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Abstract

Objectives: Investigation of the genetic basis of endophenotype and analysis the pathways with 

multiple genes of small effects might increase the understanding of the genetic basis of attention 

deficit hyperactivity disorder (ADHD). Here we aimed to explore the genetic basis of cognitive 

flexibility in ADHD at SNP, gene and pathway level.

Methods: The Trail-Making Test (TMT) was used to test the cognitive flexibility of 788 ADHD 

patients. A genome-wide association analysis of cognitive flexibility was conducted for 644,166 

single nucleotide polymorphisms (SNPs).

*:Correspondence authors: Suhua Chang, 16 Lincui Road, Beijing 100101, China, changsh@psych.ac.cn, Li Yang, 51 HuayuanBei 
Road, Beijing 100191, China, yangli_pkuimh@bjmu.edu.cn.
#:These authors contributed equally.

Statement of interest
Dr. Faraone is a consultant to Genomind. The other authors declare no conflict of interest.

Supplementary Materials
Supplementary Table 1 SNPs with P<e-5 for the association analysis of cognitive flexibility.
Supplementary Table 2 Candidate pathways used for the pathway-based analysis.
Supplementary Table 3 Pathway-based analysis result for the GWAS SNPs list of hyperactivity-impulsivity ADHD symptom 
(CDISHI).
Supplementary Table 4 Pathway-based analysis result for the GWAS SNPs list of inattention ADHD symptom (CDISatt).
Supplementary Table 5 Pathway-based analysis result for the GWAS SNPs list of total ADHD symptom (CDISall).
Supplementary Figure 1 Gene expression of DLGAP1 in different tissues (from GTEx(Consortium 2015)).
Supplementary Figure 2 DLGAP1 related network from STRING database(Franceschini and others 2013).
Supplementary Figure 3 Gene expression of CADPS2 in different tissues (from GTEx(Consortium 2015)).
Supplementary Figure 4 CADPS2 related network from STRING database(Franceschini and others 2013).

HHS Public Access
Author manuscript
World J Biol Psychiatry. Author manuscript; available in PMC 2023 December 27.

Published in final edited form as:
World J Biol Psychiatry. 2019 July ; 20(6): 476–485. doi:10.1080/15622975.2017.1386324.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results: The top SNP rs2049161 (P = 5.08e-7) involved gene DLGAP1 and the top gene 

CADPS2 in the gene-based analysis obtained much literature evidence to be associated 

with psychiatric disorders. Gene expression and network analysis showed their contribution 

to cognition function. The interval enrichment analysis highlighted potential contribution of 

‘adenylate cyclase activity’ and ADCY2 to cognitive flexibility. Candidate pathway-based analysis 

for all SNPs found glutamate system, neurite outgrowth and noradrenergic system related 

pathways were significantly associated with cognitive flexibility (FDR < 0.05), among which 

the neurite outgrowth pathway was also associated with ADHD symptoms.

Conclusions: This study provides evidence for the genes and pathways associated with 

cognitive flexibility and facilitate the uncovering of the genetic basis of ADHD.
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attention deficit hyperactivity disorder; cognitive flexibility; Trail-Making Test; genome-wide 
association study; genetics

Introduction

Attention deficit hyperactivity disorder (ADHD) is a common, early-onset and enduring 

neurodevelopmental disorder (Faraone and others 2015). The exploration of genes 

associated with ADHD has become a priority because of its high heritability of about 

0.76 (Biederman and Faraone 2005). However, discovering genetic risk variants for ADHD 

has been difficult since it is clinically heterogeneous. Hence, endophenotypes have been 

introduced to reduce phenotypic heterogeneity and facilitate gene discovery. Executive 

functions (EF) are candidate endophenotypes for ADHD (Crosbie and others 2008; Gau 

and Shang 2010a). Cognitive flexibility, as one of main components of executive function, 

is the ability to regulate behavior to the demands of a changing environment (Armbruster 

and others 2012). It was reported that cognitive flexibility deficits are found in 25% to 

35% of children with ADHD (Frazier and others 2004; Willcutt and others 2005). In our 

previous work, we have found ADHD children have cognitive flexibility deficits compared 

with control groups (Huang and others 2016). In addition, such deficits occur in a number 

of psychiatric disorders, including schizophrenia, obsessive-compulsive disorder, autism 

spectrum disorders and major depression disorder (Ebmeier and others 2006; Francazio and 

Flessner 2015; Pooragha and others 2013; Thoma and others 2007). Each of these disorders 

has been shown to be comorbid with ADHD or to show some degree of genetic overlap with 

ADHD. So, understanding the genetic basis of cognitive flexibility might benefit uncovering 

of the mechanism of ADHD and related psychiatric disorders (Flint and Munafo 2007; 

Gottesman and Gould 2003).

