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ABSTRACT: Peptides have attracted much attention recently
owing to their well-balanced properties as drugs against protein−
protein interaction (PPI) surfaces. Molecular simulation-based
predictions of binding sites and amino acid residues with high
affinity to PPI surfaces are expected to accelerate the design of
peptide drugs. Mixed-solvent molecular dynamics (MSMD), which
adds probe molecules or fragments of functional groups as solutes
to the hydration model, detects the binding hotspots and cryptic
sites induced by small molecules. The detection results vary
depending on the type of probe molecule; thus, they provide
important information for drug design. For rational peptide drug
design using MSMD, we proposed MSMD with amino acid residue
probes, named amino acid probe-based MSMD (AAp-MSMD), to
detect hotspots and identify favorable amino acid types on protein surfaces to which peptide drugs bind. We assessed our method in
terms of hotspot detection at the amino acid probe level and binding free energy prediction with amino acid probes at the PPI site
for the complex structure that formed the PPI. In hotspot detection, the max-spatial probability distribution map (max-PMAP)
obtained from AAp-MSMD detected the PPI site, to which each type of amino acid can bind favorably. In the binding free energy
prediction using amino acid probes, ΔGFE obtained from AAp-MSMD roughly estimated the experimental binding affinities from
the structure−activity relationship. AAp-MSMD, with amino acid probes, provides estimated binding sites and favorable amino acid
types at the PPI site of a target protein.

■ INTRODUCTION
Drug modalities are diverse and can be classified into three
types based on their molecular weights and characteristics:
small molecules, macromolecules, and cyclic peptides. Small
molecules with an approximate molecular weight of 500 Da are
the most common modality in approved drugs.1 This modality
can be administered orally and can permeate membranes.2

Additionally, small molecules can be chemically synthesized for
industrial mass production. Although these advantages give it
the largest market share, small molecules often present
nonspecific interactions with deep hydrophobic pockets,
making it difficult to ensure the selectivity of analogous
proteins.3 Furthermore, macromolecules such as antibodies
have high target selectivity and are expected to have fewer side
effects.2 However, because of their molecular weight of 5−150
kDa,4,5 macromolecules are limited to extracellular targets
without membrane permeability.6 Moreover, unlike small
molecules, macromolecules cannot be chemically synthesized
or administered orally.
Recently, cyclic peptides have attracted increasing attention

as an alternative to small molecules and macromolecules. This
modality is constructed from 4−15 amino acid residues and
has a molecular weight of approximately 500−2000 Da.2 A
typical cyclic peptide is cyclosporin, which is an immunosup-

pressant composed of 11 amino acid residues.7 Cyclic peptides,
like small molecules, have superior membrane permeability,
can be easily synthesized, and can be administered orally.8−10

Additionally, similar to macromolecules, cyclic peptides have
high target selectivity and can inhibit protein−protein
interactions (PPIs).10,11 Cyclic peptides are designed using
optical isomers of natural amino acids, non-natural amino
acids, and main-chain modification residues. Therefore, the
number of combinations is not limited to 20 natural amino
acids. Phage display screening and biopanning are typical
methods for selecting optimal amino acid residues from a
variety of combinations.12,13 While these screening methods
are maturing, computational techniques are expected to
identify peptide drug binding sites in target proteins and
predict affinitive amino acid residues.14 Goldbach et al.15 used
RaPID screening and docking simulation to predict protein−
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peptide complex structures with unknown binding mecha-
nisms, demonstrating the importance of computational
prediction.16 Understanding the inhibitory surfaces of PPIs is
essential, considering the unclear mechanisms of action of
cyclosporine, vancomycin,17 and gramicidin,18 which are cyclic
peptides used in clinical practice.19

