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Abstract
Recent advancements in generative artificial intelligence, particularly using large language
models (LLMs), are gaining increased public attention. We provide a perspective on the
potential of LLMs to analyze enormous amounts of data frommedical records and gain insights
on specific topics in neurology. In addition, we explore use cases for LLMs, such as early
diagnosis, supporting patient and caregivers, and acting as an assistant for clinicians. We point
to the potential ethical and technical challenges raised by LLMs, such as concerns about privacy
and data security, potential biases in the data for model training, and the need for careful
validation of results. Researchers must consider these challenges and take steps to address them
to ensure that their work is conducted in a safe and responsible manner. Despite these chal-
lenges, LLMs offer promising opportunities for improving care and treatment of various
neurologic disorders.

Introduction
Large language models (LLMs) have emerged as a powerful tool for analyzing and interpreting
enormous amounts of data. Adding to the fervor is the capacity of LLMs as a form of generative
artificial intelligence (AI) able to construct meaningful and contextually appropriate text based
on a given prompt, emulating human-like creativity, and reasoning. The excitement and
speculation generated by recent reports andmedia coverage on the potential of LLMs has led to
additional questions posed in the public sphere surrounding their appropriate use.1-3 One of the
primary reasons for the surging public interest is the ability of LLMs to generate text that is on-
par, if not better than humans, when prompted with questions. For example, GPT-4, OpenAI’s
latest LLM, has scored high enough to pass all 3 parts of the US Medical Licensing Exami-
nation.4 Such models provide an opportunity to help address existing scientific, clinical, and
social needs.

LLMs are deep learning frameworks designed to process natural language text (Table 1 and
Table 2 for a glossary of technical terms).5,6 Unlike more traditional machine learning models,
such as näıve Bayes classifiers, which rely on explicit labels (“happy” or “sad”), features (for
example, full words or phrases), and rules to identify patterns, LLMs learn to recognize patterns
and fill gaps or generate text using deep learning with vast amounts of data. LLMs are typically
trained using large text corpora, such as text on the Internet, Wikipedia, books, newspaper
articles, and other documents. Once an LLM has been trained, it can be used to perform a
variety of tasks, such as language translation, text summarization, and generation of human-like
text.
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In the context of research related to neurologic disorders,
LLMs could be trained de novo or “fine-tuned” on large
clinical data sets to identify patterns and relationships that
would be difficult for humans to detect manually.7-9 This
article aims to provide researchers and clinicians with a dis-
cussion of this emerging technology and highlighting its po-
tential for study, treatment, and care.

How Large Language Models Work
LLMs are built using neural network architectures that allow
them to recognize complex patterns in natural language data
and generate realistic text. Although there are several language
models published in the literature,7,10,11 most LLMs use a
specific type of neural network called a transformer, which is
designed to handle long sequences of text. These neural
networks are organized into multiple layers, with each layer
consisting of multiple attention heads and feedforward neural
networks (see Table 2 for a glossary of these terms). Attention
heads are components that decide which parts of the input
text the model should focus on when it generates output,
helping to understand context and relationships between
words. These attention heads consist of matrix multiplications
and other mathematical operations. Feedforward neural net-
works then process the output of the attention heads and
compute higher-order relationships between these de-
pendencies and contextual relationships.

To train an LLM (Figure 1), large natural language data sets
are used to determine the weights of the neural network.
During training, the LLM is presented with input sequences
and asked to predict the next word, fill “masked” words, or
generate a new sentence based on the input. By minimizing
the difference between the predicted output and the actual
output, the LLM gradually learns to recognize patterns in the
data and generate text that is consistent with the input.

