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Abstract

Background The obesity paradox in patients with advanced non-small cell lung cancer receiving immune checkpoint
inhibitor therapy has been observed, but its underlying mechanism is not fully understood. We aimed to investigate
whether body composition affects the prognostic impact of obesity, as determined by body mass index (BMI), on
survival.
Methods This retrospective study evaluated the data collected from Asian patients who were treated with immune
checkpoint inhibitors for advanced non-small cell lung cancer between October 2015 and October 2021. We used ab-
dominal cross-sectional imaging to calculate the skeletal muscle and visceral fat indices (cm2/m2) by dividing the
cross-sectional areas of the skeletal muscle and visceral fat by the height squared. Cox proportional-hazards regression
was performed to determine the correlation between BMI according to the Asia-Pacific classification, body composition
metrics and overall survival.
Results We analysed the data of 820 patients (630 men and 190 women, with a mean age of 64.3 years [standard
deviation: 10.4 years]) and observed 572 (69.8%) deaths with the 1-year mortality rate of 0.58 (95% confidence inter-
val, 0.55–0.62). Obese BMI was associated with longer overall survival, independent of clinical covariates (hazard ra-
tio, 0.64; 95% confidence interval: 0.52–0.80). The prognostic value of obese BMI remained after additional adjust-
ments for skeletal muscle index (hazard ratio, 0.68; 95% confidence interval, 0.53–0.87) or visceral fat index
(hazard ratio, 0.54; 95% confidence interval: 0.41–0.70). No association was observed between sex and the impact
of BMI on overall survival (P-value for interaction >0.05).
Conclusions In Asian patients with advanced non-small cell lung cancer who received immune checkpoint inhibitors,
obese BMI was associated with favourable overall survival independent of skeletal muscle or visceral fat mass.
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Introduction

The obesity paradox refers to the unexpected positive corre-
lation between obesity and improved survival in patients with
cancer and other chronic diseases, as reported in various ob-
servational studies.1,2 While it was primarily reported in sur-
gical cohorts of lung cancer,3 recent evidence indicates that
a high body mass index (BMI) is independently associated
with improved survival in non-small cell lung cancer (NSCLC)
patients undergoing immune checkpoint inhibitor (ICI)
therapy.4 Furthermore, this effect was only observed in pa-
tients treated with ICI therapy, as opposed to the docetaxel
group, implying that the relationship with the obesity para-
dox may be solid in ICI therapy. Because ICI therapy targets
T cells to activate the tumouricidal potential of the adaptive
immune system, rather than directly attacking cancer cells,5

it is reasonable to suggest that host factors may impact im-
mune cell function and cancer response, as evidenced by re-
cent studies.6 One such host factor is obesity, which has been
speculated to alter immune cell activity,7 thereby making the
relationship between the obesity paradox and ICI therapy
more plausible. With the increasing administration of ICI in
NSCLC, unravelling the underlying biology of this phenome-
non and exploring its prognostic value should be prioritized
to improve risk stratification and enhance prognosis.

The mechanism underlying the obesity paradox remains
poorly understood; however, several hypotheses have been
proposed. One such hypothesis is the imprecise measurement
of body composition using BMI, which fails to distinguish be-
tween skeletal muscles and adipose tissue.1,2 Specifically, some
authors have proposed that themechanismunderlying the obe-
sity paradox relies on the fact that patients with an obese BMI
have higher levels of protective muscles,8,9 which aligns with
the widely recognized poor prognostic factor of sarcopenia.10,11

Additionally, accumulating evidence indicates that adipose
tissuemay be a potential biomarker, as it has been positively as-
sociated with improved survival in patients with cancer.12,13

However, it was unclear whether the obesity paradox was pri-
marily influenced by specific components of body composition.

Cross-sectional imaging, including computed tomography
(CT), provides accurate quantification and distinction of skel-
etal muscle and adipose tissue, which may be crucial in un-
derstanding the obesity paradox. In this study, we aimed to
investigate whether body composition affected the associa-
tion between obesity, as determined by BMI, and survival in
patients with advanced NSCLC who underwent ICI therapy.