In drug discovery and lead optimization, computational
methods, such as molecular simulation, are highly effective
techniques and have been widely applied. MCSS and FTMap
have been reported as hotspot search methods for protein
surfaces to which small probe molecules bind.20,21 Although
these methods can be applied to identify target sites and design
PPI-inhibiting cyclic peptides, they do not consider competi-
tion with explicit water molecules and protein flexibility when
searching for conformations because rigid body docking is
employed.21 Molecular dynamics (MD) simulation is a
method for predicting the time evolution of molecular physical
movements based on Newton’s equations of motion and has
been applied for biomolecules, such as proteins, nucleic acids,
and lipid membranes.22−24 Additionally, MD is typically
applied in hydration models filled with explicit water
molecules. Mixed-solvent MD (MSMD) adds probe molecules
or fragments of functional groups to the hydration model.
Since MSMD considers the protein’s flexibility and can detect
hotspots and cryptic sites where the probe can bind,25−28 it can
be applied to predict the binding pocket appropriate for virtual
screening.29,30 In addition, MSMD-detected binding hotspots
are considered surfaces with a high affinity for probe
molecules. Arcon et al. improved the performance of virtual
screening by applying binding hotspot probes to perform small
molecule pharmacophore matching and binding pose
estimation.31 These results highlight the feasibility of
MSMD-derived pharmacophore technology and demonstrate
that identifying molecular structures with an affinity for protein
surfaces is useful for drug design. Although these studies
employed functional groups of small molecules (e.g., phenyl
group) as probes, protein surfaces with a high affinity for
amino acid residues can be predicted by performing MSMD
using amino acid residue probes, considering protein flexibility
and competition with water molecules.
In this study, we proposed an MSMD method using amino

acid residues as probes, named amino acid probe-based
MSMD (AAp-MSMD), to detect hotspot protein surfaces to
which peptide drugs bind and to identify favorable amino acid
residues. Notably, the difference between amino acids is in the
side chain atoms; therefore, the hotspot detection procedure
focuses on these atoms. Furthermore, to quantitatively predict
the affinity of amino acid residues, we evaluated the binding
free energy using grid free energy (GFE) and compared it with
the reported structure−activity relationship (SAR) of peptide
inhibitors.

■ MATERIALS AND METHODS
Our procedure was divided into three steps: MSMD
simulation with amino acid probes, spatial probability
distribution map (PMAP) generation specialized for amino
acid probes, and GFE calculations.
Preparation of Amino Acid Probes. First, the amino acid

probes of interest were preprocessed. Each natural l-amino acid
structure was downloaded from the RCSB Protein Data Bank
(PDB),32 and the neutral main-chain terminus was modeled by
adding N-methyl or acetyl groups. Next, the restrained
electrostatic potential procedure (RESP) in the antechamber

module of AmberTools2133 was employed to fit/convert the
partial charges to reproduce the electrostatic potential, which
was calculated using Gaussian 16 Rev B.01.34 First, all of the
probe structures were optimized at the B3LYP/6-31G(d) level.
Afterward, the electrostatic potentials were calculated at the
HF level using the optimized structures. The centers of the
electrostatic potentials were located at the center of each atom.
The additional force field parameters for the probes were
derived using the General AMBER Force Field 2 (GAFF2)
rather than the Amber ff14SB force field because the amino
acid probe was treated as a cosolvent monomer rather than as a
residue on a protein.
Mixed-Solvent Molecular Dynamics. After probe

preparation, MSMD was performed following the protocol
referring to EXPRORER.35 Notably, the initial positions of the
probes affect the results, particularly in short MD simulations,
and this initial position dependence influences the convergence
of the analysis results. Therefore, the following protocols were
independently performed 40 times with different initial probe
coordinates to achieve efficient sampling. The procedure was
divided into three steps, as described below.
Initial System Generation. First, the probes were

randomly placed around the protein at a concentration of
0.25 M using PACKMOL 18.169.36 A high concentration
enables effective sampling of residue environments. Second,
the system was solvated with water by using the LEaP module
of AmberTools18. Na+ and Cl− ions were added to neutralize
the whole system. The Amber ff14SB force field and TIP3P
model37 were used for protein and water molecules,
respectively. Additionally, a pseudo Lennard-Jones force field
term with the parameters (ϵ = 10−6 kcal/mol; Rmin = 20 Å) was
introduced between the center of the probes to prevent their
aggregation.
Minimization, Heating, and Equilibration. After

