Table 2.
Logistic Regression Results.
Model 1 | Model 2 | Model 3 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | SE | P-value | Exp(β) | 95% CI | β | SE | P-value | Exp(β) | 95% CI | β | SE | P-value | Exp(β) | 95% CI | |
Gender | .18 | 0.21 | .38 | 1.20 | 0.80-1.82 | .52 | 0.24 | .03 | 1.69 | 1.06-2.69 | .40 | 0.22 | .07 | 1.49 | 0.97-2.29 |
Race | −.51 | 0.31 | .10 | .60 | 0.33-1.11 | −.57 | 0.33 | .09 | .57 | 0.30-1.09 | −.77 | 0.31 | .01 | 0.46 | 0.25-0.86 |
Age | −.02 | 0.01 | .03 | .98 | 0.96-1.0 | ||||||||||
12-Step | .61 | 0.29 | .04 | 1.85 | 1.04-3.28 | ||||||||||
Relapse | −1.17 | 0.28 | <.001 | 0.31 | 0.18-0.54 | ||||||||||
Constant | .81 | 0.44 | .07 | 2.25 | −.58 | 0.30 | .05 | .56 | .12 | 0.16 | .47 | 1.12 | |||
n =376 | n = 306 | n = 366 | |||||||||||||
Nagelkerke R2 = .04 | Nagelkerke R2 = .05 | Nagelkerke R2 = .09 | |||||||||||||
β2 = 11.31 (3), P = .01 | β2 = 12.53 (3), P = .006 | β2 = 26.17 (3), P < .001 |