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Abstract

High resolution antibody–antigen structures provide critical insights into

immune recognition and can inform therapeutic design. The challenges of

experimental structural determination and the diversity of the immune reper-

toire underscore the necessity of accurate computational tools for modeling

antibody–antigen complexes. Initial benchmarking showed that despite overall

success in modeling protein–protein complexes, AlphaFold and AlphaFold-

Multimer have limited success in modeling antibody–antigen interactions. In

this study, we performed a thorough analysis of AlphaFold's antibody–antigen
modeling performance on 427 nonredundant antibody–antigen complex struc-

tures, identifying useful confidence metrics for predicting model quality, and

features of complexes associated with improved modeling success. Notably, we

found that the latest version of AlphaFold improves near-native modeling suc-

cess to over 30%, versus approximately 20% for a previous version, while

increased AlphaFold sampling gives approximately 50% success. With this

improved success, AlphaFold can generate accurate antibody–antigen models

in many cases, while additional training or other optimization may further

improve performance.
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1 | INTRODUCTION

Antibodies are a key component of the immune system,
defending the host from viruses and other pathogens
through specific recognition of protein and non-protein
antigens. Typically, antibodies engage their antigenic tar-
gets using the hypervariable complementarity determining
region (CDR) loops within the variable domain
(Chothia & Lesk, 1987), which are stabilized by the
β-sandwich structure of the framework region (Sela-
Culang et al., 2013). Despite sharing a conserved

immunoglobulin structure, antibodies collectively exhibit
a remarkable ability to recognize and bind to a wide array
of antigens with high specificity. The highly specific and
diverse nature of antibody–antigen interactions makes
antibodies highly useful as therapeutics as well as a con-
sideration in vaccine development efforts (Carter, 2006;
Nelson et al., 2010; Rappuoli et al., 2016; Scott et al., 2012).

High resolution structures of antibody–antigen com-
plexes have refined our knowledge of immunity (Li
et al., 2003), revealed molecular basis of antibody recognition
of viral epitopes (Barnes et al., 2020; Dreyfus et al., 2012;
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Zhou et al., 2015), and guided the effective design of anti-
bodies (Haidar et al., 2012; Hanf et al., 2014) and immu-
nogens (Graham et al., 2019). However, due to the
challenges of experimental structure determination,
resource and time constraints, as well as the highly
diverse nature of the immune repertoire (Georgiou
et al., 2014; Li et al., 2004), experimental characteriza-
tion of most antibody–antigen complex structures is
impractical. Therefore, computational tools have been
developed and applied to bridge this gap. General
protein–protein docking methods have been applied to
model antibody–antigen complex structures with lim-
ited success (Vreven et al., 2015), due in part to the need
to account for the mobility of key CDR loops, as well as
the size of certain antigens. To address this, algorithms
have been developed specifically for antibody–antigen
complex modeling (Ambrosetti et al., 2020; Brenke
et al., 2012; Krawczyk et al., 2013; Sircar & Gray, 2010).
However, accurate structural prediction of antibody–
antigen complexes remains a challenge (Guest et al.,
2021; Vreven et al., 2015).

Recently, the scientific community saw a major
breakthrough with AlphaFold (v.2.0), which uses an end-
to-end deep neural network to predict protein structures
from sequence (Jumper et al., 2021a). AlphaFold itera-
tively infers and refines pairwise residue–residue evolu-
tionary and geometric information from multiple
sequence alignments (MSAs) and has achieved unprece-
dented success in protein structure prediction (Jumper
et al., 2021a, 2021b). Its capabilities were expanded by
the development of AlphaFold-Multimer (Evans
et al., 2021) (released in AlphaFold v.2.1), an updated
implementation of AlphaFold that was designed to pre-
dict protein–protein complex structures. The overall
architecture of AlphaFold-Multimer is similar to the pre-
vious version of AlphaFold, with changes including
cross-chain MSA pairing, adjusted loss functions, and
training on protein–protein interface residues.

Previously, our benchmarking revealed that, while
generally successful in protein–protein complex structure
prediction, AlphaFold was less successful in modeling
antibody–antigen complexes, and adaptive immune rec-
ognition in general (Yin et al., 2022). This lack of success
in antibody–antigen structure prediction was also noted
by the developers of AlphaFold-Multimer (Evans
et al., 2021). However, some highly accurate antibody–
antigen complex models were generated by AlphaFold
(Yin et al., 2022), which shows potential for success of
the “fold-and-dock” approach for antibody–antigen struc-
ture prediction. While recent studies have assessed the
predictive performance of AlphaFold for modeling
unbound antibodies (Abanades et al., 2023; Ruffolo
et al., 2023), or optimization of AlphaFold's ability to

predict protein complexes in general (Bryant et al., 2022;
Wallner, 2023a), studies have not focused on AlphaFold's
performance in antibody–antigen recognition, particu-
larly in light of updated versions of AlphaFold and its
multimer model (v2.2, v2.3) (DeepMind, 2022), since our
initial test of AlphaFold v2.1 on a set of 100 antibody–
antigen complexes (Yin et al., 2022). Thus, there is a need
for an updated and expanded benchmarking and analysis
of AlphaFold performance on this challenging and
important class of complexes.

In this study, we report a comprehensive benchmark-
ing of AlphaFold for antibody–antigen complex structure
modeling. With a dataset of over 400 high resolution and
non-redundant antibody–antigen complexes, represent-
ing a major increase over the 100 complexes that were
used previously (Yin et al., 2022), we investigated factors
contributing to modeling successes and failures, includ-
ing antibody class and subunit accuracy. The default
AlphaFold model confidence score was found to be well
correlated with antibody–antigen model accuracy, while
residue-level confidence for interface residues was like-
wise correlated with model accuracy. Interestingly, we
found that recent optimization of AlphaFold led to nota-
bly higher antibody–antigen accuracy, while use of a
“massive sampling” strategy with large sets of pooled
AlphaFold models for each complex (Wallner, 2023a)
led to even better performance. Our study presents a
thorough analysis of AlphaFold's ability to predict
antibody–antigen complexes, yielding valuable insights
for interpreting model accuracy, identifying obstacles in
the modeling process, and highlighting potential areas
for improvement.