Methods

This retrospective study was approved by the Institutional
Review Board of Samsung Medical Center (IRB file no.
2022-01-155), and the requirement for informed consent

was waived. This study was performed in accordance with
the principles of the Declaration of Helsinki.

Patients

Data for this study was extracted from the Clinical Data
Warehouse Darwin-C of the Samsung Medical Center for
2,247 consecutive patients who received palliative pro-
grammed death receptor 1 (PD-1)/programmed death ligand
1 (PD-L1) blockade therapy for advanced NSCLC between
October 2015 and October 2021. Among them, 991 patients
with baseline abdominal cross-sectional imaging within
90 days prior to ICI treatment initiation were included. Pa-
tients who had received more than four lines of previous
treatments (n = 100) or had insufficient baseline clinical data
(e.g., no body weight) (n = 44) were excluded.

Image analysis

Baseline abdominal CT images were analysed using an artificial
intelligence-driven fully automated segmentation technique
(AID-U™, iAID Inc., Seoul, Republic of Korea) developed based
on a fully convolutional network segmentationmethod.14 From
the single-slice image at the level of the third lumbar vertebra,
which was automatically selected, specific tissue demarcation
was performed based on Hounsfield units (HU) as follows: The
skeletal muscle area (cm2), including all muscles on the selected
axial images (i.e., psoas, paraspinal, transversus abdominis, rec-
tus abdominis, quadratus lumborum and internal and external
obliques), was demarcated using predetermined thresholds
([�29]-[+150] HU). The subcutaneous fat area (cm2) and
visceral fat area (cm2) were demarcated using fat tissue thresh-
olds of [�190] to [�30] HU.15 A board-certified radiologist with
7 years of experience inmusculoskeletal imaging confirmed the
appropriateness of the level selection and segmentation while
being blinded to patient information. The cross-sectional areas
of each body composition were normalized by dividing by the
square of the height in meters to generate the skeletal muscle
index (SMI, cm2/m2), visceral fat index (VFI, cm2/m2) and subcu-
taneous fat index (SFI, cm2/m2).

Clinical variables and study outcomes

We extracted baseline demographic and clinical data from the
Clinical Data Warehouse Darwin-C and electronic medical re-
cords. It included age, sex, treatment agent, line of treatment,
Eastern Cooperative Oncology Group performance status
(ECOG PS), smoking status, histology, PD-L1 expression status,
gene mutation status, Charlson co-morbidity index (CCI),16

blood neutrophil-to-lymphocyte ratio (NLR), height and body
weight. BMI was calculated as the weight divided by height
squared (kg/m2) and classified as underweight (<18.5 kg/m2),
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normal (18.5–22.9 kg/m2), overweight (23.0–24.9 kg/m2), or
obese (≥25 kg/m2) according to the Asia-Pacific classification.17

Tumours with a tumour proportion score of ≥50% were classi-
fied as PD-L1-positive using the Dako PD-L1 IHC 22C3 pharmDx
kit (Agilent Technologies, Santa Clara, CA, USA).18 The primary
endpoint was overall survival (OS), calculated from the treat-
ment initiation to death from any cause. Vital status and date
of death until 25 January 2022, were obtained from death cer-
tification collected from the Ministry of the Interior and Safety.
The secondary endpointwas progression-free survival (PFS), de-
termined from the treatment initiation to disease progression
or death from any cause, whichever occurs first, according to
the RECIST 1.1 criteria.19 Patients without events were cen-
sored at the last follow-up visit.

Statistical analysis

Descriptive statistics were used to summarize patient charac-
teristics according to BMI categories. Continuous and cate-
gorical variables were analysed using ANOVA and chi-square
tests, respectively, to compare the baseline characteristics
of each BMI group.