constructing the initial structures, the systems were minimized
to include 200 steps using the steepest descent algorithm with
harmonic position restraints on the heavy solute atoms (force
constant, 10 kcal/mol/Å2), and the systems were further
minimized to 200 steps using the steepest descent algorithm
without any position restraints. After minimization, the system
was heated gradually to 300 K during 200 ps constant-NVT
MD simulations with harmonic position restraints on the heavy
solute atoms (force constant, 10 kcal/mol/Å2). During the
subsequent 800 ps constant-NPT MD simulations at 300 K
and 1 bar, the force constants of the positional restraints were
gradually reduced to 0 kcal/mol/Å2. The P-LINCS algorithm38

was used to constrain all bond lengths involving hydrogen
atoms, which allowed the use of 2 fs time steps. The
temperature and pressure were controlled using a stochastic
velocity rescaling algorithm,39−41 with a time constant of τ =
0.1 ps, and a Berendsen barostat,42 with a compressibility of
4.5 × 10−5 bar−1, respectively. Note that temperature was
controlled in both the water group and nonwater group. Long-
range Coulomb interactions were addressed by using the
particle mesh Ewald summation method (PME), with the
mesh spacing set to 1.2 Å and the nonbonded cutoff distance
set to 10 Å. The simulations were performed using
GROMACS 2021.5.43 The ParmEd module44 was used to
convert the AMBER parameter/topology file format to the
format used by GROMACS.
Production Run. After equilibration, 40 ns constant-NPT

MD simulations were performed at 300 K and 105 Pa without
position restraints. All settings were the same as those in the
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initial equilibration step, except that a Parrinello−Rahman
barostat45 with a compressibility of 4.5 × 10−5 bar−1 was used
instead of a Berendsen barostat. Snapshots were taken every 10
ps in the 20−40 ns range; therefore, 2000 snapshots were
produced per MSMD simulation.
Hotspot Detection with Spatial Probability Distribu-

tion Mapping (PMAP). The PPI surface on a protein is
favorable for amino acid binding. Therefore, we estimated the
PPI surface using the PMAP of the amino acid probes. After
the production runs were conducted, all trajectories were
processed to generate PMAPs. Side chain heavy atoms of all
probes in the snapshots were binned into 1 Å × 1 Å × 1 Å grid
voxels, and the voxel occupancy of probe-heavy atoms was
counted. Since the PPI surface exists on a protein surface, V
was a set of voxels within 5 Å from the protein atoms, and the
values at voxel v∉V were discarded to focus on the protein
surface. Lastly, each voxel count was converted into occupancy
probabilities by dividing them by the number of snapshots. All
of the occupancy probabilities in the grid were defined as
PMAP. Notably, a PMAP corresponds to a trajectory;
therefore, 40 PMAPs were generated for each probe (Figure
1). The largest value among the PMAPs generated from each
independent trajectory was stored for each voxel in V as the
max-PMAP. Even for a deep pocket to which a probe will bind
strongly but is difficult to reach, a considerable value of voxel v
of max-PMAP was observed if the binding occurred at least
once.
Binding Free Energy Prediction Using Grid Free

Energy (GFE). AAp-MSMD can predict the binding affinity by
calculating the GFE. Boltzmann-based transformation enables
the estimation of the free energy of each position called GFE.46

The GFE is defined as
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where x, y, and z correspond to the coordinates of each voxel
and f corresponds to the probe type. The GFE values were
capped at 3 kcal/mol to avoid unphysically high energies. Note
that the center of each probe molecule was used to calculate
occupancy because utilizing side chain atoms causes high bulk
occupancy, narrowing the GFE value range and under-
estimating binding affinity.
Target Information. We performed AAp-MSMD for

several target proteins that form protein−peptide complexes

and assessed the residue-dependent hotspot detection
compared with known PPI surfaces of target proteins. Table
1 shows the target proteins, for which residue-dependent

hotspot detection was performed, and the target amino acid

residues of the peptide. Alanine scanning has identified these

residues as key residues for binding to the PPI surface.47−53

AAp-MSMD was performed for the hotspot detection of 28

key peptide residues.

Figure 1. Workflow for max-PMAP construction.