2 | RESULTS

2.1 | AlphaFold antibody–antigen
complex modeling accuracy

To perform a comprehensive and detailed assessment of
AlphaFold's ability to model antibody–antigen com-
plexes, we assembled a set of over 400 nonredundant
antibody–antigen complexes released after April 30, 2018
(Table S1). The date cutoff was selected to avoid overlap
with the training set of the tested version of AlphaFold
(v2.2.0, hereafter denoted as v2.2 for brevity). Nonredun-
dancy and additional test case selection criteria are
described in Section 4. For efficiency, we only utilized
the variable domains of the antibody sequences for
modeling. As all AlphaFold modeling of multimers in
this study was performed with the multimer model of
AlphaFold, we use the term AlphaFold (vs. AlphaFold-
Multimer) to denote that protocol in this study, for brevity.
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The accuracy of antibody–antigen complex predictions was
evaluated using Critical Assessment of Predicted Interac-
tions (CAPRI) criteria (Lensink et al., 2020), which classify
predictions as incorrect, acceptable, medium, or high based
on a combination of interface root-mean-square distance
(I-RMSD), ligand root-mean-square distance (L-RMSD),
and fraction of native interface residue contacts (fnat), in
comparison with the experimentally determined antibody–
antigen complex structure.

AlphaFold generated acceptable or higher accuracy
models as top-ranked predictions for 26% of the 427 test
cases for which models were generated (Figure 1a).
Medium or higher accuracy models, which we refer to as
near-native predictions, were generated as top-ranked
predictions for 18% of the cases, and high accuracy
models were generated for 5% of the test cases. Success
rates increased when all 25 predictions per complex were
taken into consideration, leading to 37% of the cases
achieving acceptable or higher accuracy predictions, 22%
achieving medium or higher accuracy predictions, and
6% achieving high accuracy predictions.

Representative models generated by AlphaFold are
shown in Figure 1b (PDB code 6nmv; antibody/SIRP-
alpha complex) and Figure 1c (PDB code 6j15; antibody/
PD-1 complex). Both models are top-ranked predictions
for the respective complex. The model in Figure 1b has
high CAPRI accuracy, and an interface root-mean
squared distance (I-RMSD) value of 0.68 Å, indicating a

low level of structural deviation of this modeled
antibody–antigen complex from the native complex.
Figure 1c shows an acceptable CAPRI accuracy predic-
tion with an I-RMSD of 3.55 Å. While the antibody
engages the correct site of the antigen in this example, a
deviation in positioning of the antibody on the antigen,
with respect to the experimentally determined structure,
is observed.

We compared the AlphaFold benchmarking results
with other pipelines and approaches, including Alpha-
Fold in ColabFold (Mirdita et al., 2022). For fairness of
the comparison with the full AlphaFold pipeline's results,
ColabFold was modified to generate 25 predictions per
complex. ColabFold's modeling success was similar to
that of AlphaFold for 426 cases for which both algorithms
were able to generate models, with slightly lower success
observed for ColabFold (Figure S1). The difference in
success may be due to factors such as different MSAs or
structural templates, as ColabFold and AlphaFold
employ distinct approaches for building and pairing
MSAs, and utilize different sequence and template data-
bases. In a comparison with previously developed dock-
ing approaches, we observed that AlphaFold exhibits
higher success in antibody–antigen modeling than
rigid-body docking algorithms ZDOCK (Pierce
et al., 2011) and ClusPro (antibody mode) (Brenke
et al., 2012) with modeled unbound structures as input
(Supplementary Results, Figures S2 and S3).

FIGURE 1 Antibody–antigen modeling accuracy of AlphaFold. (a) Benchmarking of AlphaFold (v.2.2, multimer model) was performed

on 427 antibody–antigen complexes. For each complex, 25 predictions were generated and ranked by AlphaFold model confidence score.

Antibody–antigen predictions were evaluated for complex modeling accuracy using CAPRI criteria for high, medium, and acceptable

accuracy. The success rate was calculated based on the percentage of cases that had at least one model among their top N ranked predictions

that met a specified level of CAPRI accuracy. Bars are colored by CAPRI accuracy level. (b) Example of a near-native prediction by

AlphaFold, in comparison with the experimentally determined structure (PDB: 6nmv; antibody/SIRP-alpha complex). This model has high

CAPRI accuracy (I-RMSD = 0.68 Å) and has the highest model confidence of all 25 predictions of this complex (model confidence = 0.88).

(c) An example of an acceptable accuracy complex model from AlphaFold, in comparison with the experimentally determined structure

(PDB: 6j15; antibody/PD-1 complex). This model has acceptable CAPRI accuracy (I-RMSD = 3.35 Å), and has the highest model confidence

of all 25 predictions of this complex (model confidence = 0.75). Complex structures in (b,c) are superposed by antigen with the model and

the x-ray structure components colored separately as indicated on right.
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We observed higher success in modeling antibody–
antigen complexes by AlphaFold in this study versus our
previous benchmarking study, in which fewer than 10%
of cases had top-ranked predictions with near-native
accuracy (Yin et al., 2022) (vs. 18% here, as noted above).
This difference is likely due to the newer version of
AlphaFold used in this study (v2.2 vs. v2.1), which uses a
retrained multimer model, as well as different sets of test
cases, with the current study representing a substantial
expansion over the cases used previously.