The Kaplan–Meier method with a log-rank test was used to
analyse event-time distributions and evaluate OS according
to BMI groups. Multivariable Cox regression was used to
determine the association between BMI and OS/PFS, with mul-
tivariable-adjusted hazard ratios (HR) and 95% confidence
intervals (CI) calculated for the underweight, overweight and
obese BMI groups compared to the normal weight group. BMI
was also treated continuously per 1 standard deviation (SD).
We calculated Harrell’s C-statistic, which allows for censored
data.20 The Cox regression model evaluated whether the asso-
ciation between BMI groups and survival differed between
men and women using an interaction term. BMI was modelled
as a continuous variable using restricted cubic splines with
knots at the 5th, 35th, 65th and 95th percentiles of the sample
distribution to provide a flexible estimate of the dose–response
relationship between BMI andOS. Threemodels were used: the
first was adjusted for age, sex, smoking status, ECOG PS, CCI,
NLR, histology, PD-L1 expression status, treatment agents, and
line of treatment (Model 1); to assess the additional impact of
body composition on OS, we employed Models 2SMI and 2VFI,
which incorporated adjustments for SMI and VFI, respectively.

The association between body composition and OS/PFS
was assessed using multivariable Cox regression analysis
without (Model 1) and after adjusting for BMI (Model 2BMI).
The dose–response relationship between body composition
and OS was estimated using restricted cubic splines with and
without additional adjustment for BMI in the same manner.

Pearson’s correlation analysis was used to examine the re-
lationship between BMI and body composition metrics. Mul-
ticollinearity was assessed using the variance inflation factor,
with values greater than four indicating multicollinearity.21

P < 0.05 was considered statistically significant. All analyses
were performed using STATA version 16 (StataCorp LP,
College Station, TX, USA) and R 3.6.1 (R Foundation for Statis-
tical Computing, Vienna, Austria).

Results

After excluding patients with inappropriately segmented
body composition (n = 20) and those with metallic instrumen-
tation in the lumbar spine (n = 7), 820 patients (417 treated
with pembrolizumab, 271 treated with atezolizumab and
132 treated with nivolumab) were included in the analyses
(Figure 1). The mean (standard deviation) age of participants
was 64.3 (10.4) years, and 76.8% of the patients were men.
The mean (standard deviation) BMI values of men and
women were 23.0 (3.3) kg/m2 and 22.6 (3.4) kg/m2, respec-
tively. Among men, the proportions of patients who had un-
derweight, normal, overweight and obese BMI were 8.1%,
40.6%, 25.6% and 25.7%, respectively, while among women,
the corresponding proportions were 10.5%, 45.8%, 20.5%
and 23.2%, respectively. Overall, 18 patients (2.2%) had a
BMI of ≥30 kg/m2. The median interval between abdominal
CT and treatment initiation was 14 days (interquartile range,
5–44 days). Of 641 patients for whom PD-L1 expression
status was available, 299 patients (46.6%) had PD-L1-positive
tumours. EGFR and ALK gene mutation test results were
available for 707 and 693 patients, respectively, of whom
79 (11.2%) and 29 (4.2%) had genetic mutations, respectively.
Although the obese BMI group was the least likely to score ≥2
on ECOG PS and highest NLR (P-values< 0.001), other clinical
factors were similar among the groups (Table 1).