Language models can be trained using different methods,12-16

such as supervised learning, unsupervised learning, or self-
supervised learning. Supervised learning is the most common
approach to training language models, where a model is
trained on a data set of labeled data and learns to predict the
correct label for a given input. When there are no labeled data,
then unsupervised learning can be used. An unsupervised
learning model could be trained to generate new text by being
given a large corpus of text in which it can learn patterns. Self-
supervised learning is a newer approach to training language
models that has been shown to be effective in learning com-
plex relationships between words and phrases.17 In this case,
the model is trained on a data set that has been artificially

labeled, and the model learns to predict a missing label for a
given input. For example, a self-supervised learning model
could be trained to answer questions by being given a data set
of questions and answers. The model would learn to predict
the answer to a given question by finding patterns in the data.
For LLMs, such as GPT-4, designed to respond well to
questions and prompts, the system’s output is improved by
letting it interact with human testers and applying re-
inforcement learning techniques.

In addition to the stages presented in Figure 1, LLM de-
velopment should consider how biases are addressed during
the training process. This can be accomplished by, for ex-
ample, ensuring that the training data are representative of the
relevant population. For population-level queries, it is crucial
to integrate fairness metrics during the fine-tuning process to
assess model performance across different subgroups. Explicit
instructions can be given to the model during this phase to
avoid bias, thus further promoting unbiased outputs. Im-
proving alignment between model output and the relevant
task by iterating on the model’s behavior should also be
performed. Improving the clarity of guidelines given to human
reviewers and developing upgrades to allow users to cus-
tomize the model’s behavior within broad bounds may aid in
achieving this alignment. These measures ensure that the
model’s decisions are interpretable and explainable, allowing
us to better understand any underlying bias. Regular audits
should also be performed to monitor ongoing model outputs.
Overall, these proactive steps need to be integrated to ensure
that the LLM development process is mindful of biases and
maintains a consistent alignment with human values.

Owing to the ability of these models to process enormous
amounts of data, including medical records and patient in-
terviews, and generate high-quality text that accurately reflects
the complex symptoms and experiences of patients, LLMs
constitute suitable tools for neurologic research and practice.
LLM development has evolved over the past decade
(Table 3), and the current state-of-the-art models can per-
form many tasks, including language modeling, text classifi-
cation, and sentiment analysis.

Language modeling is a fundamental task in natural language
processing (NLP) that involves training LLMs to predict the
next word in a sentence based on the context of the previous
words. This task is often referred to as autoregression and can
be performed in 2 ways: left to right or right to left. In left-to-
right language modeling, the LLM predicts the next word in a
sentence based on the context of the words to its left. By
contrast, right-to-left language modeling involves predicting
the next word based on the context of the words to its right.

Glossary
AI = artificial intelligence; IMDRF = International Medical Device Regulators Forum; LLM = Large language model; NLP =
natural language processing; PHI = protected health information; SaMD = Software as a medical device.
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This function of LLMs can be bidirectional,5 predicting the
next word based on context either to the left or to the right.
This flexibility is important when dealing with conversational
or narrative data where the meaningful context can come from
either direction.

Having learned to predict and fill in “masked” words, LLMs
could theoretically aid in communication for those with lan-
guage impairment due to dementia or a traumatic brain injury.
For these persons, this could mean using context to fill in gaps
in a patient’s narrative caused by memory loss, expressive
aphasia, or poor engagement in conversation. This could
potentially facilitate better communication between patients
and their loved ones or caregivers.

LLMs For Cognitive Assessment
and Rehabilitation
LLMs could also be applied to analyze language patterns in
patients’ spoken or written communication, potentially re-
vealing cognitive shifts or deficits. For instance, by training
LLMs on language data collected from patients with Parkin-
son’s disease, at high risk for HuntingtonDisease, or at high risk
for Alzheimer disease, it may become possible to detect subtle
variations that evolve gradually, which human observers might
overlook. These variations could encompass alterations in word
production, vocabulary choice, sentence structure, or the so-
phistication of concepts over time. Detecting such audio and
linguistic changes early on could enable timely intervention and
tailored rehabilitation strategies. In a similar vein, LLMs could

provide useful tools to augment clinician expertise in identify-
ing language deficits in persons who experienced traumatic
brain injury or undergone tumor resection, possibly facilitating
more targeted cognitive rehabilitation.