2.2 | Antibody–antigen modeling
accuracy determinants

To identify possible factors associated with modeling out-
come, we analyzed properties of the native antibody–
antigen complexes in relation to predictive modeling suc-
cess. As glycans are not modeled by AlphaFold and antigen
glycosylation can be an important component in antibody–
antigen recognition (in some cases with glycans contacted
directly by antibodies) (Kappler & Hennet, 2020), the subset
of complexes with antibody–antigen interface glycans in
our set was identified (N = 45) to assess the impact of anti-
gen glycosylation on modeling outcome. We identified sev-
eral additional cases (N = 4) containing non-protein ligand
molecules (lipids, nucleotides) at the antibody–antigen
interface that were likewise included in the set. Our analy-
sis showed that the presence of non-protein ligands and gly-
cans at the native antibody–antigen interface is associated
with lower modeling success (Figure 2a). Among those
49 cases, the top-ranked predictions of medium accuracy
were produced in only 8% of the cases, and no high accu-
racy top-ranked predictions were produced. In contrast, for
cases not belonging to this category, 19% had top-ranked
predictions of medium or higher accuracy. Thus, the lack of
explicit consideration of interface glycans and ligands may
reduce modeling accuracy for some antibody–antigen com-
plexes. Nonetheless, AlphaFold was able to accurately
model a single-domain antibody–antigen complex for
which the native structure contains with a glycosphingoli-
pid antigen α-galactosylceramide (α-GalCer) in the binding
interface, as shown in Figure 2b (PDB code 6v7y; single-
domain antibody/CD1d α-GalCer complex). The model, a
top-ranked prediction for the complex, has medium CAPRI
accuracy, and an I-RMSD value of 1.02 Å, indicating that
AlphaFold accurately captured the antibody–antigen dock-
ing conformation despite the absence of an explicit repre-
sentation of the glycosphingolipid antigen at the binding
interface.

Antigen glycosylation can be an important compo-
nent in antibody–antigen recognition, with many cases of
glycans contacted directly by antibodies (Kappler &

Hennet, 2020). The importance of glycans, as well as the
prevalence of antigen N-glycosylation in our dataset
(45 out of 49 glycan/ligand interface complexes, as noted
above), prompted us to examine antigen glycosylation in
the set further. As some x-ray or cryo-EM structures used
for analysis may lack resolved glycan atoms, or naturally
occurring glycans can be removed enzymatically or via
mutation to enable structural characterization, it is possi-
ble that some members of the non-glycan/ligand set
(N = 378) may actually have interface-proximal glycans
in vivo. Based on the analysis of antigen source organism
and proximity of surface-exposed N-glycosylation motifs
to the interacting antibody, a subset of N = 91 cases were
identified to have possible antigen N-glycosylation near
antibody-binding site. The predicted antibody-proximal
antigen glycosylation subset showed a moderately lower
modeling success, with medium or higher accuracy top-
ranked predictions generated in 16% of cases, compared
to 20% medium/high success for the cases without likely
or structurally resolved interface N-glycosylation
(N = 287) (Figure S4). It should be noted that factors
such as varying levels of N-glycan site occupancy and cel-
lular localization (e.g. intracellular vs. extracellular pro-
teins) were not considered in the computational
identification of potential N-glycan sites, and experimen-
tal methods such as mass spectroscopy of native proteins
from organism-specific cells would be needed for more
conclusive identification of antigen-linked glycans.

We also investigated whether antibody–antigen com-
plexes containing single-chain antibodies (or nanobodies)
are more successfully modeled compared to the heavy–
light chain only counterparts (Figure 2c). For nanobody–
antigen complexes (N = 132), 27% of cases had medium
or higher accuracy top-ranked predictions, versus 14% of
cases with medium or higher accuracy top-ranked predic-
tions for heavy-light chain antibody–antigen complexes
(N = 295). To understand the pronounced difference in
modeling nanobody–antigen complexes versus antibody–
antigen complexes, we investigated the difference in
MSA depth of the two types of complexes. We hypothe-
sized that the single-chain variable domains in nanobo-
dies may simplify construction of cross-chain MSAs for
nanobody–antigen complexes, as opposed to the more
complex heavy–light chain antibodies. However, after
analyzing the MSA depth, we found no statistically signif-
icant difference in the number of effective sequences
(Neff, a measure of the effective sequence count in an
MSA [Jumper et al., 2021a]) between the two types of
complexes (Figure S5). This suggests that other factors,
such as fewer CDR loops and a smaller search space, may
contribute to the observed difference in modeling suc-
cess. Unlike heavy–light chain antibodies, which possess
six CDR loops, the variable domain of nanobodies
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contains three loops only, thus it is possible that the
lower complexity and size of the receptor component of
the complex may play a role in the observed improved
modeling performance for AlphaFold.

To investigate whether more favorable antibody–
antigen interfaces are more successfully predicted by

AlphaFold, we compared antibody–antigen interface
energy, computed from the bound complex structure
using Rosetta (Leman et al., 2020), with modeling success
considering all 25 predictions of each case (Figure 2d).
We found that more negative interface energies, indica-
tive of more energetically favorable protein–protein

FIGURE 2 Properties associated with antibody–antigen modeling success. (a) Success rates based on presence of non-protein atoms

(glycans or ligands) at the antibody–antigen interface. Complexes are classified as either “Yes” (N = 49) or “No” (N = 378) to indicate

whether glycans/ligands are present or absent in the antibody–antigen interface. (b) An example of a medium accuracy complex model from

AlphaFold for an interface ligand complex, in comparison with the experimentally determined structure (PDB: 6v7y; single-domain

antibody/CD1d α-GalCer complex). This model has medium CAPRI accuracy (I-RMSD = 1.02 Å), and has the highest model confidence of

all 25 predictions of this complex (model confidence = 0.85). The complex structure is superposed by antigen with the model and the x-ray

structure components colored separately as indicated on right. The α-GalCer glycolipid from the x-ray structure is colored orange. (c) Success

rates based on type of antibody in the complex. Complexes were classified as “Ab” (heavy-light antibody, N = 295), or “Nano” (nanobody/
VHH, N = 132) based on antibody type. T1 and T25 denote AlphaFold modeling accuracy in top 1 (ranked by AlphaFold model confidence

score) and in all 25 predictions of the complex. Bars were colored by CAPRI criteria. (d) Distribution of Interface energy score calculated by

the Rosetta InterfaceAnalyzer (Stranges & Kuhlman, 2013) protocol (based on Rosetta REF15 energy function [Alford et al., 2017]) grouped

by AlphaFold modeling accuracy. The modeling accuracy is defined as the highest CAPRI criteria prediction in the complex, considering all

25 predictions. Statistical significance values (Wilcoxon rank-sum test) were calculated between interface energy scores for sets of cases with

incorrect versus medium and incorrect versus high CAPRI accuracy predictions, as noted at top (*p ≤ 0.05; ***p ≤ 0.001).
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interactions, are associated with higher AlphaFold
modeling success. The difference in distribution of inter-
face energy scores between complexes is statistically sig-
nificant between incorrect versus medium accuracy
prediction (p ≤ 0.05), and incorrect versus high accuracy
complexes (p ≤ 0.001), based on Wilcoxon rank-sum test.
Other factors including modeled antigen assembly mode,
CDR loop modeling accuracy, and antigen modeling
accuracy were evaluated for their influence on the suc-
cess of antibody–antigen modeling (Supplementary
Results, Figures S6–S8).