During 740 person-years of follow-up (median follow-up,
6.9 months), we observed 572 (69.8%) deaths. The median
OS was 6.9 months (interquartile range, 2.4–14.8 months) with
the 1-year mortality rate of 0.58 (95% CI 0.55, 0.62). OS dif-
fered significantly between the BMI categories (log-rank
P < 0.01), with better OS in the obese BMI group (Model 1;
HR, 0.64; 95% CI 0.52, 0.80; P < 0.001) than in patients with
normal BMI, independent of clinical covariates (Figure 2 and
Table 2). The risk of death significantly decreased as BMI
increased, demonstrating a 20% lower risk of death as BMI
increased by 1 SD (P< 0.001). The associations between obese
BMI and OS, as well as between BMI and OS, remained signif-
icant after additional adjustments for SMI (Model 2SMI) or VFI
(Model 2VFI) (P-values < 0.05). The C index of Model 1, Model
2SMI, andModel 2VFI were 0.67 (95% CI 0.64, 0.69), 0.67 (95% CI
0.64, 0.69) and 0.67 (95% CI 0.65, 0.70), respectively. The asso-
ciation between BMI and OS was consistent between men
and women (P-value for interaction > 0.05). The restricted
cubic splines demonstrated that the risk of death decreased
in a linear manner as BMI increases in both men and women,
regardless of additional adjustment for SMI or VFI (Figure 3).
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Figure 1 Flow diagram showing selection of the study population. PD-1, programmed death receptor 1; PD-L1, programmed death ligand 1; NSCLC,
non-small cell lung cancer.

Table 1 Characteristics of the study population distinguished by body mass index

Characteristic
Total

(N = 820)

Body mass index categories

Underweight
(N = 71)

Normal
(N = 343)

Overweight
(N = 200)

Obese
(N = 206) P

Age, years 64.3 (10.4) 63.4 (11.5) 64.3 (10.8) 65.2 (10.2) 63.6 (9.7) 0.404
Sex 0.282
Men 630 (76.8) 51 (71.8) 256 (74.6) 161 (80.5) 162 (78.6)
Women 190 (23.2) 20 (28.2) 87 (25.4) 39 (19.5) 44 (21.4)

Smoking status 0.289
Never 213 (26.0) 20 (28.2) 100 (29.2) 43 (21.5) 50 (24.3)
Ever 606 (73.9) 51 (71.8) 243 (70.8) 156 (78.0) 156 (75.7)
Unknown 1 (0.1) 0 (0.0) 0 (0.0) 1 (0.5) 0 (0.0)

ECOG PS, ≥2 93 (11.3) 17 (23.9) 49 (14.3) 14 (7.0) 13 (6.3) <0.001
Charlson comorbidity index, ≥2 95 (11.6) 8 (11.3) 39 (11.4) 22 (11.0) 26 (12.6) 0.959
Neutrophil-to-lymphocyte ratio 5.39 (6.65) 7.82 (8.79) 6.05 (7.48) 4.71 (5.16) 4.13 (5.10) <0.001
Histology, squamous cell carcinoma 218 (26.6) 19 (26.8) 84 (24.5) 53 (26.5) 62 (30.1) 0.557
PD-L1 expression status 0.956
Tumour proportion score < 50% 342 (41.7) 30 (42.3) 146 (42.6) 79 (39.5) 87 (42.2)
Tumour proportion score ≥ 50% 299 (36.5) 27 (38.0) 127 (37.0) 74 (37.0) 71 (34.5)
Unknown 179 (21.8) 14 (19.7) 70 (20.4) 47 (23.5) 48 (23.3)

Treatment agents 0.126
Atezolizumab 271 (33.0) 20 (28.2) 112 (32.7) 61 (30.5) 78 (37.9)
Pembrolizumab 417 (50.9) 40 (56.3) 165 (48.1) 115 (57.5) 97 (47.1)
Nivolumab 132 (16.1) 11 (15.5) 66 (19.2) 24 (12.0) 31 (15.0)

Line of treatment 0.152
1 153 (18.7) 15 (21.1) 68 (19.8) 45 (22.5) 25 (12.1)
2 359 (43.8) 28 (39.4) 156 (45.5) 80 (40.0) 95 (46.1)
3 197 (24.0) 16 (22.5) 72 (21.0) 54 (27.0) 55 (26.7)
≥4 111 (13.5) 12 (16.9) 47 (13.7) 21 (10.5) 31 (15.0)