As proof of concept, data sets from 2 recent challenges (ADReSS
and ADReSSo) inspired the research community to develop
automated methods to analyze speech, acoustic, and linguistic
patterns in individuals to detect cognitive changes.18,19 Valsaraj
et al.20 leveraged pretrained BERT to extract features on the
autogenerated transcripts and assess cognitive function. Similar
work was performed by Vats et al.,21 where they used BERT to
perform dementia classification. Our own group previously
showed that frameworks such as BERT and neural network–
based sentence encoding can be used to automatically transcribe
digital voice recordings and differentiate cognitively impaired
persons from those with normal cognition.22 Agbavor and
Liang23 similarly leveraged GPT-3 to develop a model to predict
dementia in persons using their spontaneous speech.

Cognitive rehabilitation itself could also benefit from language
modeling. For example, based on data about a patient’s linguistic
abilities, an LLM could generate word games or storytelling
activities that match the patient’s current cognitive level. By
tracking the patient’s performance over time, the model could
adjust the difficulty of the tasks, providing a form of dynamic
cognitive stimulation and training. Tasks assessing semantic
(category) and phonemic (letter) fluency are commonly used in
neuropsychological evaluations for cognitive impairment.24 In

Table 1 Types of Large Language Models

Model Definition

ELMo ELMo, or Embeddings from Language Models, is a language model that generates contextualized word representations, allowing for improved
performance in a range of natural language processing tasks
It is a deep contextualized word representation model developed by researchers at the Allen Institute for Artificial Intelligence. It generates word
embeddings that capture both syntax and semantics of the input text. Unlike traditional word embeddings, which are fixed and context-
independent, ELMo embeddings are dynamic and context-dependent,meaning that they can capturemultiplemeanings of aword depending on the
context in which it is used. ELMo uses a bidirectional long short-term memory (LSTM) network architecture, which allows the model to learn
representations of words that consider the context in which they appear. ELMo has been shown to outperform traditional word embeddings on a
variety of natural language processing tasks, including sentiment analysis, named entity recognition, and text classification
The original reported ELMo model contained 94 million parameters

BERT BERT, or Bidirectional Encoder Representations from Transformers, is a language model designed for text classification
It is a transformer-based language model developed by Google that uses bidirectional training to improve contextual understanding of text. Unlike
previous language models, which only used unidirectional training, BERT is trained in both directions of the input text to better capture the context
and meaning of the text. BERT is typically trained using a masked language modeling objective and a next sentence prediction objective. It has
achieved state-of-the-art results on a wide range of natural language processing tasks, including question answering, sentiment analysis, and
language translation
The original paper reported 2models: BERTBASE, which contained 110million parameters and BERTLARGE contained 340million parameters. Also,
in 2020, NVIDIA released Megatron BERT which contained 3.9 billion parameters, making it the world’s largest BERT model at 12x the size of
BERTLARGE.

GPT GPT, or Generative Pretrained Transformer, is a language model designed for natural language processing tasks, such as text generation and
question answering
It is a large languagemodel developed byOpenAI trained on amassive corpus of text data unsupervised. GPT uses a transformer architecture, which
is a type of neural network that is particularly effective at processing sequential data. GPT generates text by taking input sequences and predicting
the next word or sequence of words. The model can be fine-tuned on specific tasks, such as text classification or question answering
It must be noted that more advanced versions of the GPT model (i.e., GPT-2, GPT-3, and GPT-4) are made available for users
The original GPT model (i.e., GPT-1) contained 117 million parameters, the GPT-2 model contained 1.5 billion parameters, and the GPT-3 model,
which is an autoregressive language model, contained 175 billion parameters

Each large language model (LLM) listed below has its own unique features and capabilities. These models have revolutionized natural language processing
and have enabled researchers and practitioners to develop powerful tools for analyzing and understanding text data.
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these tasks, individuals are asked to generate as many words as
possible from a specific category or starting with a specific letter
within a given time. LLMs could be used to automate the
analysis of these tasks, providing scores based on not just
the number and correctness of words generated but also the
uniqueness of the temporal speed variations. This could lead
to more objective, reliable, and efficient scoring of these
assessments.