2.3 | Model confidence score comparison

The reported success of model accuracy scores produced
by AlphaFold (Evans et al., 2021; Yin et al., 2022) led us
to evaluate the ability of those scores, or adaptations
thereof, to discriminate between accurate versus incor-
rect antibody–antigen predictions. We assessed Alpha-
Fold's model confidence score, which is a linear
combination of pTM and ipTM (Evans et al., 2021)
scores, as well as interface pLDDT (I-pLDDT), which is
based on residue-level confidence scores for antibody–
antigen interface residues (4 Å distance cutoff), as used
in previous studies (Bryant et al., 2022; Yin et al., 2022),
for discrimination of correct antibody–antigen models
(Figure 3). While both exhibited significant correlations
with DockQ score (Johansson-Akhe & Wallner, 2022),
which is a continuous measure of complex model accu-
racy, I-pLDDT was marginally superior (Figure 3a,b); this
was also evident for comparison of the scores with
CAPRI accuracy levels (Figure 3c,d).

I-pLDDT also provided outstanding discrimination
between incorrect versus medium or higher accuracy
models based on receiver operating characteristic (ROC)
area under the curve (AUC) metrics (AUC = 0.92),
which is higher than that of the model confidence
(AUC = 0.88; Table 1). We also tested the individual
components of the model confidence scores (pTM and
ipTM) (Figure S9), which did not yield improved correla-
tions with DockQ scores versus model confidence. When
excluding data points without side-chain contacts within
4 Å across the antibody–antigen interface (for which
I-pLDDT was set to an arbitrary minimum value in
Figure 3b and in the corresponding correlation calcula-
tion), the correlation between the interface pLDDT and
DockQ increased to r = 0.57 (Figure S10a), which dem-
onstrates a more significant difference compared to the
correlation between the model confidence and DockQ
(r = 0.53; Figure S10b).

One advantage of I-pLDDT over ipTM and model
confidence (which primarily consists of ipTM) is that it is

specifically focused on the antibody–antigen interface,
whereas ipTM is calculated across all inter-chain inter-
faces of complex models, including heavy–light and mul-
tiple antigen chains, thus the latter scores may be
influenced by less relevant elements of the complex.
Overall, these results support the use of I-pLDDT as a pri-
mary metric in assessing the quality of AlphaFold
antibody–antigen models.

2.4 | Progressive improvements over
recycling iterations

Recycling is a critical component of the AlphaFold algo-
rithm (Evans et al., 2021; Jumper et al., 2021a), wherein
each model is input back to the system for further optimi-
zation. To improve our understanding of the impact of
recycling iterations on AlphaFold modeling of antibody–
antigen complexes, we modified the AlphaFold pipeline
in ColabFold. ColabFold was preferable to utilize in this
context versus the default AlphaFold pipeline due to its
speed, in order to enable output and analysis of the
antibody–antigen complex predictions at each recycling
iteration. Our analysis demonstrates an increase in model
accuracy as recycling iterations progress (Figure 4a). In
fact, approximately 50% of predictions of medium or
higher accuracy after the third recycling iteration were
incorrect models before recycling iterations (Figure S11).

Next, we analyzed specific changes in antibody–
antigen model across recycling iterations, identifying
notably enhanced features and those that are unchanged.
Features that were improved highlights the strength of
AlphaFold, whereas the lack of improvement may high-
light areas of difficulty or suggest that these features were
already optimal at the start and did not require further
refinement. We analyzed both the accuracy of antibody
positioning on the antigen and the quality of the highly
variable CDR loop of the antibody. Given the high vari-
ability in CDRH3 RMSD (Figure S6), compared to the
RMSD of other CDR loops, we focused our analysis of
CDR loops on the CDRH3. Considering all predictions,
we observed a marginal yet significant improvement in
both the antibody–antigen binding conformation as mea-
sured by ligand RMSD (L-RMSD) (Figure 4b, left panel)
and the CDRH3 loop accuracy (Figure 4c, left panel).
Upon examining the subset of cases with medium or
higher accuracy at recycle 3, we observed that the
antibody–antigen binding conformation score L-RMSD
exhibited a pronounced and significant improvement
(Figure 4b, right panel), while the improvement in
CDRH3 loop RMSD was significant but not as pro-
nounced (Figure 4c, right panel), indicating that for
models to attain high accuracy at the end of the recycling
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iteration, it is helpful for AlphaFold to accurately predict
the CDRH3 loop relatively accurately before recycling
iterations begin.

The capability of AlphaFold to perform rigid-body
protein movements over recycling iterations, is shown in
Figure 4d (nanobody/Ricin complex). This prediction
was of incorrect accuracy before recycling iterations and
was improved to a medium accuracy prediction at Recy-
cle 3. Over recycling iterations, the L-RMSD of this pre-
diction exhibited a substantial degree of improvement,
from 49.95 Å before recycling, to 4.25 Å at recycle
3. Unlike L-RMSD, the CDRH3 loop of this prediction
was accurately predicted (CDRH3 RMSD = 1.39 Å)
before the recycling iterations.