Twin studies have estimated a heritability of about 50% for general cognitive ability 

(Polderman and others 2006). Candidate gene association studies of cognitive flexibility 

have focused on several important neurotransmitter systems, including dopamine, serotonin, 

norepinephrine and acetylcholine transmitter systems (Logue and Gould 2014). For 

example, an association of COMT polymorphisms and cognitive flexibility has been 

reported for schizophrenia (Barnett and others 2007) and bipolar disorder I (Soeiro-de-

Souza and others 2012). Wishart et al. found that there was a COMT-ANKK1 interaction 

Zhang et al. Page 2

World J Biol Psychiatry. Author manuscript; available in PMC 2023 December 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associated with cognitive flexibility as measured by the Trail-Making Test (Wishart and 

others 2011). There has been no genome-wide association study (GWAS) for cognitive 

flexibility.

Many psychiatric disorders have been reported to be affected by a combination of genetic 

variants or pathways (Network and others 2015). Bralten et al. explored the association of 

candidate genetic pathways with ADHD symptoms (Bralten and others 2013). Their report 

indicated that pathway-based association analysis improved the power of genetic analysis to 

investigate biological risk factors related to ADHD. Thus, thorough gene level and pathway 

level analyses for cognitive flexibility might provide new insights for the understanding 

of its genetic basis. In this study, we report the first genome-wide association study for 

cognitive flexibility in ADHD. Then we performed gene level analysis and an interval 

enrichment analysis for candidate SNPs. Furthermore, we selected 11 candidate genetic 

pathways and tested the association of these pathways with cognitive flexibility by analyzing 

all SNPs. We also compared the cognitive flexibility associated pathways with the pathways 

associated with ADHD symptoms. Our results should facilitate the understanding of the 

genetic basis of cognitive flexibility in ADHD.

Materials and Methods

Participants

All subjects were Han Chinese recruited from the child psychiatric clinics of Peking 

University Sixth Hospital. Patients met the diagnostic criteria for ADHD defined by the 

Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV). The diagnosis was 

first suggested clinically by senior child psychiatrists, then confirmed using semi-structural 

interview (Clinical Diagnostic Interview Scale, CDIS) (Yang and others 2004). Those with 

major neurological disease, such as epilepsy, schizophrenia, pervasive development disorder 

and mental retardation (IQ <70), were excluded (Yang and others 2013b). IQ was assessed 

using the Chinese version of the Wechsler Intelligence Scale for Children (C-WISC), third 

edition. Among all patients, only one subject was using drug when doing the test. The drug 

was washed out for at least one month before the patient was recruited. Totally, 788 ADHD 

patients were recruited in this study. The mean age is 10.11 (SD = 2.35) years, mean IQ 

is 104.71 (SD = 14.7), 85.3% samples were male. According to the symptom dimensions 

described in DSM-5, the patients could be classified into three presentations. Those who had 

six or more symptom items in the inattention dimension but not the hyperactive-impulsive 

dimension were ADHD-inattentive presentation, those who had six or more symptom 

items in the hyperactive-impulsive dimension but not inattentive dimension were ADHD-

hyperactive/impulsive presentation, whereas those who had six or more symptom items 

in both dimensions were ADHD-combined presentation. In our sample, the patients are 

either ADHD-inattentive presentation (37%) or ADHD-combined presentation (63%). In 

addition, we collected three dimensional symptoms for 1026 ADHD patients according to 

the Clinical Diagnostic Interview Scale (Barkley 2006). The three dimensional symptoms 

included hyperactivity-impulsivity symptom (CDISHI), Inattention symptom (CDISatt) and 

total symptom (CDISall). This study was approved by the Institutional Review Board of 

