promising approach to 

correcting issues related to model generalizability, the small sample of females used to train 
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the original model does not entirely explain the differential performance by sex. When the 

extended model was re-evaluated on the VA test set, its performance was worse in females, 

with an AUC for AKI 3+ of 69.1% in females as compared to 82.8% in males (Extended 

Table 2).

The extended model’s worse performance in the VA population may be attributable to 

differences in care patterns between females and males at the VA, or due to differences in 

female patient characteristics at the VA and UM. As compared to females at the VA, females 

at UM were older (UM: 58.4 [SD 19.1]; VA: 55.2 years [SD 14.6]), less diverse (UM: 81.4% 

White; VA: 58.8% White;), and were more likely to have baseline chronic kidney disease 

(eGFR < 30 at UM: 3.1%; VA: 2.0%) and congestive heart failure (UM: 23.2%; VA: 6.5%), 

but had a similar body mass index (UM: 29.1 [SD 7.4]; VA: 30.7 [SD 7.4]) and diabetes 

mellitus (UM: 26.2%; VA: 24.0%).

Differences in model performance were not observed between racial groups (Extended 

Tables 3 and 4), potentially because the VA population includes a relatively high proportion 

of Black patients.

DISCUSSION

In our study, we were able to partially reproduce the results reported by the DeepMind 

team in their development and validation of an AKI model in a population of US Veterans 

drawing from over 100 VA hospitals. We observed an AUC for predicting any AKI in the 

next 48 hours of 82.0% in a national VA cohort, which was lower than the AUC of 88.9% 

for a similar GBDT described in the DeepMind paper. At lower stages of AKI, we found 

the model to be miscalibrated in females, which aligns with the DeepMind team’s finding 

of a lower sensitivity in females as compared to males. However, we also uncovered a lower 

AUC in females as compared to males in higher stages of AUC, a difference that was not 

evaluated in the DeepMind study. This difference persists when the VA-trained model is 

transported to a large academic hospital. While further training on a sex-balanced cohort 

improved the discrepancy in model performance at the academic hospital, it worsened the 

disparity in model performance at the VA, suggesting that the lower performance in females 

is related to reasons other than simply a low number of events at the VA.

Our finding that a modeling strategy relying on only VA data results in worse performance 

in females is troubling. Had the differences been attributable solely to the small sample 

size of females, these differences should have been correctable by updating the model using 

information from a sex-balanced cohort as was present at our academic hospital. However, 

updating the model actually worsened this disparity at the VA, which suggests that other 

factors such as practice patterns or patient characteristics for females treated at the VA may 

account for this difference in the VA context.

Our work has limitations that may affect our findings. While we replicated many aspects of 

the DeepMind study, including similar inclusion and exclusion criteria, a similar modeling 

strategy, and the inclusion of many of the same predictors (see Supplemental Table 1), 

we were unable to include International Classification of Diseases, Ninth Revision (ICD-9) 
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codes and clinical note headings as predictors in our model due to computational constraints 

within the VA computing environment, a limitation not faced by the DeepMind team due 

to their use of a de-identified dataset in a proprietary computing environment. Billing codes 

also undergo periodic updates, which can result in models becoming outdated. By the time 

the DeepMind study was published, ICD-9 codes had been replaced with ICD-10 codes, 

and the implementation of ICD-11 codes is already underway.19 ICD-9 codes were known 

to be an important component of the DeepMind AKI model. For example, “malignant 

neoplasm of [the] kidney” was reported as one of the top features in the original study,1 

possibly because this billing code foreshadows an imminent nephrectomy or renal artery 

embolization.

Our work also has important implications. While sex and gender inequalities in healthcare 

machine learning models have long been suspected, we provide definitive evidence that this 

phenomenon can and does occur, and that it is complex, not simply explained away by a 

low sample size. We also show promising results that some of these differences attributable 

to models trained in imbalanced populations can be mitigated through further training on a 

balanced population, which means that base models trained in a large population may be 

capable of being fine-tuned through a relatively simple mechanism in tree ensemble models. 

In the interest of promoting transparency, we have made our original and extended models 

publicly available.

METHODS

Study Cohorts

Our study used data from two cohorts: a national VA cohort drawing on data from 118 VA 

hospitals, and a University of Michigan (UM) cohort.

National VA cohort.—We collected clinical data on all adult patients admitted at a VA 

hospital between October 1, 2016 to September 30, 2017. Starting with a cohort of 280,985 

US Veterans hospitalized between October 1, 2016 and September 30, 2017, we excluded 

patients who did not have a creatinine checked during their stay (defined in the next section 

Data Collection and Processing), had pre-existing end stage renal disease (ESRD), and those 

who had a baseline creatinine >4.0 mg/dL (because they may have had pre-existing AKI 

stage 3). Only the first hospitalization for each patient was included in the analysis. The final 

VA cohort consisted of 278,813 patients, which was randomly divided into training (64%), 

validation (16%) and test (20%) sets at the patient level.