The importance of CDRH3 loop accuracy for complex
modeling success was further explored by the analysis of
CDRH3 loop conformations of modeled unbound struc-
tures. Unbound antibody structures were generated with
AlphaFold with a template date cutoff of April 30, 2018,
and the CDR loops of the unbound antibody models were
compared to those of the antibodies in the antibody–
antigen complexes. The RMSD between CDR loops of the
unbound models and the antibody in the bound is com-
pared against the complex modeling success of top-
ranked antibody–antigen models generated by AlphaFold
in Figure S12. Although the relatively small numbers of
high accuracy cases limit this comparison, the accuracy
of the CDRH3 modeling in unbound antibody structures

FIGURE 3 AlphaFold model confidence scores and model accuracy. Scatter plots compare (a) model confidence and (b) interface

pLDDT score with model accuracy, with accuracy assessed by DockQ score. In the scatter plots, all 25 models representing 427 complexes

are depicted as data points, with their colors indicating the model quality according to CAPRI criteria. The orange line represents the linear

regression, and the lower right corner of the scatter plots displays the Pearson's correlation coefficients and correlation p-values. Distribution

of (c) model confidence and (d) interface pLDDT score, grouped by the CAPRI criteria of AlphaFold predictions. Interface pLDDT score is

defined as the mean of pLDDT scores of residues within 4 Å of the antibody–antigen interface. Complexes without contacts within 4 Å of

antibody–antigen interface is assigned an I-pLDDT score of 30. Statistical significance values (Wilcoxon rank-sum test) were calculated

between model scores for sets of predictions with incorrect versus medium and incorrect versus high CAPRI accuracy, as noted at top

(***p ≤ 0.001).
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for high antibody–antigen models was found to be signifi-
cantly higher than that of the incorrect accuracy models
(p ≤ 0.05), suggesting that antibodies with unbound
models that more closely resemble the bound loop con-
formation are likely to be more accurately modeled in
the form of antibody–antigen complexes.

2.5 | Input of subunit chains in bound
conformation enables higher success

To better understand the factors that can enhance the
success rate of the AlphaFold antibody–antigen model-
ing, we utilized native antibody–antigen chains as tem-
plates within the AlphaFold modeling pipeline, to gauge
whether AlphaFold can better assemble the complex
structures given the bound subunit chains. Modifications
were made to the AlphaFold pipeline to optionally input
specific selected PDB templates for each chain. To test
performance, we randomly selected 100 cases from the
full antibody–antigen benchmark that do not have
observed glycans at the antibody–antigen interface and
do not belong to the partial antigen assembly category,
due to observed change in performance for those sets of
cases (Figure 2; Figure S6). On this subset of 100 cases,
the use of default templates identified from the Alpha-
Fold pipeline resulted in 18% success in generating near-

native (medium or high accuracy) top-ranked predictions
(Figure 5a), which is similar to the performance on the
full benchmark (Figure 1a).

A substantial improvement in accuracy was observed
when experimentally determined antibody–antigen
chains were used as individual chain templates, in which
case the success in generating near-native top-ranked
predictions was 52% (Figure 5b). Analysis of the top-
ranked prediction success determinants shows that distri-
bution of interface energy score (Figure S13a) and change
in solvent-accessible surface area (ΔSASA) for hydropho-
bic part of the antibody–antigen interface (Figure S13b)
are significantly different (p ≤ 0.01) between complexes
that have incorrect versus high accuracy top-ranked pre-
dictions, indicating that despite using bound template
structures, AlphaFold has difficulty predicting the com-
plex structure for antibody–antigen interactions with less
favorable computed interface energies and with smaller
hydrophobic interface area. Using only subsets of experi-
mentally determined antibody–antigen chains as tem-
plates, as well as use of experimentally resolved antigens
bound to other antibody structures, resulted in a decrease
in model accuracy, compared to using all experimentally
determined chains as templates (Figures S14 and S15;
Supplementary Results). Interestingly, rigid-body docking
in ZDOCK with bound component inputs achieved com-
parable, although moderately higher, medium/high accu-
racy success compared to AlphaFold with bound
component templates (Figure S14a), indicating that both
rigid-body docking and deep learning can both perform
antibody–antigen complex assembly from bound compo-
nents, albeit not in all cases (�50%–60% medium/high
accuracy success for top-ranked models).

2.6 | MSA provides important
information for accurate prediction of
complexes

We also evaluated the performance of AlphaFold without
MSAs, to test the impact on complex assembly when sub-
unit structures are known (thus MSA would not in prin-
ciple be needed for subunit structure modeling), given
the likely lack of direct co-evolutionary information pre-
sent in antibody–antigen MSAs. The removal of MSAs
was implemented through modifications to the Alpha-
Fold pipeline, as noted in the Section 4. Our results indi-
cated a notable decrease in accuracy when MSA was
disabled, as compared to the with-MSA counterparts
(Figure 5; Figure S14b,c). This prompted us to investigate
the possible association between the depth of MSA and
the modeling outcome by AlphaFold.

TABLE 1 Area under the ROC curve (AUC) value for protein

model quality classes as a function of different scoring metrics.

Scorea

Binary classification
ROC AUCb

Multi-class
classificationb

Incorrect
versus
high

Incorrect
versus medium
and high

Interface
pLDDT

1.00 0.92 0.88

Model
confidence

0.99 0.88 0.85

ipTM 0.99 0.87 0.85

pTM 0.99 0.88 0.84

aScoring methods. Model confidence, ipTM, and pTM are confidence scores
from AlphaFold. Interface pLDDT is the average AlphaFold pLDDT score of
antibody–antigen interface residues within 4 Å distance cutoff. Models
without antibody–antigen interface contacts were assigned an interface

pLDDT value of 30.
bThe ROC AUC values of binary classification and multi-class classification
were calculated using the R pROC (Robin et al., 2011) and multiROC (Wei &
Wang, 2018) packages, with classes defined by model CAPRI accuracy,
which assigned antibody–antigen models into incorrect (n = 9062),

acceptable (n = 773), medium (n = 684), and high (n = 156) accuracy
categories.
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We investigated the impact of MSA depth on model-
ing success by the full AlphaFold protocol, grouping the
complexes by prediction accuracy and comparing distri-
butions of MSA depth (Neff) (Figure 6). The distribution
of Neff was found to be statistically significant between
incorrect and medium accuracy classes (p ≤ 0.01), and
between incorrect and high accuracy classes (p ≤ 0.01).
We also compared the docking model quality (DockQ
score) for all cases when binned by MSA depth levels
(Figure S16). A slight trend was observed indicating that
a greater MSA depth is associated with higher DockQ
scores (higher model accuracies), suggesting that com-
pared to a shallow MSA, predictions with a deeper MSA
are more likely to be of higher accuracy. Thus, it is

possible that increasing MSA depth, particularly for
antibody–antigen complexes with very shallow MSAs,
could lead to some improvement in overall modeling
performance.