Peking University Health Science Center. All the parents signed a written informed consent.
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Cognitive flexibility test

All the 788 ADHD patients finished the Trail-Making Test (TMT) to test their cognitive 

flexibility. The test consisted of two sections (A and B). In section A, with numbers from 

1 to 25 randomly scattered in the page, the subject was asked to connect these numbers 

sequentially as quickly as possible. In section B, the subject was asked to connect numbers 

and letters alternately (i.e., 1-->A-->2-->B-->3-->C, … L-->13). When the subject made 

an error, the investigator pointed out immediately before continuing the test. The time on 

section A TA mainly indicates motor speed and visuoperceptual abilities, while the time on 

section B TB was sensitive to working memory and cognitive flexibility. The shifting time 

TB - TA, which was highly related to TB (r = 0.94), minimizes visuoperceptual and working 

memory demands, providing a relatively pure indicator of executive control (Chaytor and 

others 2006; Kortte and others 2002; Sanchez-Cubillo and others 2009). So, TB - TA was the 

main item to assess cognitive flexibility (Anderson 2001).

Genotyping, quality control and association analysis

Genomic DNA was extracted from peripheral blood using Omega DNA extraction Kit 

(Omega Bio-tek Inc., Doraville, GA). The genotyping was performed by Affymetrix 6.0 

array at CapitalBio Ltd. (Beijing) using the standard Affymetrix protocol (Yang and 

others 2013a). After mapping the single nucleotide polymorphism (SNP) probes to SNPs 

with rs numbers, 653,428 SNPs remained. The individuals with per-individual autosomal 

heterozygosity >5 s.d. away from the mean, without age or IQ information, with a 

per-individual call rate <95% or with relatives with a genome identity PI_HAT ≥ 0.185 

were further excluded. Then, principal component analysis (PCA) was conducted for the 

remaining samples using the independent SNPs with low linkage disequilibrium (LD) (pair 

wise r2< 0.05) using EIGENSOFT4.2 software (Patterson and others 2006; Price and others 

2006). Only the eigenvector 1 was significant in the Tracy-Widom test and thus was used 

as a covariate in the subsequent statistical analysis. For quality control at SNP level, SNPs 

with per-SNP call rate < 98%, Hardy-Weinberg equilibrium test P < 0.001, or minor allele 

frequency (MAF) < 1% were excluded. After quality control, 763 ADHD patients with 

644,166 SNPs were remained for the association analysis.

We used MACH-admix 1.0 (Liu and others 2013) to impute non-genotyped SNPs, using 

the ASN data (286 individuals) from the 1000 Genomes Project Integrated Phase 1 Release 

(Abecasis and others 2012) as the reference panel. Imputed SNPs with a squared correlation 

between imputed and true genotypes (rsq) <0.6 or SNPs with minor allele frequency 

<0.01 were removed. The association between SNPs and shifting time was conducted 

using the additive linear regression model by PLINK (Purcell and others 2007) version 

1.0.7 with age, IQ, sex and eigenvector 1 of PCA as covariates. Max(T) permutation with 

10000 permutations were conducted using –mperm 10000 by PLINK, which obtained the 

emperical P-value. The gene-based association analysis was conducted using GATES in 

KGG (Li and others 2011), which used the extended Simes test to calculate association 

statistics. RefGene (version hg19) was used for the analysis. SNPs within 5kb upstream and 

5kb downstream were mapped to each gene. The calculation of LD (linkage disequilibrium) 

between SNPs used the plink format genotype data. Multiple testing corrections were 

calculated using the Benjamini-Hochberg method.
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Interval enrichment analysis for potential candidate SNPs

We put the SNPs with P<e-4 from the GWAS results for cognitive flexibility into the 

--show-tags command in PLINK to get independent intervals (--tag-r2 0.2, --tag-kb 1000). 

Then the resulting intervals were input into INRICH software (Lee and others 2012). All 

gene sets from Gene ontology, KEGG and MSigDB provided at the INRICH website were 

analyzed separately. The window for the mapping of genes was set as 20kb. For details about 

the algorithm, please refer to the original paper (Lee and others 2012). Briefly, for each 

gene set, the software counted the number of association intervals that contained at least one 

gene in the gene set, then evaluated the probability of observing the number of intersecting 

intervals by chance alone using a permutation procedure, which is the empirical P-value. 