UM cohort.—We collected clinical data from all adult patients admitted to UM from 

January 1, 2016 to December 31, 2020 were included. The same exclusion criteria used in 

the VA cohort were applied to the UM cohort, though all hospitalizations (not only the first) 

were included. The final UM cohort consisted of 165,359 hospitalizations. Anticipating the 

need for updating of the VA model at UM, we randomly selected 60% of hospitalizations 

(sampled at the patient level) for the test set, and set aside the remaining 40% for model 

updating, which was divided equally into a training (20%) and validation (20%) set.
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Predictor Variables

We collected both fixed predictors (i.e., baseline variables) and time-varying predictors (i.e., 

variables measured on a repeated basis during a hospitalization) in both cohorts.

Fixed predictors included age, height, weight, body mass index (BMI), 17 comorbidities, 

admission to a surgical service, intensive care unit (ICU) status, baseline serum creatinine 

(sCr), all of which were captured at the time of admission. Age was top-coded at 89 years. 

Baseline height and weight were calculated as the mean value from the 3 years preceding 

admission for VA patients, and the most recent value within the past year for UM patients. 

If no recent value was identified for UM patients, the first inpatient measurement was 

used. Height and weight measurements were converted into inches and pounds, respectively, 

and extreme values were removed. Baseline BMI was calculated using the baseline height 

and baseline weight. Comorbidities were calculated by Charlson Comorbidity Index using 

one-year data prior to admission for VA patients and from the current encounter for UM 

patents.20 Baseline sCr was determined by the following order of preference: (1) mean 

outpatient sCr between 7–365 days prior to admission, (2) within 7 days prior to admission, 

and (3) first inpatient sCr test for VA patients or first documented sCr value within 24 hours 

of admission for UM patients.

Time-varying predictors consisted of inpatient vital signs, laboratory test results and 

administration of medications. Twenty-six laboratory testing components (serum albumin, 

alkaline phosphatase, alanine aminotransferase, aspartate transaminase, total and direct 

bilirubin, blood urea nitrogen, serum calcium, carbon dioxide, serum chloride, serum 

glucose, high-density lipoprotein cholesterol, hematocrit, hemoglobin A1c, hemoglobin, 

international normalized ratio, low-density lipoprotein cholesterol, microalbumin-to-

creatinine ratio, serum phosphate, platelet count, serum potassium, serum creatinine, serum 

sodium, total cholesterol, triglyceride, and total white blood cell count) were selected due 

to universal use across different health systems. Eight vital signs (inpatient weight, systolic 

blood pressure, diastolic blood pressure, respiratory rate, temperature, pulse, blood oxygen 

level and central venous pressure) were pulled regardless of the frequency of measurement. 

Administration of medications was examined for eleven drug classes (aminoglycosides, 

sympathomimetics, beta blockers, alpha blockers, calcium channel blockers, antilipemic 

agents, loop diuretics, angiotensin-converting enzyme inhibitors, angiotensin II Inhibitors, 

non-ionic contrast media, and nonsalicylate antirheumatic non-steroidal anti-inflammatory 

drugs) as opposed to individual medications.

Data Preprocessing and Feature Engineering

Physiologically infeasible values (e.g., due to a laboratory error) were excluded. 

Microalbumin-to-creatinine ratios were set to 0 when values were reported only in a text 

field based on the observation that the text fields reported such values as being below the 

detectable range. Data elements were time-stamped using the time when values became 

available to the EHR (i.e., the observation time). The description of variables, the associated 

units, and valid ranges are shown in Supplemental Table 1.
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After extracting the fixed and time-varying predictors, we captured patient states at 6-hour 

intervals beginning with the time of admission for each patient in a manner similar 

to the DeepMind AKI study. Patient states were captured up until the final creatinine 

value, discharge, or death, and truncated at 7 days of hospitalization due to computational 

constraints. For each 6-hour interval, summary statistics (length, minimum, mean, median, 

maximum) were calculated for the preceding 48 hours divided into 6-hour windows for vital 

signs and laboratory test results. Using these summary statistics, additional variables were 

created based on clinical relevance: the ratio of the most recent maximum sCr to baseline 

sCr, the difference between the most recent maximum sCr and baseline sCr, and the ratio of 

most recent maximum BUN to most recent maximum sCr. These three sCr-based predictors, 

time (hours) from admission, current AKI stage, plus the summary statistics of temporal 

predictors in the given windowed lookback period, together with the fixed predictors, were 

used as the full set of 1,467 predictors. The preparation of predictors at VA and UM 

followed the same procedures with the only exception for CVP predictors. CVP information 

is not available at UM. Hence, CVP-based predictors were manually added to the predictor 

set and were all set to missing. The number of administered medications was calculated 

for the preceding week (7 days) divided into 24-hour sliding windows. More details can be 

found in Supplementary Table 1. A visual representation of the feature engineering process 

is shown in Figure 1.