Table 1. Target Proteins and Amino Acid Residues of
Interest for Residue-Dependent Hotspot Detectiona

protein PDB ID
key peptide
residue

SASA
ratiob [%]

AAp-MSMD
hotspot detection

AMA1 3ZWZ Phe2038 0.40 √
Arg2041 25.45 √
Met2042 25.07 √
Pro2044 99.51

ZipA 1F47 Asp7 73.98
Ile8 4.57 √
Phe11 9.69 √
Leu12 19.48 √

XIAP 1G3F Val2 57.32
Pro3 49.82
Ile4 15.22

MDM2 1YCR Phe19 1.44 √
Asp21 100.00
Leu22 17.58
Trp23 4.59 √

MLL 4GQ6 Phe9 2.80 √
Pro10 4.43 √
Arg12 18.63 √
Pro13 4.97 √

HIV integrase 3AVB Leu2 99.25
Lys3 40.74 √
Ile4 11.60 √
Asp5 7.39 √
Asn6 40.62

uPA 4X1Q Pro2 7.74 √
Tyr4 13.81
Ser5 43.38
Arg6 0.66 √

aSASA ratio values above the threshold (30%) are written in italic
font. bSASA ratio: SASAbound/SASAunbound, where SASAbound and
SASAunbound are the solvent-accessible surface areas (SASA) of each
key residue for the protein−peptide complex (SASAbound) and peptide
without target protein (SASAunbound). Each SASA was determined by
Residue Analysis in Schrodinger suite 2019-4.
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Next, we selected two target proteins with known peptide
inhibitors with SAR data: apical membrane antigen 1 (AMA1)
and plasmin. Wang et al. reported the SAR results of the
interaction between β-hairpin peptide inhibitor against AMA1
(Figure 2A).47 Additionally, Swedberg et al. reported SAR
results for sunflower trypsin inhibitor-1 (SFTI-1) against
plasmin (Figure 2B).54 As for AMA1, we selected 10 peptide
analogues with single-point mutations (F2038X, T2040X, and
M2042X) and PDB ID 3ZWZ as the initial protein
conformation of AAp-MSMD. As for plasmin, we also selected
another 5 peptide analogues with single-point mutations (Y4X,
K5X, and K7X) and PDB ID 6D3X as the initial protein
conformation. In total, 17 AAp-MSMD simulations were
conducted (Phe, His, Leu, Met, Gln, Arg, Ser, Thr, Val, Trp,
and Tyr probes for AMA1 and Phe, Ile, Lys, Arg, Trp, and Tyr
probes for plasmin).
Preparation of Target Protein. Each protein−peptide 3D

complex structure was downloaded from the PDB site, and apo
structures were generated to remove the counterpart peptides.
Next, apo structures were preprocessed using the Protein
Preparation Wizard in Schrodinger suite 2019-4 (Schrodinger,
Inc., New York, NY). Missing side chains in each structure
were filled using prime. Residues next to the missing loop in
the crystal structure were capped with N-methyl amide and
acetyl capping groups. Afterward, hydrogens of proteins were
placed based on the hydrogen bonding and ionization states at
pH = 7 using PROPKA.55 Asparagine and glutamine residue
flips were also handled appropriately. Subsequently, the
preprocessed proteins were used as the input structure for
the simulation.35 For hotspot detection, AAp-MSMD was
performed for each target protein−amino acid probe pair, and
each max-PMAP was qualitatively compared to each residue
position in the peptide. For binding free energy prediction,
wild-type (WT) and mutated amino acid types of each SAR
residue position were used as probes in the AAp-MSMD. We
defined the “residue-GFE” as the best GFE value within 2 Å of
the Cα atom and side chain heavy atoms in WT residues of the
peptide (Figure S1). Residue-GFE was calculated using the
AAp-MSMD trajectory with each amino acid probe types.
MDpocket for Conventional MD-Based Hotspot

Detection. MDpocket is a conventional MD-based hotspot
detection method.56 This method predicts protein pockets by
using a geometric approach. In this study, we performed

MDpocket using trajectories obtained from AAp-MSMD with
AMA1 and the Arg-probe. The detected frequency map at 10%
was compared with max-PMAP at the key residue positions of
peptides in protein binding.