Furthermore, the empirical P-value was further corrected by using bootstrapping.

In addition, to exploring potential candidate interval enriched enhancer regions in different 

tissues/cell types, we downloaded the dense peak regions of chromatin state 7, which 

are enhancers, for 127 tissues/cell types from the Roadmap Epigenome project website 

(Roadmap Epigenomics 2015). We grouped the peak regions in each tissue/cell type as one 

set (as pathway) and each peak region as one feature (as gene), and then used INRICH (Lee 

and others 2012) to do enrichment analysis to test if these intervals are enriched in some 

particular tissue/cell type. Since only the peak regions were regarded as the enhancer region 

rather than the flanking of peak region, the window for the mapping is set as 0.

Candidate genetic pathway selection

First, based on the review of genetic studies of ADHD (Li and others 2014) and 

cognitive flexibility (Logue and Gould 2014), we selected the dopaminergic, noradrenergic, 

serotonergic, cholinergic and glutamatergic neurotransmission systems. We got genes for 

these pathways from published literature: dopaminergic system related genes were from 

(Ribases and others 2012), noradrenergic system related genes were from (Hawi and 

others 2013), serotoninergic system related genes were from (Ribases and others 2009). 

For the cholinergic system, mainly the five receptor subtypes of the muscarinic system 

were included (Carruthers and others 2015). The glutamatergic system consists of two 

groups, metabotropic and ionotropic receptors. The 24 genes were extracted from articles 

exploring the association between glutamate and bipolar disorder or schizophrenia (Cherlyn 

and others 2010). Although the GRID family receptors do not form ion channels when 

expressed in transfected cells like other ionotropic receptors in glutamate system, it also had 

been classified as one of the ionotropic glutamate receptor family according to sequence 

homology (Yamazaki and others 1992). So we also included it in our study. Besides 

the neurotransmitter related pathways, neurotrophic factor and neurodevelopment related 

pathways have been hypothesized to be associated with ADHD. Neurotrophic factors 

and their receptors related genes (Ribases and others 2008) were also included into our 

analysis. In addition to the genes from literature, Bralten et al. selected genes for dopamine/

Norepinephrine pathways, the serotonin pathway and neurite outgrowth from the Ingenuity 

Pathway Analysis (IPA) database to test their association with ADHD symptoms (Bralten 

and others 2013). We also included these three pathways in our analysis. Since Bralten 

et al.’s study didn’t include the cholinergic and glutamatergic systems, we included the 

cholinergic synapse pathway and glutamatergic synapse pathway from KEGG (Kanehisa 
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and others 2008). Totally, 11 candidate pathways were analyzed. The gene list and data 

sources of all the pathways are shown in Supplementary Table 2.

Pathway-based analysis

An improved gene-set enrichment analysis (i-GSEA) algorithm (Zhang and others 2010) 

was used for the candidate genetic pathways to do pathway-based analysis. The key 

procedures of i-GSEA are as follows: (1) the lowest P-value from the SNPs of a gene 

is utilized to represent the gene; (2) for each pathway, the enrichment score (ES, a 

Kolmogorov-Smirnov like statistics with weight) reflects the trend for genes of the pathway 

to be more strongly associated with the phenotype than other genes. It is calculated based 

on a ranked gene list; (3) the significant proportion ratio, which emphasizes the relative 

proportion of significant genes (defined as genes mapped with at least1 SNP with P< 0.05), 

is multiplied by the ES to obtain the significance proportion based ES (SPES); and (4) 

SNP label permutation and normalization are performed to generate the null distribution 

of SPES and correct gene variation (i.e. different genes with different number of SNPs 

mapped will result in identification of gene sets containing genes with more SNPs mapped, 

instead of genes with functional correlation) and gene set variation (i.e. different gene 

sets contain different number of genes). The analysis was performed using the online web 

server i-GSEA4GWAS v2 (Zhang and others 2014). All SNPs with P-value from the GWAS 

association result were input into the web server. SNPs within the 5kb upstream and 5kb 

downstream were mapped to each gene. The selected 11 candidate pathways were used as 

the gene set search space. The minimum gene number for each pathway was set to 5 and the 

maximum was set to 200 (the default). Pathways/gene sets with FDR < 0.05 were regarded 

as being associated with cognitive flexibility.