Outcome Definition

AKI was defined and staged for severity according to the Kidney Disease: Improving Global 

Outcomes (KDIGO) international guidelines.21 The outcome was calculated on a rolling 

basis at 6-hour intervals by comparing the maximum sCr value in the 48-hour prediction 

window with the baseline sCr. Stage 1 AKI was defined as a sCr level increase ≥ 0.3 mg/dL, 

but less than twice the baseline sCr or an increase of 1.5 times baseline. Stage 2 AKI 

reflected an increase of 2 to 3 times the baseline, and stage 3 AKI was an sCr level increase 

greater than 3 times baseline or an increase to ≥4.0 mg/dL. Stage 3D was determined based 

on the need for dialysis, where the time of first dialysis was determined based on diagnosis, 

procedure, and clinic stop codes during hospitalization at VA, and using procedure codes at 

UM. Thus, at every 6-hour interval at which patient states were captured, outcomes were 

defined as one of five classes based on the 48-hour prediction window: no AKI, AKI stage 

1, AKI stage 2, AKI stage 3, and AKI stage 3D. While models were trained using this 

multinomial outcome, results reported by AKI stages were grouped according to level of 

severity. For example, AKI stage 1+ is used to refer to any AKI stage, and AKI stage 2+ 

refers to AKI stage 2 or greater (including stages 3 and 3D).

Model Development

In the original study, Tomasev et. al. selected a “simple” recurrent neural network (RNN) 

as their primary model, which achieved an AUC of 92.1% in their test set. Tomasev and 

colleagues also evaluated 11 other neural network architectures, 2 tree ensembles, and a 

logistic regression model, all of which performed better than prior studies. For example, 

the gradient boosted trees (GBDT) achieved an AUC of 88.9%, which still represents state-

of-the-art performance. While Tomasev et. al. had access to a de-identified dataset, which 

allowed them to use DeepMind’s computing infrastructure to train deep learning models, our 
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team was restricted to using the VA’s VINCI platform, which lacks the graphical processing 

units needed to efficiently train deep learning models. Thus, we opted to reproduce the 

GBDT model from the Tomasev study.

The GBDT model was trained on the VA training set to predict AKI stage in the next 24 

hours as a multinomial outcome (i.e. “No AKI”, “AKI stage 1”, “AKI stage 2”, “AKI stage 

3”, “AKI stage 3D”) using 1,467 predictors at each 6-hour step with a maximum of 1000 

trees and a maximum depth of 5. The VA validation set was used to determine the need 

for early stopping based on an improvement in log loss lower than 0.0005 on 5 consecutive 

rounds based on a moving average calculated after every 10 trees. The categorical predictors 

were reordered by the mean response of each level for more efficient training. Internally, a 

separate one-versus-all tree was trained for each outcome class. Using a learning rate of 0.1, 

the trained VA AKI model stopped training at 160 trees (internally represented as 160 trees 

per class). Lower learning rates (0.01 and 0.001) produced more trees (because more trees 

were needed to achieve convergence) but achieved similar results (i.e., AUC), so will not be 

presented here.

During model training, optimal binary splits were determined by minimizing the error using 

non-missing data. After a variable split was determined, missing values for that variable 

were assigned to the direction minimizing the error. When generating predictions, missing 

values followed the assigned direction.

Model Evaluation

The performance of the GBDT model was evaluated in both the VA test set and the UM test 

set. The model discrimination was assessed by using the area under the receiver operating 

characteristic (AUC). The AUC was reported both as a multinomial outcome using Hand 

and Till’s method,22 and as a series of binary AUCs where at-risk individuals were evaluated 

on their risk of progression to a higher AKI stage. For example, patients without any 

AKI to date were evaluated on their risk of developing any AKI (i.e., stage 1 or greater), 

and patients with no AKI or AKI stage 1 or evaluated on their risk of developing AKI 

stage 2 or greater, and so on. The 95% confidence intervals were generated using 200 

bootstrap resamples for the multiclass AUCs and DeLong’s method for binary AUCs.23 

Our primary finding is the AUC calculated when treating each prediction independently in 

its ability to predict AKI in the next 48 hours, which is closely comparable to the way 

AUC was calculated in the DeepMind study. To aid with interpretability, we also report 

hospitalization-level AUCs, which use the maximum predicted probability for each binary 

outcome over the course of the hospitalization to assess the quality of the predictions at 

the hospitalization-level (after excluding predictions made after the outcome has occurred). 

The rationale for this approach has been previously described.24,25 We also evaluated model 

calibration by comparing deciles of predicted probabilities with observed risk.

Because the make-up of the VA population is different from other hospitals (e.g., 94% 

male), we examined model performance across sexes and racial groups.
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Updating the Model with UM Data

Given prior concerns that models trained at the VA may not generalize to broader 

populations, we updated the VA model using a UM training/validation set that was set 

aside prior to model evaluation (as described previously in Study Cohorts). Starting with the 

original 160-tree GBDT model trained only in the VA population, we continued to train it 

using the UM training set, with a similar early stopping strategy based on a lack of log loss 

improvement of 0.0001 after 5 consecutive rounds in the UM validation set. This updated 

model (which we refer to as the “extended model” to indicate that it includes a portion of the 

original VA model) added 10 additional trees on top of the original 160 trees, resulting in a 

total of 170 trees. The updated model was then evaluated in both the UM and VA test sets.

Variable Importance

We assessed variable importance using each variable’s squared influence within the GBDT 

algorithm aggregated over the tree ensemble.26 Variable importance for the original and 

extended model are provided in Extended Figure 4.