■ RESULTS
Hotspot Detection. Column 5 in Table 1 shows the

results of the residue-dependent hotspot detection. The max-
PMAP values at each position in the target proteins are shown
in Figures 3 and S2−S7. Numerous max-PMAPs (17/28 cases)
could detect each position of the key residue in PPI binding.
Hotspot detection for HIV integrase (Figure S6) provides an
example of probe dependency, and the position of Lys3 was
not detected with the Leu-probe but was detected with the
Lys-probe. On the other hand, certain positions in the PPIs
could not be detected by AAp-MSMD without probe
dependency because these residues in the peptide do not
directly interact with the target protein. Figure S2 presents an
example and shows that Asp7 was not detected with either the
Asp-probe or Ile-probe. To quantitatively assess the peptide
interactions with target proteins, we estimated the solvent-
accessible surface area (SASA) of each key residue for the
protein−peptide complex (SASAbound) and the peptide without
target protein (SASAunbound). We also calculated the ratio of
SASAbound to SASAunbound (hereinafter referred to as the SASA
ratio). The results showed that most residues that could not be
detected by AAp-MSMD were exposed to solvents in the
complex structures (Column 4 in Table 1). Excluding the key
residues with SASA ratios over 30%, AAp-MSMD had a high
detection rate of 84.2% (16/19 cases). These findings indicate
that AAp-MSMD can detect key residue binding sites on the
target protein surface at the residue-type level.
With a focus on each position of the key residue of cyclic

peptide RON2sp1 in AMA1 binding, the max-PMAP of AAp-
MSMD with each type of key residue probe and the frequency
map of the MDpocket are shown on the left and right sides of
Figure 3, respectively. First, AAp-MSMD and MDpocket
detected the side chain positions of Phe2038. This binding site
is a shallow, wide hydrophobic pocket; therefore, a large area
of the periphery was detected by both maps. Furthermore, the
side chain positions of Met2042 were detected by both maps
because of the deep and wide pockets around the side chain
terminus. Hence, AAp-MSMD and MDpocket can easily

Figure 2. Complex structures of AMA1−RON2sp1 and the plasmin−sunflower trypsin inhibitor. (A) AMA1 protein and RON2sp1 peptide 3D
structures are shown in the green and magenta cartoon models, respectively. The stick model indicates that the residues consisted of cyclic
peptides. (B) Plasmin protein and cyclic peptide inhibitor 3D structures are shown in the green cartoon and cyan stick models, respectively. The
mutated residues with SAR in each peptide are colored yellow.
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detect wide pockets, such as those around Phe2038 and
Met2042. Notably, MDpocket did not detect the side chain
position of Arg2041; however, max-PMAP with an Arg-probe
accurately detected this position. This shows that the max-
PMAP from AAp-MSMD can detect PPI hotspots more
accurately than the conventional method. Additionally, AAp-

MSMD and MDpocket could not detect the side chain
position of Pro2044. Actually, this residue has less contact with
the target protein, and the SASA ratio of Pro2044 is 99.51%.
Hence, the position of Pro2044 is not appropriate for AAp-
MSMD, as highlighted in the Discussion section.
Binding Free Energy Prediction for Amino Acid

Probe Affinity. Figure 4 shows the plot of the energy
difference between the WT and mutant. The x-axis indicates
the experimental binding affinity difference (ΔpKD), and the y-
axis indicates the residue-GFE energy difference (ΔGFE).
These detailed values are shown in the Supporting Information
(Table S1). A positive or negative ΔGFE means that the
estimated binding affinity of the mutated residue is weaker or
stronger than that of the WT residue. The correlation
coefficient in these plots was −0.42, excluding the outlier of
plasmin (K5R). Furthermore, the figure shows that most
ΔGFEs were consistent with a stronger or weaker experimental
binding affinity relative to that of the WT residue (14 cases out
of 16). It included most analogues, excluding the value of
T2040F in AMA1 (Figure S8), and Y4X and K7X in plasmin
(Figure S9). Notably, these ΔGFEs tended to match the
experimental values despite the slight binding affinity differ-
ences between the WT and mutated residues such as M2042F
in AMA1 and K7R in plasmin (Table S1). These results
suggest that AAp-MSMD can be used to roughly estimate the
experimental binding affinity even if the range of the values is
less than two. However, the K5R in plasmin result showed that
ΔGFE was overestimated compared to the experimental
binding affinity. This case is revisited in the Discussion section.