The implementation of LLM-based chatbots represents an-
other transformative aspect with exciting potential.8,25,26

These digital assistants could be programmed to respond to
frequently asked questions about their condition, propose
various care management options, or even offer emotional
support to patients and caregivers.

Electronic Health Record Text Classification
Text classification is a common NLP task where LLMs are
trained to classify a given text into categories.27 This task in-
volves providing a model with a set of text examples and cor-
responding category labels to learn patterns and relationships
between the 2, thereby helping to automate the process of
assigning categories to new text data. Named entity recognition
is a similar task more restricted to assigning categories to in-
dividual “things” within a sentence; for example, the word
“Boston” or “London” might be assigned the category “city.”

To train an LLM for text classification in a clinical context, text
data, such as medical records, patient histories, or clinical trial
reports, must be preprocessed. This processing involves toke-
nizing the text into individual words or subwords, removing
irrelevant words, and applying various forms of normalization,

such as stemming or lemmatization (Table 2). In brief, stem-
ming and lemmatization are techniques in NLP that reduce
words to their root form,28 with stemming chopping off the
ends of words while lemmatization uses vocabulary and mor-
phological analysis to find the base or dictionary form of a word,
known as the lemma. Once preprocessed, an LLM is trained to
predict a category label, such as a specific neurologic disorder,
based on the features present in the text. LLMs can accurately
perform text classification because of their capacity to learn
intricate representations of text and automatically extract rel-
evant features for classification.

As a potential application of text classification, clinical notes
during patient encounters or personal narratives provided by
patients about their symptoms could be processed and classified
by LLMs to identify patterns of text that might correlate with
specific neurologic conditions. This could help automate the
categorization of new patient information into relevant classes
such as ‘migraine’ and ‘Parkinson,’ enabling more efficient
analysis of patient data and serving as a clinical assistant. For
example, Gehrmann et al.29 analyzed discharge summaries using
NLP and convolutional neural networks, finding that they were
able to categorize respective persons as having “chronic pain,”
“advanced cancer,” or “advanced lung disease,” among others.
This could be extended to relevant neurologic diagnoses or
categories. In the context of neuroimaging, LLMs can identify
noteworthy information in radiology reports in emergency de-
partment settings.30 In cases of stroke, for instance, where timely
intervention is critical and patient communication may be im-
paired due to aphasia or other neurologic deficits, an LLM could
serve as an effective tool to flag essential neuroimaging findings
for providers.

Table 2 Glossary of Technical Terms

Model Definition

Natural language
processing

Often abbreviated as NLP, this is a branch of artificial intelligence that focuses on enabling computers to understand, interpret,
and generate human language in a valuable and meaningful way

Deep learning An advanced formofmachine learning that involves training neural networks to recognize complex patternswithin data through
layers of interconnected nodes, where each layer extracts progressively more abstract features

Large language model An advanced artificial intelligence tool that, having learned from analyzing massive amounts of text data, can generate human-
like text based on the context provided

Transformer This modeling architecture, which was first designed for text data, understands and generates language by comprehending
multiple parts of text simultaneously, thereby improving language task performance

Attention The attention mechanism is a component of a neural network that allows the model to focus on certain parts of the input data
more than others, enhancing its ability to understand context and nuances in complex data-like language

Lemmatization and
stemming

These techniques are used in natural language processing. Stemming is amethodwherewords are reduced to their base or root
form, often leading to grammatically incorrect roots, while lemmatization transforms words to their dictionary form, ensuring
linguistic correctness

Autoregression This is a concept in statistics where current values of a time series are predicted using previous values, serving as a fundamental
approach for time-dependent data analysis

Feed-forward network This is a type of neural network in which information passes from one layer (see: Deep Learning) to a subsequent layer. This
contrasts with different types ofmodels, some of which incorporate “loops”where data from subsequent layers is used as input
to earlier layers