2.7 | Modeling accuracy of
AlphaFold v.2.3.0

Recently, an updated version of AlphaFold (v.2.3.0, here-
after denoted as v.2.3) was released, with modifications to
the pipeline and deep learning model (DeepMind, 2022).
Compared with the previous version, this version was
trained on PDB structures released until September

FIGURE 4 Analysis of antibody–antigen predictions across recycling iterations. (a) The accuracy of antibody–antigen complex

predictions across up to three recycling iterations. Complex prediction accuracy across recycling iterations (up to three recycles, denoted by

the x-axis). Success rate is defined as the proportion of predictions of specific level of CAPRI criteria in a total of 25 prediction per complex,

426 complexes total, at the given recycle. Recycle = 0 denotes the state of the prediction before recycling iterations begin. (b) Distribution of

the ligand RMSD (L-RMSD, Å) of antibody–antigen prediction at each recycling iteration (denoted by the x-axis), of all predictions

(25 predictions � 426 complexes, left panel) or a subset of predictions of medium or high CAPRI accuracy at recycle = 3 (106 predictions,

right panel). (c) Distribution of the CDRH3 accuracy of antibody–antigen prediction at each recycling iteration (denoted by the x-axis), of all

or a subset of predictions of medium or high CAPRI accuracy at recycle = 3. CDRH3 accuracy is defined as the change in RMSD of the

CDRH3 region, when superposing the predicted antibody (in the antibody–antigen complex prediction) onto the experimentally resolved

antibody (in the antibody–antigen complex) using the antibody framework region. Statistical significance values (Wilcoxon rank-sum test)

were calculated between RMSD values for sets of predictions at the outset of recycling iterations (recycle = 0) versus at recycle = 3, as noted

at top (***p ≤ 0.001). (d) Example of a prediction across recycling iterations (PDB 7kd2; nanobody/Ricin complex). This prediction's CAPRI

accuracy level across recycles was incorrect at recycle = 0 (I-RMSD = 17.98 Å), incorrect at recycle = 1 (I-RMSD = 10.90 Å), acceptable at

recycle = 2 (I-RMSD = 2.52 Å), and medium at recycle = 3 (I-RMSD = 1.45 Å). The CDRH3 RMSDs of the predictions across recycling

iterations 0, 1, 2, and 3 were 1.39 Å, 1.19 Å, 1.27 Å, and 1.17 Å, respectively. The L-RMSDs of the predictions across recycling iterations 0, 1,

2, 3 were 49.95 Å, 24.68 Å, 5.42 Å, 4.25 Å, respectively. Antibody and antigen chains of the predictions and x-ray structure are colored as

indicated. Predictions were generated with ColabFold due to its faster model generation speed compared to AlphaFold.
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30, 2021, resulting in a 30% increase in training data. This
version also increased the maximum number of recycles,
from 3 recycles in v.2.2 to 20 recycles in v.2.3, with early
stopping, and utilized larger interface regions (crops) and
more chains during training. To benchmark its

performance, we assembled a test set of 41 nonredundant
antibody–antigen complexes released after the September
30, 2021 training date (Table S1). AlphaFold v.2.3 gener-
ated medium or higher accuracy models as top-ranked
predictions for 36% of the test cases, notably higher than
the 23% generated by v.2.2 (Figure 7), with no significant
difference in antibody CDR loop accuracy. Additional
benchmarking revealed that reducing the number of
recycling iterations in v2.3 to match the number of recy-
cling iterations in v2.2 resulted in unchanged modeling
success for v2.3 (Figure S17; Supplementary Results).
This suggests that the observed difference in the number
of recycles between v.2.3 and v.2.2 is not the main factor
contributing to the increased success, and that the
updated and expanded training of the deep learning
model training may be responsible.

A recent study demonstrated that by introducing sto-
chastic perturbations through activating dropout during
AlphaFold inference and employing extensive sampling,
the modeling success of AlphaFold can be improved
(Wallner, 2023a). Using this technique, named AFsam-
ple, the Wallner group ranked among the top predictors
in CASP15 for protein assembly modeling, which
included five nanobody-antigen and three heavy–light
antibody–antigen targets (Lensink, Brysbaert, Raouraoua,
Bates, et al., 2023; Wallner, 2023b). In light of this, we
applied the AFsample protocol to model our benchmark-
ing set of antibody–antigen complexes to assess its perfor-
mance on a broader dataset. On a total of 37 cases for
which all models were successfully generated, AFsample
generated medium or higher accuracy top-ranked predic-
tions for 51% of the test cases, which is notably higher
than 35% for AlphaFold v.2.3, and 24% AlphaFold v.2.2

FIGURE 6 Comparison of MSA depth and modeling success.

The distribution of MSA depth (number of effective sequences,

Neff), calculated using CD-Hit (Fu et al., 2012) with an identity

cutoff of 80%, is shown for antibody–antigen complexes grouped by

AlphaFold modeling accuracy. The modeling accuracy is defined as

the highest CAPRI criteria prediction in the complex, considering

all 25 predictions. Numbers of data points in incorrect, acceptable,

medium and high categories are 272, 63, 65 and 26. Statistical

significance values (Wilcoxon rank-sum test) were calculated

between interface energy scores for sets of cases with incorrect

versus medium and incorrect versus high CAPRI accuracy

predictions, as noted at top (**p ≤ 0.01).

FIGURE 5 Improved subunit modeling enhances antibody–antigen complex modeling success. Antibody–antigen modeling success of

AlphaFold by utilizing (a) templates identified through the default template search protocol, (b) bound antibody and antigen chains as

templates, (c) bound antibody and default antigen chains (identified by the default search protocol) as templates. Benchmarking was

performed on a total of 100 antibody–antigen complexes. The success rate was calculated based on the percentage of cases that had at least

one model among their top N predictions that met a specified level of CAPRI accuracy. Bars are colored by CAPRI accuracy criteria.
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(Figure 8). When the top 25 predictions were considered,
AFsample's medium or higher success rate increased to
59%. In summary, our findings indicate that massive
sampling through a combination of dropout, pooling
structures from different AlphaFold models and parame-
ters, and generation of large numbers of models, provides
a clear advantage over the standard protocol in the con-
text of antibody–antigen complex modeling, although
with substantially higher computational cost.