Software

All data processing and analyses were performed using R 4.0.5 at the VA and R 3.6.1 at 

UM.27 Transformation of time-series data was performed using the Grammar of Prediction 
(gpmodels) R package.28 h2o version 3.32.1.3 was used to fit the GBDT model.29 We 

did not use XGBoost (which was used in the DeepMind study) because while h2o and 

XGBoost achieve comparable performance for their respective GBDT implementations, 

h2o’s implementation is more memory-efficient,30 which was a requirement when using the 

VA’s VINCI computing platform.
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Extended Data

Extended Figure 1. Model performance (AUC) of the original VA model at each VA hospital
Model performance of the original model at each VA hospital in the test set, along with 

characteristics of each VA hospital. A. Model performance with respect to area under the 

curve (AUC) with DeLong 95% CI of the original VA model for predicting AKI-1+ at each 

VA hospital. B. Number of patients (after excluding those with AKI 1+ at baseline) at each 

VA hospital. C. Hospitalization-level AKI-1+ incidence in the test set (after excluding those 

with AKI 1+ at baseline) at each VA hospital. A total of 114 VA hospitals are shown in the 

figure. The results of the remaining four VA hospitals are not shown due to small cohort 

sizes.
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Extended Figure 2. Calibration of the original VA model a) VA test set b) UM test set
The calibration of the original model on the a) VA test set and b) UM test set. The predicted 

probabilities (deciles) are plotted against the observed probabilities with 95% confidence 

intervals. The diagonal line demonstrates the ideal calibration. The model calibration is 

examined for all patients (red), females only (green), and males only (blue).
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Extended Figure 3. Calibration of the extended VA model at UM
The calibration of the extended model in the UM test set. The predicted probabilities 

(deciles) are plotted against the observed probabilities with 95% CI. The diagonal line 

demonstrates the ideal calibration. The model calibration is examined for all patients (red), 

females only (green), and males only (blue).
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Extended Figure 4. Predictor importance plot of the original and extended VA model
Top 20 important predictors of the original VA model (top) and the extended VA model 

(bottom). Predictors are ranked by their relative importance and expressed as a percentage.

Extended Table 1

AKI incidence in the VA and UM cohorts, by acute kidney injury stage, by sex

Outcome VA (all) UM (all)

All Female Male All Female Male

Hospitalization 
level
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AKI 1+ 10.39%(25,978/250,103) 6.04%(890/14,741) 10.66%(25,088/235,362) 16.10%(26,529/164,774) 13.79%(11,307/82,009) 18.39%(15,222/82,765)

AKI 2+ 1.52%(4,127/271,850) 1.11 %(171/15,463) 1,54%(3,956/256,387) 3.93%(6,494/165,192) 3.55%(2,917/82,184) 4.31%(3,577/83,008)

AKI 3+ 0.82%(2,244/275,030) 0.60%(94/15,613) 0.83%(2,150/259,417) 1.76%(2,914/165,276) 1.46%(1,198/82,227) 2.07%(1,716/83,049)

AKI 3D 0.31 %(278,799) 0.13%(21/15,758) 0.33%(856/263,041) 0.23%(388/165,338) 0.18%(152/82,260) 0.28%(236/83,078)

Outcome VA (all) UM (all)

All Female Male All Female Male

Multiclass 
predictions, 
every 6 hours

N = 4,213,375 N = 215, 923 N = 3,997,452 N = 3,033,165 N = 1,478,583 N = 1,554,582

No AKI 3,277,669(77.8) 185,228(85.8) 3,092,441(77.4) 2,723,535 (89.8) 1,350,169(91.3) 1,373,366(88.3)

AKI-1 737,264(17.5) 22,690(10.5) 714,574(17.9) 231,626(7.6) 94,951(6.4) 136,675(8.8)

AKI-2 87,500(2.1) 3,801(1.8) 83,699(2.1) 39,700(1.3) 18,614(1.3) 21,086(1.4)

AKI-3 93,376(2.2) 3,757(1.7) 89,619(2.2) 30,444(1.0) 11,912(0.8) 18,532(1.2)

AKI-3D 17,566(0.4) 447(0.2) 17,119(0.4) 7,860(0.3) 2,937(0.2) 4,923(0.3)

Outcome VA (all) UM (all)

All Female Male All Female Male

Binary 
predictions for 
each stage 
among 
patients who 
have not 
reached that 
stage, every 6 
hours

AKI 1 + 3.55%(120,255/3,386,277) 2.22%(4,191/189,054) 3.63%(116,064/3,197,223) 3.76%(97,197/2,583,269) 3.18%(40,973/1,288,611) 4.34%(56,224/1,294,658)

AKI 2+ 0.41%(16,323/4,029,154) 0.35%(722/208,549) 0.41%(15,601/3,820,605) 0.87% 25,286/2,921,450) 0.76%(10,922/1,428,256) 0.96%(14,364/1,493,194)

AKI 3+ 0.21%(8,700/4,109,724) 0.19%(404/212,042) 0.21%(8,296/3,897,682) 0.39%(11,767/2,983,230) 0.31%(4,566/1,457,716) 0.47%(7,201/1,525,514)