Reinforcement learning A type of machine learning where an agent learns to make decisions by taking actions in an environment to maximize a reward
signal, progressively improving its behavior based on trial and error
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When applied to large-scale data sets, such as electronic health
records (EHRs) or databases of scientific literature, LLMs
could improve classification accuracy and help streamline the
process of clinical observational research. For example, Fer-
nandes et al.31 demonstrated that an NLP algorithm was able
to assign neurologic disability outcomes after intensive care
unit hospitalization, based on free-text clinical notes. In an-
other study, Xie and coauthors used 3 different LLMs (BERT,
RoBERTa, and Bio_ClinicalBERT) to comb through clinical
notes and determine whether and how frequently patients had
seizures.32 Furthermore, LLMs’ abilities to learn from multi-
ple languages allows for cross-lingual text classification,33

which could enable the classification of neurologic data re-
gardless of the language, thereby benefitting global neurologic
research and patient care.

Text classification could also assist interpretation of neuro-
psychological tests, brain imaging, neuropathology, and neu-
rophysiology studies, such as electroencephalography and
electromyography/nerve conduction study reports. It could
help to automatically categorize parts of these reports into
clinically relevant predefined classes (e.g., normal/abnormal
findings, presence/absence of certain key terms). In addition, it
could potentially identify trends across multiple assessments,
such as during a complicated or prolonged hospitalization,
providing a clearer picture of a patient’s clinical trajectory over
time. Overall, using LLMs for text classification could enhance
the speed and efficiency of processing patient data.

Sentiment Analysis
Sentiment analysis involves training an LLM to identify an
underlying sentiment or emotion expressed in text.34 Given
the increase in patient provider communication occurring outside
the direct face-to-face encounter, such as through patient portal
messaging, language processing methods such as sentiment anal-
ysis could offer insights into patients’ subjective experiences and
emotional states, which could be profoundly affected by neurologic
impairment and the understanding of which is critical to managing
these conditions. The goal of sentiment analysis is to automatically
identify the polarity of a text, such as a patient message, voice
recording, or video recording, which could be, for example, posi-
tive, negative, or neutral. Such analysis could provide crucial in-
sights into patients’ psychological well-being, their experiences with
various treatments, or the impact of their neurologic condition on
their day-to-day life and signal the need for prioritizing dedicated
behavioral and mental health resources for the patient.

To train an LLM for sentiment analysis, a labeled data set is
required, consisting of text data and its corresponding sentiment
labels. Creating an effective data set demands a careful, domain-
specific approach. The labeling process in neurology, for ex-
ample, should ideally involve annotators skilled not only in
language but also familiar with the intricacies of neurologic
disorders. They would assign sentiment labels to textual data,
reflecting a range of emotional responses that are common to
patients experiencing neurologic conditions and to their care-
givers. Creating a suitable data set for neurology-centric senti-
ment analysis also calls for balance and representation. As with
other common LLM tasks, labelling should cover a variety of
neurologic conditions, treatments, and patient-caregiver inter-
actions to avoid model bias and accurately capture the breadth
of sentiment in this field. While some generic resources, such as
the PhysioBank,35 can provide a base, researchers should also
look for neurology-specific data. The LLM would then be
trained to identify patterns and relationships between text
samples and their respective sentiment labels.

When trained on large-scale data sets such as databases of patient
narratives or clinical communication, LLMs can learn complex

Figure 1 Schematic of the General Process for Training and
Testing a Large Language Model

(1) Data preparation: This step involves collection and preprocessing a large
corpora of text data to be used for model training. (2) Pretraining: This step
involves training the model on the large corpus of text data using un-
supervised learning frameworks. The goal is to predict missing words or
predict the next word in a sentence, given the previous words. (3) Training:
Here, the model is further trained using a more specific data set, often
involving human supervision. This stage includes the process of “reward
modeling” where the model generates a set of potential responses, and
human reviewers rank them. The model uses this ranking to generate re-
sponses in the future. This stage is crucial to ensuring the alignment of the
model’s outputs with human values and instructions. (4) Fine-tuning: This
step involves improving the trained model on a smaller, labeled data set for
a specific task. (5) Testing and evaluation: This key step involves validation of
the fine-tunedmodel on an external (i.e., separate) data set and evaluate the
model’s performance on a specific task.Metrics, such as accuracy, precision,
recall, and F1-score, can be used formodel evaluation. (6) Deployment: If the
validatedmodelmeets the desired performance criteria, then it can be used
to perform the specific task in a real-world setting.
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text representations, capturing subtle nuances and contex-
tual information essential to understanding patients’ senti-
ments. Moreover, LLMs can identify the sentiment of
individual words or phrases within a text, providing deeper
insights into the emotions and opinions expressed by pa-
tients or their caregivers. For instance, this could enable
the identification of specific symptoms or side effects that
cause substantial distress or therapies that lead to positive