3 | DISCUSSION

Using a set of over 400 nonredundant antibody–antigen
complexes, we benchmarked and evaluated AlphaFold's
ability to model antibody–antigen complexes. On this set,

we observed a limited yet higher success in the prediction
of antibody–antigen structures by AlphaFold, compared
to our previous benchmarking that used an older Alpha-
Fold version accessed via ColabFold, and was based on a
limited set of 100 antibody–antigen cases (Yin
et al., 2022). Analyses of factors that could influence the
prediction outcome showed that AlphaFold was less able
to accurately predict antibody–antigen structures with
glycans at the antibody–antigen interface, which high-
lights AlphaFold's limitation in handling complexes with
post-translational modifications. We also found that
AlphaFold is more successful at modeling nanobody–
antigen complexes and has difficulty predicting the struc-
ture of larger antibody–antigen complexes. An analysis of
prediction accuracy at each recycling iteration, as well as
the bound antibody–antigen template tests shows the

FIGURE 7 Antibody–antigen modeling success by AlphaFold v.2.3. Modeling success of (a) AlphaFold v.2.2 and (b) AlphaFold v.2.3 on

41 antibody–antigen complexes. The success rate was calculated based on the percentage of cases that had at least one model among their

top N predictions that met a specified level of CAPRI accuracy. Bars are colored by CAPRI accuracy criteria. (c) Distribution of the CDR loop

prediction accuracy of AlphaFold v.2.2 (denoted by salmon color) versus v.2.3 (denoted by cyan color). CDR loop accuracy is defined as the

change in RMSD of the CDR regions, when superposing the predicted antibody (in the antibody–antigen complex prediction) onto the

experimentally resolved antibody (in the antibody–antigen complex) using the antibody framework region.

FIGURE 8 Antibody–antigen
modeling success by AlphaFold v.2.2,

v2.3 and AFsample. Modeling success of

(a) AlphaFold v.2.2, (b) AlphaFold v.2.3,

and (c) AFsample on 37 antibody–
antigen complexes. The success rate was

calculated based on the percentage of

cases that had at least one model among

their top N predictions that met a

specified level of CAPRI accuracy. Bars

are colored by CAPRI accuracy criteria.
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importance of accurate subunit modeling for success in
predicting the antibody–antigen complex. Relatedly, the
ability to accurately predict CDRH3 loops is important
for overall docking success.

Our benchmarking also shows that the latest version
of AlphaFold (v.2.3) exhibits improved success in predict-
ing antibody–antigen structures versus the previous
AlphaFold version (v.2.2), likely due at least in part to
the model training on an updated and expanded set of
complex structures from the PDB (DeepMind, 2022). It is
possible that success can be improved further through
additional optimization or other adaptations of the
AlphaFold framework or model. Additionally, we
observed that a recently described AlphaFold-based mas-
sive sampling approach, named AFsample
(Wallner, 2023a), achieved even higher success than stan-
dard AlphaFold 2.3. It is possible that additional sam-
pling, or pooling with different sets of models and
parameters, could improve this success further. Another
potential avenue for elevating the accuracy of AlphaFold
predictions is demonstrated by the recent development of
fully trainable AlphaFold implementations (Gustaf
et al., 2020; Motmaen et al., 2023; Ziyao et al., 2008),
which enable researchers to adapt and refine the model
to specific datasets or domains of interest, opening up
new possibilities for customization and optimization of
the AlphaFold network.

Despite the lack of explicit coevolutionary signal, our
data show that the inclusion of diverse sequence informa-
tion in MSAs is helpful for maintaining AlphaFold's
modeling success of antibody–antigen complexes. As
such, curation or optimization of MSAs could be another
avenue for improving the accuracy of AlphaFold predic-
tions. Previous work showed that AlphaFold prediction
of protein–protein complexes can be augmented with
improved MSA cross-chain pairing (Bryant et al., 2022),
while others have developed alternative MSA methods
such as DeepMSA2 (Zheng et al., 2021), which was part
of a successful pipeline in a recent CASP/CAPRI complex
structure prediction round (Lensink, Brysbaert,
Raouraoua, et al., 2023). Recent work leveraging protein
language models shows promise in constructing diversi-
fied and informative MSAs for enhancing accuracy in
AlphaFold protein complex prediction (Bo et al., 2009),
while it may be possible to replace or augment the MSA
in AlphaFold with language model representations,
potentially building on recent language models developed
for antibodies (Olsen et al., 2022; Ruffolo et al., 2021) or
proteins in general (Hie et al., 2023).

Our results also demonstrate that accurate subunit
prediction is associated with higher antibody–antigen
complex prediction success. Recent work has shown
improved accuracy in antibody prediction, particularly in

the context of CDR loops, leveraging elements of Alpha-
Fold architecture, especially the structure module, with
modifications (Abanades et al., 2023; Ruffolo et al., 2023).
Incorporating such advances into the prediction pipeline
may enable the prediction of more accurate antibody–
antigen complexes.

While it is possible or even likely that antibody–
antigen modeling success may ultimately be improved in
AlphaFold or related deep learning frameworks, the cur-
rent success of AlphaFold, particularly when using its
updated model (v.2.3) or a recently described massive
sampling protocol, in conjunction with the observed con-
fidence scoring accuracy, indicates that AlphaFold may
potentially be of practical use to researchers in modeling
this important and challenging class of complexes, and
can complement or assist experimental structural deter-
mination methods.