■ DISCUSSION
Examination for the Probe Structure in the AAp-

MSMD. Conventional MSMD uses rigid probes because
probes with high flexibility cause sampling inefficiency. MSMD
using amino acid side chain probes, which are less flexible than
amino acid probes with main chain atoms, may have efficient
sampling and reduction in the cost of computing. Therefore,
MSMD was performed using an amino acid side chain probe
(SC-probe, Figure 5A) to validate the original amino acid
probe. The SC-probe was modeled by deleting the backbone

Figure 3. Comparison between max-PMAP of AAp-MSMD and
frequency map of MDpocket at each position of the key residue of the
β-hairpin peptide in AMA1 binding. The max-PMAPs of Phe, Arg,
Met, and Pro-probe are shown as gray, purple, green, and cyan
meshes, respectively. Frequency maps of MDpocket are shown as
orange meshes. Key residues of cyclic peptide RON2sp1 with a crystal
structure are colored yellow. The acidic, basic, and hydrophobic areas
in AMA1 are shown as red, blue, and gray surfaces, respectively. The
thresholds of max-PMAP were set using the ratio of the number of
side-chain heavy atoms of the probes based on visual inspection
(Phe:Arg:Met:Pro = 15.0%:15.0%:8.6%:6.4%). The threshold of the
frequency map of the MDpocket was set to 10%.

Figure 4. Scatter plot of the experimental binding affinity and ΔGFE. WT residue is represented by a gray dot, and the results of AMA1 and
plasmin are represented by orange and blue dots, respectively. The white area indicates that the predicted value is consistent with the binding
affinity based on the WT residue.
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atoms from each 3D structure. The structure and electrostatic
potential of the SC-probes were optimized by using the same
procedure applied for the original probes. Furthermore,
MSMD was performed under the same conditions to produce
the max-PMAPs.
In this section, the cosolvent structure of glutamic acid is

discussed (Supporting Information includes a comparison with
the SC-probe of several amino acid types). Figure 5B shows an
example of the binding state of the Glu-SC-probe in AMA1. In
the binding mode, the Cβ atom in the Glu-SC-probe was
inside the deep pocket. However, the binding site was too
small and deep to place the backbone atoms based on the
binding mode of the Glu-SC-probe. This indicates that
glutamic acid in the peptides does not have this binding
mode. This misdetection of the binding site was derived from
the out control of the direction of the SC-probe. However, the
Glu-probe, which contains main chain atoms, cannot have this
binding state because these main chain atoms block the entry
of the binding site in the same direction. This suggests that the
original amino acid probe can prevent such misdetection,
because of the directional control provided by the backbone
atoms in the probe. Therefore, the max-PMAP of the SC-probe
without main chain atoms is inappropriate for detecting the
PPI surface to which the amino acid binds. In contrast, the
original amino acid probe with main chain atoms is appropriate
for valid hotspot detection and accurate binding free energy
prediction from MSMD calculations.
Residue-Dependent Hotspot Detection. In hotspot

detection, the detection of the binding site at Arg2041 is the

characteristic point of max-PMAP. This acidic binding site is
too small to bind common small molecules and bulky amino
acid residues; however, it is accessible for arginine. Notably,
hotspot detection of max-PMAP using AAp-MSMD could
accurately detect these selective binding sites. The binding
poses of the Arg-probe were similar to those of Arg2041 in the
AMA1-RON2sp1 protein−peptide complex (Figure 6). During
Arg-probe binding, the side chain atoms in the probe interact
with the backbone atoms of Gly222, Met224, and Tyr234 in
AMA1 (Figure 6A). Similarly, Arg2041 interacts with the
backbone atoms of Gly222, Met224, Ser232, and Tyr234 in
AMA1 (Figure 6B). These results suggest that AAp-MSMD
can search for PPI sites at the all-atom interaction level.
Residues Far from the Protein Surface. In residue-