Results

SNP and gene level results

After quality control, genome-wide association study for the TB-TA time from the Trail-

Making Test was conducted in 763 ADHD patients for 644,166 SNPs. The SNP level 

association results did not identify genome-wide significant result (P< 5e-8). The SNPs 

with P<e-5 were shown in Supplementary Table 1. All of them had small empirical P-value 

(<5e-5) during 100000 permutation. The loci with the smallest P-values were rs2049161 

(P = 5.007e-07) and rs16946051 (P = 5.147e-07), which are in high LD (r2> 0.8) and 

were within gene DLGAP1. The second top loci included rs6466819 (P = 1.638e-06) and 

rs6962249 (P = 1.916e-06), which were within gene CADPS2. The top results of the 

association analysis result for the SNPs after imputation were in high LD with the above 

loci. In the gene level association analysis, the top 15 genes with P< 5e-4 are shown in Table 

1. No gene passed the multiple testing corrections. The top gene is CADPS2. DLGAP1 is 

the 7th gene in Table 1.

Expression data in GTEx (Consortium 2015) showed gene DLGAP1 was mainly expressed 

in brain, in which, frontal cortex has the highest expression level (Supplementary Figure 1). 

We further constructed the network connected by DLGAP1 by using the STRING database 

(Franceschini and others 2013) (http://www.string-db.org) as shown in Supplementary 
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Figure 2. Several known important interactions, such as DLGAP1 – SHANK1, DLGAP1 
– KCNA4 and DLGAP1 – DLG1, were included in the network. Gene CADPS2 is mainly 

expressed in cerebellar and frontal cortex in brain (as shown in Supplementary Figure 3). 

In addition, CADPS2 also interacted with several well-known psychiatric disorder related 

genes, including BDNF, DRD2 and NRG3 (as shown in Supplementary Figure 4).

Interval enrichment analysis result for potential candidate SNPs

We conducted interval enrichment analysis for the potential candidate SNPs with P< e-4 

using INRICH. Among the 82 SNPs, 53 independent intervals were obtained and were 

further input into INRICH. Firstly, three gene set files (KEGG, GO, MSigDB) were 

analyzed separately. No gene set passed the multiple test correction. The top one or 

two results for the three gene set files were shown in Table 2. The ‘adenylate cyclase 

activity’ pathway was the top result for GO and the second top result for MSigDB. More 

interestingly, ADCY2 was involved in three of these four pathways. Furthermore, to explore 

these intervals enriched tissues and cell types, we conducted enrichment analysis for these 

intervals on the peak region of enhancers in different tissues and cell types. Three tissues 

were nominally significant although none passed the multiple test correction (Table 2). The 

three tissues/cell types were ‘H9 Derived Neuron Cultured Cells’, ‘Brain Anterior Caudate’ 

and ‘Right Atrium’, among which, two of them were related with neural system, indicating 

these potential candidate intervals for cognitive flexibility were enriched in the enhancer 

region regulating gene expression in neural system related tissues/cell types.

Cognitive flexibility associated pathways

As shown in Supplementary Table 2, we selected 11 candidate genetic pathways for the 

pathway-based analysis. Among the 644,166 SNPs from the GWAS association analysis 

of cognitive flexibility, after inputting these SNPs in i-GSEA4GWAS v2, 444,179 SNPs 

mapped to 17,324 genes. After the calculation of enrichment scores and permutation 

tests for each pathway, as shown in Table 3, five pathways achieved FDR < 0.05, which 

were regarded as significantly associated with cognitive flexibility. The pathways included 

‘glutamate/glutamine system (literature)’, ‘neurite outgrowth genes (IPA)’, ‘noradrenergic 

system (literature)’, ‘glutamatergic synapse pathway (KEGG)’ and ‘neurotrophic factors and 

their receptors (literature)’. For all significant pathways, most of the genes were mapped by 

GWAS SNPs, and more than half of the selected genes were significant (mapped with at 

least one of the top 5% of all SNPs) (Table 3).