4 | METHODS

4.1 | Antibody–antigen benchmark
assembly

We assembled two nonredundant sets of high resolution
structures to benchmark AlphaFold, following the gen-
eral protocol that we described previously (Yin
et al., 2022). To obtain an initial list of antibody–antigen
complexes from the PDB, we downloaded the full SAb-
Dab (Dunbar et al., 2014) antibody structure dataset in
January 2022. The antibody–antigen complex dataset for
AlphaFold v2.2 benchmarking was assembled using the
following criteria: (1) structure resolution ≤3.0 Å, (2) pro-
tein antigen in the structure (based on SAbDab annota-
tion), and (3) nonredundant with antibody–antigen
complexes with structural resolution ≤9.0 Å released
before April 30, 2018 (AlphaFold v2.2 training sample
cutoff date) based on sequence criteria. Sequence criteria
for nonredundancy are: (1) heavy chain variable domain
sequence ID <90% and full variable domain sequence ID
<90%, or (2) no match between antigen chain sequences
(no hit detected using BLAST (Camacho et al., 2009) with
default parameters). Pairwise sequence alignments were
performed using the “blastp” executable in the BLAST
suite (Camacho et al., 2009). Structural nonredundancy
criteria were then applied to the set. We removed
antibody–antigen structures with <5 Å heavy chain Cα
atom RMSD, after superposition of antigens using the
FAST structure alignment program (Zhu & Weng, 2005),
and > 70% identity between heavy chain variable
domain, light chain variable domain, or concatenated
CDR loop sequences. To avoid modeling antigen chains
with large regions that are not resolved in the
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experimentally determined structures, we additionally
removed structures with PDB “seqres” file sequence
annotation and resolved region sequence length differ-
ence >70%, or sequence length difference >35% and
resolved antigen length >500 aa. We also removed non-
canonical antibody–antigen complex cases (e.g., with
antibody-tetramerization, dimeric sdAb, or constant
domain binding), and we removed cases with incomplete
antigen chain annotations by SAbDab, identified through
manual inspection of the PDB bioassembly structure.

To benchmark AlphaFold v.2.3, we identified a subset
of 41 antibody–antigen complexes within the v.2.2 bench-
marking set. These antibody–antigen complexes were
released after September 30, 2021, and are not redundant
with structures released before that date based on the
sequence criteria detailed above. The AlphaFold v2.2 and
v2.3 benchmarking cases are shown in Table S1.

4.2 | AlphaFold antibody–antigen
modeling

Sequences input to AlphaFold were obtained from the
PDB “seqres” file. Antibody sequences were processed by
ANARCI to remove non-variable domain sequence
regions. We downloaded and installed AlphaFold v2.2
from Github (https://github.com/deepmind/alphafold) in
May 2022 and v.2.3 in February 2023. Both versions of
AlphaFold were installed on a local computing cluster.
During the structure prediction or feature preparation
step in the AlphaFold pipeline, 15 cases failed to com-
plete because of GPU and memory limitations out of a
total of 442 test cases.

For generating unbound antibody and antigen struc-
tures, we employed AlphaFold in Multimer setting when
the input consisted of a heavy-light chain antibody or a
multimeric antigen. Alternatively, the Monomer setting
was utilized when the input was a single chain. A tem-
plate date cutoff of April 30, 2018 was applied to avoid
template overlap with benchmarking set.

To generate AlphaFold predictions without the use
of MSAs (corresponding to single-sequence modeling),
we modified “all_seq_msa_features” variable of chain
features, to include only the query sequence. To use
custom templates, we adapted the template featuriza-
tion function from Motmaen et al. (2023) (https://
github.com/phbradley/alphafold_finetune/blob/main/
predict_utils.py).

AlphaFold modeling in ColabFold (Mirdita et al., 2022)
was performed with ColabFold version 1.4.0 (commit
26de12d3afb5f85d49d0c7db1b9371f034388395), installed
on a local computing cluster using scripts from Github
(https://github.com/YoshitakaMo/localcolabfold). During

ColabFold AlphaFold modeling, MSA was built by query-
ing the MMseqs2 MSA server using unpaired and paired
MSA. To generate a total of 25 predictions per complex,
modifications were made to “load_models_and_params”
function, utilizing a different random seed for each predic-
tion, producing five predictions per AlphaFold model
parameter.

Unless otherwise specified, a template date cutoff of
April 30, 2018 was applied for benchmarking AlphaFold
v.2.2 and ColabFold, and a template date cutoff of
September 30, 2021 was applied for benchmarking
of AlphaFold v.2.3, to avoid using bound structures as
template.

AlphaFold and ColabFold modeling runs were per-
formed using NVIDIA Titan RTX and Quadro
6000 GPUs.

4.3 | Complex model accuracy
assessment

We assessed antibody–antigen complex model accuracy
using DockQ (Johansson-Akhe & Wallner, 2022), which
was downloaded from GitHub (https://github.com/
bjornwallner/DockQ). Antibody–antigen complex model
accuracy was computed by DockQ using the experimen-
tally determined antibody–antigen complex structures
obtained from the PDB. DockQ calculates interface
backbone RMSD (I-RMSD), ligand backbone RMSD
(L-RMSD), fraction of native contacts (fnat), DockQ
score, as well as the Critical Assessment of PRediction of
Interactions (CAPRI) accuracy level, which assigns the
model into one of four discrete accuracy classes: incor-
rect, acceptable, medium, and high, based on the model's
similarity to the native structure (Lensink et al., 2020).

4.4 | Interface pLDDT calculation

To determine the interface pLDDT (I-pLDDT), we com-
puted the average pLDDT value for all residues at the
antibody–antigen interface. Interface residues were
defined as any residue with a non-hydrogen atom within
4.0 Å of the binding partner. An I-pLDDT score of 30 was
assigned to predictions with no antibody–antigen inter-
face residues.

4.5 | CDR loop accuracy analysis

The CDRs and the framework regions of antibodies
were identified by AHo numbering (Honegger &
Pluckthun, 2001), assigned using ANARCI software
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(Dunbar & Deane, 2016). The CDR loops were defined
as residues 24–42 (CDR1), 57–76 (CDR2), and 107–138
(CDR3), as in previous work (Lee et al., 2022).

ProFit v 3.1 (Martin & Porter, 2009) was used to cal-
culate backbone RMSDs between modeled and experi-
mentally determined CDR loop structures, after
superposing the modeled antibody structures onto the
experimentally resolved structures by the framework
residues.

4.6 | Figures and statistical analysis

PyMOL (Schrodinger, Inc.) was used to generate struc-
tural figures. The ggplot2 (Wickham, 2016) package in R
(r-project.org) was utilized to generate box plots, line
plots, and bar plots. Pearson correlations and their corre-
sponding p values were calculated using the ggpubr pack-
age in R, while the Wilcoxon rank-sum test was
performed using the ggsignif package in R. Binary and
multi-class ROC AUC values were calculated using the
pROC (Robin et al., 2011) and multiROC (Wei &
Wang, 2018) packages in R, respectively.
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