emotional responses. Consider a scenario where LLMs are
trained on a diverse range of text data from individuals with
depression. These models could learn to detect subtle
changes in language patterns, sentiment, and expression that
correlate with the progression or severity of depression,
provide insights into early signs of worsening depression, or
even predict episodes of heightened distress that signal to
care teams that close follow-up is needed.

Table 3 Timeline of the Development of LLMs

2011: A Recurrent Neural Network–based Language Model (RNNLM) was proposed, which served as an important predecessor to many modern LLMs

2013: Google Brain researchers trained a neural network to learn word representations from enormous amounts of text data, known as word2vec. This
represented a significant advance in natural language processing and helped to pave the way for LLMs

2013: Stanford NLP Group released the Stanford Parser, an open-source software that provides grammatical analysis tools to researchers

2014: Sequence to Sequence Learning with Neural Networks was published, which laid the foundation for many of the developments in LLMs

2015: OpenAI was founded to develop advanced AI models safely and responsibly. This included the development of LLMs, such as GPT-2 and GPT-3

2016: Google’s Parsey McParseface, an open-source syntactic parser, was a significant contribution to the field

2017: Transformer was introduced, which is a model architecture that provided the groundwork for many subsequent LLMs due to its efficient handling of
long-range dependencies

2018: ELMo (Embeddings from Language Models) was introduced by researchers at Allen Institute for Artificial Intelligence. ELMo uses a deep, bidirectional
LSTM to generate word embeddings that can capture both syntax and semantics

2018: The Bidirectional Encoder Representations fromTransformers (BERT)model was introduced byGoogle researchers, representing a significant advance
in the development of LLMs. BERT is capable of bidirectional training, allowing it to better understand the context and meaning of language

2018: ULMFiT (Universal Language Model Fine-tuning) was introduced, marking an important milestone in the efficient use of transfer learning in NLP.

2018: OpenAI released the first version of GPT, or Generative Pretrained Transformer, which used unsupervised learning to generate text

2019: Facebook AI Research introduced RoBERTa, or Robustly Optimized BERT approach, which was designed to improve the accuracy and robustness of
BERT by modifying the training process

2019: OpenAI introduced GPT-2, a highly advanced LLM capable of generating realistic and coherent human-like text. Owing to concerns about potential
technology misuse, OpenAI first released a limited version of the model

2019: Facebook AI Research introduced XLM (Cross-Lingual Language Model), a pretrained LLM capable of understanding multiple languages

2019: Hugging Face, an AI community-driven company, released the transformers library, an open-source resource providing pretrainedmodels and tools to
the NLP research community

2019: Text-to-text transformer was released, which allowed reframing NLP tasks into a unified text-to-text format where the input and output is always text

2020: ELECTRA was released, which is a pretraining approach which trains a transformer model to distinguish “real” input tokens vs “fake” input tokens
generated by another transformer model

2020: Google’s Meena and Facebook’s Blender chatbots were introduced, both of which are large-scale conversational AI models

2020: Developed by NVIDIA, Megatron is designed to scale up models such as GPT and BERT for model size, data set size, and the amount of compute

2020: OpenAI released GPT-3, the most advanced LLM to date, with 175 billion parameters. GPT-3 has demonstrated impressive performance on a range of
natural language processing tasks, such as language translation and question answering

2022: The BigScience consortium released BLOOM, which an open-science LLM trained on 46 natural languages and 13 programming languages

2023: OpenAI releasedGPT-4, endorsing a performance on the UniformBar Examination in the 90th percentile and a performance on theMedical Knowledge
Self-Assessment Program in the 75th percentile