Association of the pathways with ADHD symptoms

We also collected three ADHD symptom scores (inattention symptom, hyperactive-

impulsive symptom and total symptom) for the samples who finished the TMT. Totally, 

745 samples had both ADHD symptom scores and TMT score. Spearman correlation 

analysis showed the correlations were not significant. This suggested the TMT performance 

is not dependent on the ADHD severity in our sample, whereas it might reflect impaired 

cognition across the patients. Furthermore, we investigated the association of cognitive 

flexibility related pathways with different ADHD symptoms. The same pathway-based 

analyses were conducted for the GWAS SNPs list of hyperactivity-impulsivity symptom 

(CDISHI), inattention symptom (CDISatt) and total symptoms (CDISall) (as shown in 
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Supplementary Table 3, 4, and 5). The comparison of cognitive flexibility associated 

pathways with the pathway-based analysis result of ADHD symptoms traits was shown 

in Table 3. Among the five pathways, four were associated with total ADHD symptoms, 

in which, ‘neurite outgrowth genes’ is the only one associated with all ADHD symptom 

traits. Among the most investigated neurotransmitter systems (dopamine, norepinephrine, 

serotonin, cholinergic) by previous pathway studies, only the noradrenergic system was 

significantly associated with cognitive flexibility. It was also associated with inattentive 

ADHD symptoms and total symptoms.

Discussion

By using a case-only genome-wide association study designed for TMT shifting time, we 

explored the genetic basis of cognitive flexibility in ADHD patients at the SNP, gene and 

pathway levels. We identified two potential loci in gene DLGAP1 and CADPS2. Interval 

enrichment analysis for potential candidate SNPs with P< e-4 highlighted the ‘adenylate 

cyclase activity’ pathway and ADCY2 gene. Hypothesis-based pathway association analysis 

identified five significant pathways. Several of them were also shared with ADHD 

symptoms. These results were supported by previous literature findings in psychiatric 

disorders.

The top result related gene DLGAP1 encodes the protein guanylate kinase-associated 

protein (GKAP). It interacts with PSD95 protein, which is encoded by DLG4 and has 

been reported to be a prediction of cognitive deficits (Sultana and others 2009; Whitfield 

and others 2014). Such interaction also contributes to the synaptic plasticity in obsessive-

compulsive disorder (OCD) (Kim and others 1997; Welch and others 2007). In addition, 

DLGAP1 is also reported to be associated with schizophrenia, major depression disorder 

and Alzheimer’s disease (Bertram and others 2008; Li and others 2013; Mathias and 

others 2016). All these psychiatric disorders were reported to have impaired cognitive 

flexibility (Ebmeier and others 2006; Francazio and Flessner 2015; Pooragha and others 

2013; Thoma and others 2007). So, DLGAP1 may be associated with these mental disorders 

through the underlying impaired cognitive flexibility. The top result in the gene-level 

analysis CADPS2 is a member of the CAPS/CADPS protein family. It is widely expressed 

in the brain, especially the cerebellum, and is involved in monoamine and neurotrophin 

neurotransmission (Sadakata and others 2017). CADPS2 mediates BDNF release in neurons 

as it was reported that mice with the deficiency of CADPS2 expressed less BDNF (Sadakata 

and others 2007). It is also reported to be associated with several psychiatric disorders, 

such as schizophrenia, intellectual disability, autism spectrum disorder and Alzheimer’s 

disease (Bonora and others 2014; Hattori and others 2011; Velez and others 2013). 

Interval enrichment analysis for potential candidate SNPs with P<e-4 highlighted another 

candidate gene ADCY2. This gene codes an important enzyme involved in cyclic adenosine 

monophosphate cAMP signaling. ADCY2 has been reported to be a risk locus for bipolar 

disorder in a GWAS (Muhleisen and others 2014). Given that impairment of cognitive 

flexibility is a cross-disorder phenotype, the association of DLGAP1, CADPS2 and ADCY2 
with cognitive flexibility deserves further validation in a replication study.
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We selected 11 pathways to conduct hypothesis based candidate pathway association 

analysis. The analysis implied the important roles of glutamate system, noradrenergic 

system and neurite outgrowth pathways in the etiology of cognitive flexibility. Glutamate, a 

major excitatory neurotransmitter in the brain, is related to several processes associated with 

ADHD, such as brain development, regulation of neuronal activity, bidirectional modulation 

of dopamine signaling, and synaptic plasticity (Lesch and others 2013; Mukherjee 

and Manahan-Vaughan 2013). Prior GWASs have identified several glutamate receptor/

transporter polymorphisms associated with ADHD (Lesch and others 2013). There are 

also studies reporting increased glutamate levels in PFC, anterior cingulate cortex (ACC), 

and striatum in ADHD patients (Spencer and others 2014). The noradrenergic system was 

associated with cognitive flexibility and also with inattentive and total ADHD symptoms. 