dependent hotspot detection for key residues of cyclic peptide
RON2sp1 with AMA1 binding, both AAp-MSMD and
MDpocket failed to detect the side chain positions of
Pro2044 because Pro2044 in the peptide-bound state is far
from the protein surface. Notably, Pro2044 is the key residue
that stabilizes the β-hairpin peptide conformation rather than
the interaction between AMA1 and Pro2044 (Figure 7A).
AAp-MSMD detects hotspots based on protein−probe
interactions and is not subject to the residue position that
contributes to the stable conformation of the peptide.
Therefore, the failure of both methods to detect the position
of Pro2044 is not a significant problem.
In the binding free energy prediction of plasmin, we also

performed AAp-MSMD for the residues of I10X to further
investigate the abovementioned issue. Ile10 is stable with
hydrogen bonds between the main chain atoms in Ile10 and
Tyr4 (Figure 7B), and it hardly interacts with the protein
surface, which is similar to Pro2044 of the RON2sp1 peptide.
The SASA ratio of Ile10 is 39.88%, which is above the
threshold. According to the SAR results, Ile, which is a WT
residue, has the highest experimental affinity compared to that
of the mutations; however, residue-GFE in I10X has the lowest
estimated affinity among these residues (Table S2). Since AAp-
MSMD uses the amino acid monomer probes, a stable pose,
such as that of Ile10 in the complex structure, cannot be seen
in the simulation. This result indicates that the threshold of
30% for the SASA ratio is still effective, even for binding free
energy prediction using AAp-MSMD.
Probe Orientation Control on the Open and Shallow

Protein Surface. AAp-MSMD can be used to observe various
probe-binding states in the target protein surface because the
probe does not have orientation constraints in the simulation.

Figure 5. Examination of a probe structure of glutamic acid. (A)
Comparison of chemical structures between the Glu-probe and Glu-
SC-probe. (B) Example for the binding mode of the Glu-SC-probe in
AMA1. The gray lines, cartoon, and surface represent the target
protein, and the green sticks represent the predominant binding state
of the Glu-SC-probe.

Figure 6. Binding state of Arg-probe and Arg2041 in RON2sp1. (A) Predominant binding state of the Arg-probe of AAp-MSMD trajectories. (B)
Binding state of Arg2041 in the AMA1-RON2sp1 complex structure. AMA1, RON2sp1, Arg2041, and Arg-probe are colored green, cyan, yellow,
and purple, respectively. Max-PMAP of the Arg-probe is shown as a purple mesh. Polar contact between the side chain of arginine and AMA1 is
shown as dash lines.
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Notably, these binding states in the open and shallow pockets
of the protein are diverse. This aspect of the probe in AAp-
MSMD is appropriate for hotspot detection, which exhaus-
tively searches for the protein surface by considering diverse
binding states.
Furthermore, an energy-based evaluation of the probe in

AAp-MSMD should be noted. Originally, amino acid residues
in peptides are constrained by their backbone, immobilizing
their binding orientations; therefore, the GFE should be
calculated under the constraints of the probe orientation based
on the position of the peptide backbone. However, this issue
seldom occurs for binding in the small and narrow pockets
because the probe orientations are constrained by their binding
sites. Energy-based evaluation at the positions of T2040X and
M2042X revealed that their ΔGFE was moderately consistent
with the experimental binding affinities obtained from SAR. In
contrast, in the open and shallow pockets, such as the position
of F2038X, ΔGFE was overestimated caused by the out
control of the probe conformation (Figure 8) and the

combination of probe occupancy derived from diverse
orientations. Our GFE represents the probe’s center-based
GFE; however, this overestimation can be overcome by
generating atom-based GFEs,57 which implicitly have an
orientation preference of the probe. If atom-based GFEs are
applied, then all atoms in the probe will be distinguished, even
if they are the same element, and GFEs will be generated per
atom. Atom-based GFEs show the preferred positions of the
main chain Cα atom and the side chain carbon atoms

separately, indicating the preferred orientations in a binding
site. This extension should be the focus of future studies.
Improvement of GFE by Adequate Sampling.