AKI 3D 0.12%(5,116/4,200,925) 0.06%(140/215,616) 0.12%(4,976/3,985,309) 0.08%(2,367/3,027,672) 0.06%(925/1,475,646) 0.09%(1,442/1,549,659)

Extended Table 2

Model performance (AUC) of the extended VA models at VA, by outcome stage, by sex

Outcome VA Test AUC(95% CI)

All Female Male

Multiclass

 Extended VA model 0.9530(0.9501, 0.9574) 0.9474(0.9208, 0.9653) 0.9531(0.9506, 0.9579)

AKI-1+

 Extended VA model 0.8178(0.8150, 0.8178) 0.7892(0.7717, 0.8067) 0.8178(0.8150, 0.8206)

AKI-2+

 Extended VA model 0.7593(0.7507, 0.7679) 0.7432(0.6976, 0.7888) 0.7602(0.7515, 0.7690)

AKI-3+

 Extended VA model 0.8230(0.8131, 0.8329) 0.6907(0.6318, 0.7495) 0.8284(0.8184, 0.8384)

AKI-3D

 Extended VA model 0.9355(0.9261, 0.9450) 0.8925(0.8252, 0.9599) 0.9385(0.9298, 0.9472)
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Extended Table 3

Model performance (AUC) of the original and extended VA models at VA, by outcome 

stage, by race

Outcome VA Test AUC(95% 
Cl)

All Caucasian African American Other Unknown

Multiclass

Original 
VA model

0.9742(0.9718, 0.9770) 0.9729(0.9686, 0.9759) 0.9758(0.9704, 
0.9812)

0.9796(0.9740, 
0.9842)

0.9714(0.9603, 
0.9809)

Extended 
VA model

0.9530(0.9501, 0.9574) 0.9506(0.9450, 0.9544) 0.9563(0.9498, 
0.9633)

0.9591(0.9528, 
0.9664)

0.9526(0.9375, 
0.9638)

AKI-1+

Incidence 3.53%(23,957/678,516) 3.47%(16,115/463,936) 3.78%(4,825/127,634) 3.43%(2,017/58,830) 3.56%(1,000/28,116)

Original 
VA model

0.8196(0.8168, 0.8223) 0.8217(0.8184, 0.8250) 0.8109(0.8047, 
0.8171)

0.8174(0.8078, 
0.8269)

0.8277(0.8137, 
0.8417)

Extended 
VA model

0.8178(0.8150, 0.8206) 0.8196(0.8162, 0.8230) 0.8109(0.8046, 
0.8171)

0.8145(0.8048, 
0.8241)

0.8264(0.8124, 
0.8404)

AKI-2+

Incidence 0.41 %(3,277/806,465) 0.36%(1,997/548,168) 0.49%(761/155,339) 0.57%(393/69,438) 0.38%(126/33,520)

Original 
VA model

0.7741(0.7656, 0.7825) 0.7596(0.7485, 0.7707) 0.7937(0.7767, 
0.8107)

0.8026(0.7820, 
0.8233)

0.8070(0.7625, 
0.8514)

Extended 
VA model

0.7593(0.7507, 0.7679) 0.7463(0.7351, 0.7575) 0.7815(0.7644, 
0.7986)

0.7752(0.7525, 
0.7980)

0.7898(0.7423, 
0.8373)

AKI-3+

Incidence 0.22%(1,775/821,316) 0.19%(1,040/557,294) 0.27%(424/159,121) 0.34%(238/70,859) 0.21%(73/34,042)

Original 
VA model

0.8341(0.8248, 0.8433) 0.8189(0.8067, 0.8312) 0.8486(0.8281, 
0.8691)

0.8706(0.8524, 
0.8889)

0.8451(0.8042, 
0.8861)

Extended 
VA model

0.8230(0.8131, 0.8329) 0.8103(0.7974, 0.8231) 0.8375(0.8162, 
0.8588)

0.8442(0.8196, 
0.8688)

0.8418(0.7941, 
0.8895)

AKI-3D

Incidence 0.11%(940/839,964) 0.10%(567/568,043) 0.14%(225/164,387) 0.12%(88/72,834) 0.17%(60/34,700)

Original 
VA model

0.9497(0.9429, 0.9565) 0.9500(0.9407, 0.9593) 0.9332(0.9184, 
0.9479)

0.9696(0.9539, 
0.9853)

0.9684(0.9568, 
0.9801)

Extended 
VA model

0.9355(0.9261, 0.9450) 0.9350(0.9221, 0.9479) 0.9153(0.8940, 
0.9366)

0.9644(0.9490, 
0.9797)

0.9632(0.9506, 
0.9758)

Extended Table 4

Model performance (AUC) of the original and extended VA models at UM, by outcome 

stage, by race

Outcome UM Test AUC(95% 
Cl)

All Caucasian African American Other Unknown

Multiclass

Original 
VA model

0.8685(0.8644, 0.8726) 0.8697(0.8649, 0.8742) 0.8625(0.8500, 
0.8714)

0.8689(0.8421, 
0.8861)

0.8576(0.8375, 
0.8916)

Extended 
VA model

0.8780(0.8749, 0.8826) 0.8799(0.8755, 0.8850) 0.8733(0.8622, 
0.8806)