Values are presented as n (%) or mean (standard deviation).
ECOG PS, European Cooperative Oncology Group Performance Status; PD-L1, programmed death ligand 1.
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The number of events for PFS was 669 (81.6%), including
355 patients (43.3%) with disease progression. The median
PFS was 2.7 months (interquartile range, 1.4–8.6 months).
Patients with obese BMI had a 25% lower risk of progression
compared to patients with normal BMI (Model 1; HR, 0.75;
95% CI 0.62, 0.92; P = 0.005). The risk of progression
significantly decreased as BMI increased, with a 12% lower
risk of progression as BMI increased by 1 SD (P = 0.001).
The association observed with BMI as a continuous variable
remained significant after additional adjustments for SMI

(Model 2SMI) and VFI (Model 2VFI) (P-values < 0.05)
(Table 2). The association between BMI and PFS did not sig-
nificantly differ between men and women (P-values for
interaction > 0.05).

Before adjusting for BMI, all three body composition met-
rics were significantly associated with OS and PFS, indicating
that higher values of these variables were associated with
lower risk of death or progression (P-values < 0.05), with the
exception of the association between SFI and PFS, and that be-
tween VFI and PFS (P-values> 0.05) (Model 1). However, upon

Figure 2 Kaplan–Meier curve for overall survival by body mass index.

Table 2 Hazard ratios for clinical outcomes by body mass index

Model 1
P-value

Model 2SMI
P-value

Model 2VFI
P-valueHR (95% CI) HR (95% CI) HR (95% CI)

Overall survival
BMI* 0.80 (0.74, 0.88) <0.001 0.81 (0.73, 0.91) <0.001 0.73 (0.64, 0.83) <0.001
BMI categories
Underweight (<18.5 kg/m2) 1.31 (0.98, 1.75) 0.065 1.26 (0.94, 1.70) 0.125 1.42 (1.05, 1.91) 0.038
Normal (18.5 to <23 kg/m2) Reference Reference Reference
Overweight (23 to <25 kg/m2) 0.89 (0.71, 1.11) 0.304 0.92 (0.73, 1.16) 0.497 0.77 (0.61, 0.97) 0.185
Obese (≥25 kg/m2) 0.64 (0.52, 0.80) <0.001 0.68 (0.53, 0.87) 0.002 0.54 (0.41, 0.70) <0.001

Progression-free survival
BMI* 0.88 (0.81, 0.95) 0.001 0.91 (0.82, 0.99) 0.048 0.78 (0.70, 0.88) <0.001
BMI categories
Underweight (<18.5 kg/m2) 1.04 (0.78, 1.37) 0.794 0.99 (0.74, 1.32) 0.949 1.11 (0.83, 1.49) 0.482
Normal (18.5 to <23 kg/m2) Reference Reference Reference
Overweight (23 to <25 kg/m2) 0.90 (0.74, 1.10) 0.307 0.94 (0.76, 1.16) 0.562 0.84 (0.69, 1.05) 0.128
Obese (≥25 kg/m2) 0.75 (0.62, 0.92) 0.005 0.81 (0.65, 1.01) 0.064 0.66 (0.52, 0.85) 0.001

*Per 1 standard deviation increasing.
Model 1: Adjusted for age, smoking status, ECOG PS, Charlson co-morbidity index, neutrophil–to–lymphocyte ratio, histology, PD-L1 ex-
pression status, treatment agents, and line of treatment. Model 2SMI: Model 1 + SMI; Model 2VFI: Model 1 + VFI.
BMI, body mass index; CI, confidence interval; SD, standard deviation; SMI, skeletal muscle index; VFI, visceral fat index.
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further adjustment for BMI, the associations between
the increases in these body composition metrics and
favourable OS and PFS became statistically insignificant
(P-values> 0.05). In contrast, following this additional adjust-
ment for BMI, we observed a tendency for the risk of death
and progression to increase in higher VFI, and this association
between higher VFI and poorer PFS reached statistical signifi-
cance (P = 0.008) (Model 2BMI) (Table 3). The restricted cubic
splines also showed that, before adjusting for BMI, there was
a tendency for the risk of death to decrease as SMI, SFI and
VFI increased in both men and women. These trends
underwent significant changes after additional adjustment
for BMI, transitioning to either a flat or opposing pattern. Spe-
cifically, an increase in VFI was associated with higher risk of
death in both men and women following BMI adjustment
(Figure 4).