According to the SAR results and our binding free energy
prediction of SFTI-1 against plasmin, the results for the ΔGFE
of K5R were opposite to those of the experimental ΔpKD. This
discrepancy was caused by the excessively low residue-GFE of
the Lys-probe. The deep binding site in plasmin may have
induced insufficient sampling, resulting in the low residue-
GFE. Hence, we performed additional sampling of AAp-
MSMD using the Lys-probe and recalculated residue-GFE by
increasing the number of runs of MSMD sampling from 40 to
80. As a result, residue-GFE of the Lys-probe and ΔGFE of
K5R improved to −4.422 and 0.038 kcal/mol, respectively
(Table S3). This case can occur when the amino acid probe
has high flexibility, such as with the Lys-probe. Additional runs
will improve the accuracy of residue-dependent hotspot
detection and binding free energy prediction. However, the
computational costs are high (e.g., 3.2 μs for a protein−probe
pair with 80 runs of 40 ns simulations). The required sampling
depends on the protein−probe pair of interest; thus, the total
MSMD simulation length should be adjusted. A possible
option is the use of an overlap coefficient (OC)58 between a
max-PMAP of N runs and a max-PMAP of N-1 runs. The
sampling may be sufficient if the coefficient is above a
threshold. Furthermore, Smith and Carlson conducted MSMD
using accelerated MD (aMD) to enhance sampling effi-
ciency.59 Combining AAp-MSMD with aMD may contribute
to adequate sampling.

■ CONCLUSIONS
We proposed AAp-MSMD, a mixed-solvent molecular
dynamics simulation using amino acid probes that enables
hotspot detection of PPI sites and amino acid binding free
energy prediction at a PPI site. In hotspot detection, 84.2% of
the binding sites of the PPIs showing contact with the target
protein could be detected at the residue-type level. The max-
PMAP obtained from AAp-MSMD detected the PPI site of
AMA1 more accurately than the conventional pocket detection
method, MDpocket. Furthermore, in the binding free energy
prediction using an amino acid probe, ΔGFE obtained from
AAp-MSMD moderately estimated the experimental binding
affinities of most peptide analogues. In particular, AAp-MSMD
is effective for identifying residue positions in contact with the
target protein. In addition, unlike SC-probes without a main
chain, our amino acid probes with main chains controlled the
direction of probe binding by the main chain atoms and
detected peptide-accessible hotspots by universally searching
for diverse probe-binding orientations. This universal search

Figure 7. Binding state of the protein−peptide complex structures. (A) AMA1 and RON2sp1 complex structure. (B) Plasmin and SFTI-1 complex
structure. Target proteins are shown as a surface model. Peptides and key residues are colored cyan and yellow, respectively. Intramolecular
hydrogen bonds are shown as green dashed lines.

Figure 8. Example binding state of the His-probe at the position of
Phe2038. AMA1, β-hairpin peptide, and Phe2038 are shown as green
cartoons, cyan ribbons, and gray stick models, respectively. Purple
sticks represent the binding states of His-probes. The binding state
was selected by visual inspection of AAp-MSMD trajectories.
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strategy is effective for small and narrow pockets. However, the
universal orientation of the probe-binding state sometimes
caused an overestimation of the residue-GFE. Nevertheless,
this overestimation can be overcome by generating atom-based
GFEs, which implicitly have an orientation preference of the
probe.

■ ASSOCIATED CONTENT
Data Availability Statement
Initial 3D structures of the protein, peptides, and probes were
downloaded from the Protein Data Bank (PDB). Schrodinger
suite 2019-4 was used for protein preparation and SASA
calculation. We used AmberTools21 and Gaussian 16 Rev B.01
for probes preparation. PACKMOL 18.169 and AmberTools18
were used to prepare the MSMD system. GROMACS 2021.5
was used as the MD engine. PyMOL was used for visualization.
The protocol of MSMD simulation in this study is available
from the following link: https://github.com/keisuke-
yanagisawa/exprorer_msmd. MDpockets were used to com-
pare the hotspot detection methods. The input data (all
protein structures, all probe structures, and ten AAp-MSMD
initial systems per protein−probe pair), ten 40 ns trajectories
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