0.8759(0.8529, 
0.8936)

0.8565(0.8385, 
0.8885)
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Outcome UM Test AUC(95% 
Cl)

All Caucasian African American Other Unknown

AKI-1+

Incidence 3.76%(58,382/1,551,354) 3.71 
%(47,489/1,281,347)

4.22%(7,389/174,932) 3.49%(2,688/77,092) 4.54%(816/17,983)

Original 
VA model

0.8469(0.8453, 0.8484) 0.8460(0.8443, 0.8477) 0.8433(0.8390, 
0.8476)

0.8561(0.8491, 
0.8631)

0.8859(0.8762, 
0.8957)

Extended 
VA model

0.8523(0.8508, 0.8538) 0.8514(0.8497, 0.8531) 0.8488(0.8446, 
0.8530)

0.8624(0.8555, 
0.8693)

0.8905(0.8811, 
0.8999)

AKI-2+

Incidence 0.86%(15,076/1,753,474) 0.83%(12,064/1,445,319) 1.01 
%(2,033/201,650)

0.80%(686/86,207) 1.44%(293/20,298)

Original 
VA model

0.6550(0.6494, 0.6606) 0.6519(0.6456, 0.6581) 0.6535(0.6383, 
0.6687)

0.6680(0.6412, 
0.6948)

0.7646(0.7312, 
0.7980)

Extended 
VA model

0.8181(0.8138, 0.8224) 0.8158(0.8110, 0.8205) 0.8215(0.8101, 
0.8330)

0.8406(0.8210, 
0.8601)

0.8342(0.8040, 
0.8644)

AKI-3+

Incidence 0.39%(6,976/1,790,447) 0.37%(5,451/1,475,447) 0.50%(1,038/206,309) 0.40%(350/87,868) 0.66%(137/20,742)

Original 
VA model

0.7981(0.7919, 0.8044) 0.7925(0.7853, 0.7998) 0.8187(0.804, 0.8333) 0.8063(0.7776, 
0.8349)

0.8585(0.8190, 
0.8979)

Extended 
VA model

0.8722(0.8666, 0.8778) 0.8763(0.8701, 0.8826) 0.8518(0.8366, 
0.8670)

0.8626(0.8367, 
0.8885)

0.8980(0.8632, 
0.9327)

AKI-3D

Incidence 0.08%(1,412/1,817,604) 0.07%(981/1,496,642) 0.12%(258/210,914) 0.15%(134/89,093) 0.19%(39/20,955)

Original 
VA model

0.9558(0.9507, 0.9609) 0.9546(0.9483, 0.9609) 0.9584(0.9503, 
0.9666)

0.9540(0.9354, 
0.9725)

0.9581(0.9082, 1)

Extended 
VA model

0.9346(0.9258, 0.9433) 0.9375(0.9276, 0.9475) 0.9332(0.9118, 
0.9546)

0.9299(0.9023, 
0.9575)

0.8748(0.7809, 
0.9687)

Extended Table 5

Model performance (AUC) of the original and extended VA models at the hospitalization 

level at VA and UM, by outcome stage, by sex

Outcome VA Test 
AUC(95% Cl)

UM Test AUC(95% 
Cl)

All Female Male All Female Male

AKI-1+

Incidence 10.30%(5,158/50,031) 5.61 
%(164/2,925)

10.60%(4,994/47,106) 16.10%(15,924/98,887) 13.94%(6,848/49,112) 18.23%(9,076/49,775)

Original 
VA 

model

0.7729(0.7664, 
0.7794)

0.7700(0.7344, 
0.8056)

0.7708(0.7642, 
0.7774)

0.7227(0.7185, 0.727) 0.7231(0.7166, 
0.7295)

0.7162(0.7104, 
0.7220)

Extended 
VA 

model

0.7710(0.7645, 
0.7775)

0.7643(0.7281, 
0.8004)

0.7690(0.7623, 
0.7756)

0.7393(0.7351, 0.7435) 0.7419(0.7356, 
0.7482)

0.7311(0.7254, 
0.7368)

AKI-2+

Incidence 1,50%(818/54,412) 1,04%(32/3,069) 1,53%(786/51,343) 3.91 %(3,874/99,149) 3.57%(1,758/49,228) 4.24%(2,116/49,921)

Original 
VA 

model

0.7708(0.7550, 
0.7866)

0.8195(0.7478, 
0.8912)

0.7689(0.7528, 
0.7850)

0.6871(0.6786, 0.6956) 0.6705(0.6579, 
0.6831)

0.7010(0.6896, 
0.7125)
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Outcome VA Test 
AUC(95% Cl)

UM Test AUC(95% 
Cl)

All Female Male All Female Male

Extended 
VA 

model

0.7512(0.7354, 
0.7671)

0.7965(0.7240, 
0.8691)

0.7492(0.7330, 
0.7654)

0.7665(0.7585, 0.7746) 0.7444(0.7321, 
0.7566)

0.7853(0.7748, 
0.7959)

AKI-3+

Incidence 0.83%(457/54,989) 0.71 
%(22/3,100)

0.84%(435/51,889) 1.76%(1,745/99,199) 1,50%(737/49,258) 2.02%(1,008/49,941)