Although SMI (r = 0.56, P < 0.01), VFI (r = 0.73, P < 0.01)
and SFI (r = 0.70, P < 0.01) were significantly and positively
correlated with BMI, there was no evidence of multicollinear-
ity (variance inflation factor values < 4).

Discussion

Our study found that obese BMI was a significant prognostic
factor for improved OS in patients who received ICI therapy
for advanced NSCLC, independent of body composition as well
as clinical covariates. Given that the relationship between
obese BMI and decreased risk of death persisted even after ad-
ditional adjustments for body composition characteristics, we
also discovered that the obesity paradox was not solely driven
by the quantity of skeletal muscle or adipose tissue. The pro-
tective effect of excessive skeletal muscle mass did not fully
explain the survival advantage of obese BMI. Thus, our find-
ings suggest that factors other than body composition may
be responsible for the obesity paradox, requiring additional
exploration.

Although patients having an obese BMI may have a higher
skeletal muscle mass, our study challenges the previous notion

Figure 3 Multivariable-adjusted hazard ratios for all-cause death by body
mass index in men and women. The curves represent the adjusted hazard
ratios (solid lines) and their 95% confidence intervals (dashed lines) for
all-cause death based on restricted cubic splines for body mass index
with knots at the 5th, 35th, 65th, and 95th percentiles of their sample
distributions. The distribution of body mass index was visually repre-
sented using blue histogram for men and red histogram for women.
The reference value (diamond dot) was set at the 50th percentile (body
mass index of 23 kg/m2). (A) Model 1: Adjusted for age, sex, smoking sta-
tus, ECOG PS, CCI, NLR, histology, PD-L1 expression status, treatment
agents, and line of treatment. (B) Model 2SMI: Model 1 + SMI. (C) Model
2VFI: Model 1 + VFI. CCI, Charlson co-morbidity index; ECOG PS, Eastern
Cooperative Oncology Group performance status; NLR, neutrophil-to-
lymphocyte ratio; SFI, subcutaneous fat index; SMI, skeletal muscle index;
VFI, visceral fat index.

Obesity paradox in non-small cell lung cancer 2903

Journal of Cachexia, Sarcopenia and Muscle 2023; 14: 2898–2907
DOI: 10.1002/jcsm.13367



that greater quantities of musclemay confer protective effects
on survival. This differs from the previous suggestion that skel-
etal muscle mass may be the missing link between obese BMI
and improved survival. A previous study, reporting that the as-
sociation between reduced mortality and obese BMI only
existed when skeletal muscle mass was normal, was one of
the studies to propose this theory.22 Similarly, a BMI range of
25–30 kg/m2 was reported to be associated with the lowest
mortality, likely because patients in this range have higher
levels of protective muscles without morbid adiposity.8,9 How-
ever, in a retrospective analysis of patients treated with surgi-
cal resection for NSCLC, the survival benefit of obese BMI was
independent of skeletal muscle mass measured on baseline
abdominal CT.23 Our results also augment that of this previous
study by finding independent prognostic significance of obese
BMI on favourable OS, and contrariwise that the relationship

Figure 4 Multivariable-adjusted hazard ratios for all-cause death by skeletal muscle index, subcutaneous fat index, and visceral fat index in men and
women. The curves represent the adjusted hazard ratios (solid line) and 95% confidence intervals (dashed lines) for all-cause death based on restricted
cubic splines for skeletal muscle (left row), subcutaneous fat (middle row), and visceral fat indices (right row) with knots at the 5th, 35th, 65th, and
95th percentiles of their sample distributions. The distribution of each body composition was visually represented using blue histogram for men and
red histogram for women. The reference value (diamond dots) is set to the 50th percentile. (A) Model 1: Adjusted for age, sex, smoking status, ECOG
PS, CCI, NLR, histology, PD-L1 expression status, treatment agents, and line of treatment. (B) Model 2BMI: Additionally adjusted for BMI. BMI, body
mass index; CCI, Charlson co-morbidity index; ECOG PS, Eastern Cooperative Oncology Group Performance Status; NLR, blood neutrophil-to-lympho-
cyte ratio; SFI, subcutaneous fat index; SMI, skeletal muscle index; VFI, visceral fat index.