This was consistent with a previous study, which reported that when noradrenergic activity 

level was low in medial prefrontal cortex, cognitive flexibility and attention were impaired 

(McGaughy and others 2008). After using the selective noradrenergic reuptake inhibitor 

drug, atomoxetine, cognitive flexibility and attention improved in children with ADHD (Gau 

and Shang 2010b). Emerging data also suggest that gene variants from the noradrenaline 

system may also explain individual differences in the ability to sustain attention (Barnes and 

others 2011). The pathway neurite outgrowth related genes confirmed previous findings 

that ADHD is a neurodevelopmental disorder. Bralten et al.’s finding showed neurite 

outgrowth significantly contributed to the hyperactive/impulsive symptom domain of ADHD 

(Bralten and others 2013). In addition, Bonvicini et al. also found an association between 

the neurite outgrowth network and adult ADHD (Bonvicini and others 2017). Notably, 

both methylphenidate and amphetamine stimulated neurite outgrowth and modulated the 

expression or function of genes or proteins implicated in neurite outgrowth (Lipton and 

others 2008; Park and others 2004). These evidence validated the significance of the 

pathway-based analysis result.

There are several limitations of this study. First, the sample size in this study is relatively 

small, which may be one of the reasons that there was no significant SNP and gene after 

multiple corrections. Another possible reason for the difficulty of genetic discovery for 

cognitive flexibility is its university and diversity (Dajani and Uddin 2015). Cognitive 

flexibility itself also comprised inhibition and working memory (Diamond 2013). It was not 

as closer as inhibition to the genetic basis of ADHD. In addition, the pathway-based analysis 

was for candidate pathways but all pathways. Also, only cases were included in this study. 

It is difficult to tell the pathway we identified was associated with ADHD or only cognitive 

flexibility. A replication with larger sample size and also control samples would facilitate 

discovery for the genetic mechanism of cognitive flexibility and ADHD.

In conclusion, we reported the first GWAS for cognitive flexibility in ADHD. Gene level 

association analyses and candidate pathway analyses detected possible associations with 

cognitive flexibility. Shared pathways with ADHD symptoms suggest some shared etiology 

between ADHD and impairments in cognitive flexibility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Genes with nominal P<5e-4 in the gene level analysis.

Symbol NominalP CorrectedP Chr. Best SNP IsGATESKeySNP SNP P-value

CADPS2 0.0000293 0.425341424 7 rs6466819 Y 1.64E-06

GMCL1 0.0000373 0.425341424 2 rs4241261 N 6.53E-06

TRIM15 0.00017 0.61680506 6 rs1318638 Y 5.71E-05

ANXA4 0.00018 0.61680506 2 rs1531025 Y 7.41E-06

ALPK1 0.0002 0.61680506 4 rs1859142 Y 2.99E-06

TRIM26 0.0002 0.61680506 6 rs10947058 Y 3.12E-05

DLGAP1 0.00023 0.61680506 18 rs2049161 N 5.01E-07

GPR132 0.00035 0.61680506 14 rs7147669 Y 0.000158

MAP3K11 0.00036 0.61680506 11 rs1151488 Y 9.61E-05

GLB1L2 0.00037 0.61680506 11 rs1258852 Y 2.94E-05

SOX4 0.00038 0.61680506 6 rs9466124 Y 0.000384

WDR43 0.0004 0.61680506 2 rs6547889 Y 0.000118

TRIM10 0.00041 0.61680506 6 rs1318638 Y 5.71E-05

MXD1 0.00046 0.61680506 2 rs11126251 Y 5.87E-05

SKINT1L 0.00048 0.61680506 1 rs17468972 Y 5.97E-05
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