Original 
VA 

model

0.8215(0.8023, 
0.8406)

0.8093(0.7136, 
0.9050)

0.8223(0.8028, 
0.8419)

0.7668(0.7541, 0.7795) 0.7128(0.6924, 
0.7332)

0.8055(0.7898, 
0.8213)

Extended 
VA 

model

0.8159(0.7962, 
0.8356)

0.7913(0.6944, 
0.8883)

0.8171(0.7970, 
0.8373)

0.8287(0.8173, 0.8401) 0.7832(0.7642, 
0.8022)

0.8613(0.8476, 
0.8750)

AKI-3D

Incidence 0.29%(163/55,745) 0.29%(9/3,119) 0.29%(154/52,626) 0.23%(225/99,235) 0.19%(96/49,276) 0.26%(129/49,959)

Original 
VA 

model

0.9577(0.9448, 
0.9706)

0.9227(0.7766, 
1.0)

0.9593(0.9490, 
0.9697)

0.9675(0.9587, 0.9762) 0.9696(0.9589, 
0.9803)

0.9662(0.9526, 
0.9799)

Extended 
VA 

model

0.9455(0.9259, 
0.9651)

0.9231(0.7788, 
1.0)

0.9464(0.9275, 
0.9653)

0.9651(0.9561, 0.9741) 0.9669(0.9555, 
0.9784)

0.9636(0.9439, 
0.9774)
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Figure 1. Representation of the Electronic Health Record Data for the Proposed Model
Representation of the electronic health record (EHR) data for our model. EHR data available 

for each hospitalization were prepared to make an acute kidney injury (AKI) risk prediction 

every six hours from the time of hospital admission and up to 7 days from admission. For 

each prediction, baseline predictors (orange blocks) and temporal predictors (purple blocks: 

medications; blue blocks: lab results and vital signs; brown blocks: time, current AKI stage, 

serum creatinine [sCr] difference from baseline sCr, sCr ratio to baseline sCr, and BUN to 

sCr ratio) were prepared and used together to estimate the outcome (AKI stage) in the next 

48 hours (green blocks).

Cao et al. Page 21

Nat Mach Intell. Author manuscript; available in PMC 2023 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cao et al. Page 22

Table 1

Characteristics of the VA and UM cohorts

Cohort VA UM

Training Validation Test Training Validation Test

Characteristic N = 178,453 N = 44,614 N = 55,746 N = 33,077(19,501 
patients)

N = 33,034(19,501 
patients)

N = 99,248(58,504 
patients)

Age (years) 68.8 (13.1) 68.9 (13.1) 68.8 (13.1) 57.3 (18.2) 57.2 (18.2) 56.8 (18.2)

Sex

Female 10,083 (5.7%) 2,557 (5.7%) 3,119 (5.6%) 16,381 (49.5%) 16,605 (50.3%) 49,280 (49.7%)

Male 168,370 
(94.3%)

42,057 (94.3%) 52,627 
(94.4%)

16,696 (50.5%) 16,429 (49.7%) 49,968 (50.3%)

Race

African American 35,171 
(19.7%)

8,791 (19.7%) 10,990 
(19.7%)

3,361 (10.2%) 3,794 (11.5%) 11,036 (11.1%)

Caucasian 120,962 
(67.8%)

30,308 (67.9%) 37,835 
(67.9%)

27,594 (83.4%) 27,277 (82.6%) 82,164 (82.8%)

Other 15,038 (8.4%) 3,742 (8.4%) 4,696 (8.4%) 1,733 (5.2%) 1,621 (4.9%) 4,899 (4.9%)

Unknown 7,282 (4.1%) 1,773 (4.0%) 2,225 (4.0%) 389 (1.2%) 342 (1.0%) 1,149 (1.2%)

Baseline BMI 29.6 (6.7) 29.6 (6.6) 29.5 (6.6) 28.8 (6.7) 28.8 (6.9) 28.9 (6.8)

Unknown 12,519 (7.0%) 3,033 (6.8%) 3,808 (6.8%) 1,898 (5.7%) 1,944 (5.9%) 5,921 (6.0%)

Baseline serum 
creatinine (mg/dL)

1.1 (0.4) 1.1 (0.4) 1.1 (0.4) 1.0 (0.4) 1.0 (0.4) 1.0 (0.4)

Baseline 
eGFR*(mL/min/
1.73 m2)

≥ 60 131,108 
(73.5%)

32,836 (73.6%) 40,874 
(73.3%)

27,016 (81.7%) 26,813 (81.2%) 80,530 (81.1%)

45–59 27,100 
(15.2%)

6,761 (15.2%) 8,651 
(15.5%)

3,192 (9.7%) 3,339 (10.1%) 9,894 (10.0%)

30–44 14,686 (8.2%) 3,631 (8.1%) 4,481 (8.0%) 1,957 (5.9%) 1,945 (5.9%) 5,988 (6.0%)

15–29 5,470 (3.1%) 1,365 (3.1%) 1,706 (3.1%) 872 (2.6%) 905 (2.7%) 2,727 (2.7%)