Table 3 Body mass index-adjusted hazard ratios for clinical outcomes
depending on body composition

Model 1
P-value

Model 2BMI
P-valueHR (95% CI) HR (95% CI)

Overall survival
SMI* 0.84 (0.77, 0.93) 0.001 0.97 (0.86, 1.10) 0.624
SFI* 0.84 (0.76, 0.93) 0.001 1.09 (0.92, 1.28) 0.318
VFI* 0.89 (0.82, 0.97) 0.015 1.14 (1.00, 1.30) 0.054

Progression-free survival
SMI* 0.89 (0.81, 0.97) 0.008 0.95 (0.85, 1.07) 0.392
SFI* 0.92 (0.84, 1.00) 0.058 1.08 (0.94, 1.25) 0.270
VFI* 0.97 (0.90, 1.06) 0.505 1.18 (1.04, 1.33) 0.008

*Per 1 standard deviation increasing.
Model 1: adjusted for age, smoking status, ECOG PS, Charlson
co-morbidity index, neutrophil-to-lymphocyte ratio, histology,
PD-L1 expression status, treatment agents, and line of treatment.
Model 2BMI: Model 1 + BMI.
BMI, body mass index; ECOG PS, European Cooperative Oncology
Group Performance Status; SFI, subcutaneous fat index; SMI, skele-
tal muscle index; VFI, visceral fat index.
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between having greater than normal amounts of skeletal mus-
cle and improved OS depended on BMI. This underscores the
need for further investigation into the underlying mechanisms
of the obesity paradox beyond skeletal muscle mass.

An alternative explanation for the obesity paradox, other
than body composition, involves a different gene expression
pattern related to fatty acid metabolism genes. FASN (fatty
acid synthase) is a metabolic oncogene that regulates the de
novo biosynthesis of fatty acids essential for tumour growth.
It is overexpressed in several cancers and has been associated
with unfavourable survival outcomes.24,25 Notably, the
downregulation of FASN pathway in patients with renal cell
carcinoma whose BMI is ≥25 kg/m2 indicates that this poten-
tial metabolic oncogene may contribute to the paradoxical
survival benefit observed in this patient population.26 Differ-
ent transcriptomic profiles between individuals with normal
and obese BMI also has been suggested. In another study
on patients with renal cell carcinoma, patients having
BMI ≥ 30 kg/m2 harboured tumours with greater angiogene-
sis, hypoxia and epithelial-mesenchymal transition.27 The up-
regulation of angiogenesis in this population could potentially
account for these tumours’ heightened vulnerability to tyro-
sine kinase inhibitor therapy. In contrast, a study on patients
with NSCLC who underwent lobectomy found that visceral ad-
iposity is associated with reduced recurrence-free and overall
survival and argued that alterations in inflammatory transcrip-
tomic signature in the tumour microenvironment could link
the adverse survival outcomes with visceral adiposity.28 Given
the contrasting results presented by these studies, further re-
search is warranted to comprehensively investigate the com-
plex mechanisms underlying the obesity paradox in different
cancer types from the perspective of gene expression and
transcriptomic signatures.