< 15 89 (0.0%) 21 (0.0%) 34 (0.1%) 40 (0.1%) 32 (0.1%) 109 (0.1%)

Baseline diabetes 64,844 
(36.3%)

16,174 (36.3%) 20,143 
(36.1%)

9,707 (29.3%) 9,558 (28.9%) 28,922 (29.1%)

Baseline congestive 
heart failure

25,905 
(14.5%)

6,443 (14.4%) 8,019 
(14.4%)

8,396 (25.4%) 8,747 (26.5%) 26,180 (26.4%)

Baseline liver 
disease

16,672 (9.3%) 4,214 (9.4%) 5,349 (9.6%) 6,469 (19.6%) 6,541 (19.8%) 19,606 (19.8%)

Surgical service 41,673 
(23.4%)

10,367 (23.2%) 13,035 
(23.4%)

5,773 (17.5%) 5,666 (17.2%) 16,815 (16.9%)

Admitted to ICU 13,075 (7.3%) 3,346 (7.5%) 4,180 (7.5%) 2,753 (8.3%) 2,917 (8.8%) 8,167 (8.2%)

Length of stay 
(days)

5.3 (12.2) 5.3 (12.5) 5.4 (14.2) 6.6 (7.8) 6.7 (8.6) 6.6 (8.3)

Number of 6-hour 
windows**

15.1 (9.0) 15.1 (8.9) 15.1 (9.0) 18.4 (8.6) 18.3 (8.7) 18.3 (8.7)

Statistics presented: mean (SD); n (%)

*
Calculated based on CKD-EPI Creatinine Equation (2021)

**
Calculated based on a maximum of 7-day hospitalization stay
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Table 2

Model performance (AUC) of the original VA model at VA and UM, by outcome stage, by sex

Outcome VA Test AUC 
(95% Cl)

UM Test AUC (95% 
Cl)

All Female Male All Female Male

Multiclass

Original 
VA model

0.9742(0.9718, 0.9770) 0.9691(0.9413, 
0.9846)

0.9744(0.9721, 
0.9777)

0.8685(0.8644, 0.8726) 0.8689(0.8612, 0.8738) 0.8680(0.8620, 0.8740)

AKI-1+

Incidence 3.53%(23,957/678,516) 2.00%(745/37,226) 3.62(23,212/641,290) 3.76%(58,382/1,551,354) 3.18%(24,585/772,665) 4.34%(33,797/778,689)

Original 
VA model

0.8196(0.8168, 0.8223) 0.7943(0.7770, 
0.8116)

0.8194(0.8166, 
0.8222)

0.8469(0.8453, 0.8484) 0.8477(0.8453, 0.8501) 0.8439(0.8419, 0.846)

AKI-2+

Incidence 0.41 %(3,277/806,465) 0.34%(139/40,855) 0.41 
%(3,138/765,610)

0.86%(15,076/1,753,474) 0.75%(6,472/857,809) 0.96%(8,604/895,665)

Original 
VA model

0.7741(0.7656, 0.7825) 0.7636(0.7191, 
0.8080)

0.7749(0.7663, 
0.7835)

0.6550(0.6494, 0.6606) 0.6504(0.6419, 0.6590) 0.6622(0.6549, 0.6695)

AKI-3+

Incidence 0.22%(1,775/821,316) 0.21 %(88/41,443) 0.22%(1,687/779,873) 0.39%(6,976/1,790,447) 0.32%(2,780/875,621) 0.46%(4,196/914,826)

Original 
VA model

0.8341(0.8248, 0.8433) 0.7111(0.6520, 
0.7703)

0.8393(0.8300, 
0.8486)

0.7981(0.7919, 0.8044) 0.7627(0.7518, 0.7737) 0.8271(0.8198, 0.8345)

AKI-3D

Incidence 0.11 %(940/839,964) 0.15%(61/42,071) 0.11 %(879/797,893) 0.08%(1,412/1,817,604) 0.07%(586/887,574) 0.09%(826/930,030)

Original 
VA model

0.9497(0.9429, 0.9565) 0.8927(0.8251, 
0.9602)

0.9537(0.9487, 
0.9588)

0.9558(0.9507, 0.9609) 0.9560(0.9480, 0.9641) 0.9550(0.9483, 0.9618)
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Table 3

Model performance (AUC) of the extended VA model at UM, by outcome stage, by sex

Outcome UM Test AUC (95% CI)

All Female Male

Multiclass

 Extended VA model 0.8780(0.8749, 0.8826) 0.8757(0.8697, 0.8813) 0.8795(0.8752, 0.8850)

AKI-1+

 Extended VA model 0.8523(0.8508, 0.8538) 0.8535(0.8512, 0.8559) 0.8490(0.8470, 0.8510)

AKI-2+

 Extended VA model 0.8181(0.8138, 0.8224) 0.8135(0.8070, 0.8200) 0.8236(0.8179, 0.8292)

AKI-3+

 Extended VA model 0.8722(0.8666, 0.8778) 0.8554(0.8461, 0.8647) 0.8858(0.8790, 0.8927)

AKI-3D

 Extended VA model 0.9346(0.9258, 0.9433) 0.9402(0.9271, 0.9532) 0.9297(0.9178, 0.9415)
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