The obesity paradox has been partly explained by
obesity-induced inflammation and immune alterations, identi-
fied as underlying biological factors. One theory suggests that
upregulation of the PD-1 receptor and increased secretion of
leptin from adipose tissues plays a key role.29 As blood levels
of leptin increase in proportion to total body fat mass,30 the
role of adipose tissue in the obesity paradox seems reason-
able. In line with this, a recent study comprising patients with
various cancer types treated with immunotherapy found that
a higher ratio of visceral fat to subcutaneous fat was associ-
ated with favourable OS.31 Another study involving patients
with advanced melanoma who received ICI therapy also re-
ported a positive association between visceral adiposity and
improved OS, which was interestingly influenced by systemic
inflammation.13 These findings supported the previous theory
that the heightened efficacy of ICI therapy in individuals with
obese BMI and more visceral adipose tissue might be related
to their chronic inflammatory state and dysregulated immune
response.29,32However, our findings are in contrast to those of
these studies, showing that the apparent protective effect of
obese BMI on survival was not dependent on visceral adiposity

nor systemic inflammation represented by NLR. These discrep-
ancies may suggest that the effect of obese BMI and visceral
adiposity on prognosis and its mechanisms differ depending
on the type of malignancy.

While our study further supports the obesity paradox,
several methodological issues should be addressed, including
unmeasured factors, residual confounding and reverse causa-
tion. Most importantly, the favourable baseline characteristics
of the obese BMI group and the opposite in the underweight
group imply that these issues cannot be fully ruled out despite
adjustment. Of note, the tendency observed in NLR may raise
questions about the potential role of the systemic inflamma-
tory response in the association with the obesity paradox, as
recent evidence links it to cancer cachexia and, conversely,
the obesity paradox.13,33 Considering that our analysis still
yielded statistically significant results despite adjusting for
NLR, it appears unlikely that systemic inflammation had a
substantial impact on the survival outcomes in our study for
individuals with an obese BMI. Nevertheless, the connection
between systemic inflammation and the obesity paradox war-
rants additional inspection in this context. Weight loss prior to
ICI treatment which was not available in this study, should be
considered as another potentially influential confounding fac-
tor, given its prognostic significance in patients with NSCLC.34

Further investigation is necessary to explore this relationship
in more detail and specificity.

We recognize the importance of considering the BMI
distribution of our Asian study subjects, who had a lower
BMI than patients in previous studies conducted in Western
countries,4,28,35 as well as a small number of patients having
a BMI in the morbid obesity range. Given that most patients
with obese BMI in our study had a BMI in the 25–30 kg/m2

range and that mortality curves for BMI follow a U-shaped pat-
tern with increasing mortality at both extremes,36 this group
of patients may belong to the so-called survival sweet spot
for BMI.8,37,38 In this context, the prognostic value of BMI, in-
dependent of body composition, may differ in patients with
even higher BMI, as does the positive relationship between
increased BMI and improved survival. Therefore, future re-
search is needed to determine if the association between
BMI, body composition, and patient prognosis is similar in pa-
tients of other races and those with morbidly obese BMI.

The strength of our study lies in the fact that we used
CT-derived body composition measurements to explore
whether body composition provides a link between obese
BMI and improved survival. However, several limitations
should be acknowledged. First, it was conducted retrospec-
tively at a single tertiary center. Second, the fact that we in-
cluded only patients who underwent abdominal CT may have
led to selection bias, considering controversies regarding the
added benefit of this imaging modality in patients with lung
cancer.39 Third, the study included only Asians with a lower
prevalence of morbidly obese BMI compared to Western pop-
ulations, as described above, which may have led to further
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selection bias. Fourth, data regarding treatment duration and
toxicities, including immune-related adverse events, which are
important clinical factors and outcomes, were unavailable.
Fifth, the possibility of unmeasured or residual confounding
and reverse causation cannot be excluded, even after
adjusting for clinically relevant covariates, which has been
discussed earlier.

In conclusion, obese BMI was associated with improved
survival in Asian patients who received ICI therapy for
advanced NSCLC, independent of body composition status.
Excessive skeletal muscle mass did not provide additional
protective effect on survival, and neither subcutaneous nor
visceral fat could explain the improved survival of patients
with obese BMI. Our results showed that BMI should be con-
sidered a prognostic marker that can be easily assessed, de-
spite its limitations. Further studies are needed to investigate
its true prognostic value and underlying biology to account
for the obesity paradox.
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