2023: Falcon LLM was released by the Technology Innovation Institute, which is an open-source model for commercial and research use

2023: Pythia, which is a suite of 16 models, was released to enable scientific research on openly accessible and transparently trained LLMs

2023: Med-PaLM and Med-PaLM2 were released by Google, designed to provide helpful long-form answers health-related questions

2023: Meta released LLaMA and LLaMA2, an open-source LLM attempting to democratize access worldwide

A summarization of the key aspects that underscore the progress made on the development of LLMs over the past few years. While we attempted to cover
most of the recent advancements, this list is by no means fully exhaustive.
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Additional Work on the Use of
Language Models in Neurology

The use of large language models in clinical neurology is a
developing field. Most work to date related to language
modeling has focused on report generation, clinical docu-
mentation, and patient health record analysis using more
established approaches, such as text mining and NLP, with
additional examples detailed above.36-38 Although it would be
beyond the scope of this article to delve into all related re-
search, we highly recommend that readers peruse several re-
view papers for a more comprehensive understanding of this
rapidly evolving but young field.38-44 In fact, in a recently
published abstract in Neurology, Lefkovitz et al.44 highlighted
gaps in neurologic NLP research, with few to no studies in

certain neurologic disorders. We offer additional areas of
neurology in which LLMs may be helpful in eAppendix 1
(links.lww.com/WNL/D193).

Technical and Ethical Challenges
Need to Ameliorate Bias
The potential for bias in LLMs presents unique technical and
ethical challenges. The complex and heterogeneous nature of
neurologic disorders necessitates that any model used in this
field be trained on diverse, representative, and consistently
collected data to keep from propagating health care disparities
between different groups of people. Most notably, sampling
bias has the potential to propagate preexisting health care
disparities given that neurologic conditions manifest

Figure 2 Conversation With GPT

Demonstration of ChatGPT’s ability to summarize a clinical note and generate plausible differential diagnoses. Highlighted in green is an example of a
“hallucination,” a current limitation of the technology, where in this case, ChatGPT “hallucinates” that the patient has a “young age,” although the age of the
patient in the clinical vignette was never specified. The clinical summary is abbreviated from a publicly available resource (mtsamples.com).
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differently across a range of demographics, including age, sex,
and ethnic groups. For instance, Alzheimer disease presents with
varying symptoms and progression rates that differ between
individuals and demographic groups. For classification, if an
LLMwas trained predominantly on data from older adults older
than 65 years, its utility in diagnosing early-onset Alzheimer
disease could be compromised. Strategies, such as oversampling,
underrepresented patient groups, and using debiasing tech-
niques during model training could be used to counter this bias.
Training transparency and interpretability techniques could help
clinicians understand the reasoning behind LLM recommenda-
tions, enhancing trust and clinical adoption.

In the realm of sentiment analysis, sentiment misinterpretation
could have significant clinical repercussions such as leading to
inappropriate interventions or treatments. To mitigate this,
rigorous training of LLMs on diverse language patterns, in-
cluding nuances in emotional expression across different pa-
tient groups, is vital. In addition, integrating feedback loops
with health care professionals to validate and fine-tune senti-
ment predictions could enhance accuracy.

Measurement bias can occur due to the variety of tools and
methods used in neurologic assessments, such as cognitive
tests, neuroimaging techniques, and neurologic examinations.
Data collected from these disparate sources might introduce
inconsistency and variability. This bias can be minimized by
using standardized protocols for data collection and in-
corporating a wide range of data sources to train the model.
Confirmation and reporting biases pose significant risks in the
context of neurology because of the subjectivity involved in
assessing symptoms, such as pain, fatigue, or cognitive changes.
Overrepresentation or underrepresentation of these symptoms
in the training data could result in a skewed model that fails to
accurately predict these aspects in patients. Given these biases’
potential to affect an LLM’s output and thus potentially affect
patient care, researchers must generate rigorous clinical evidence
through controlled studies assessing the accuracy, benefits, risks,
and adverse events of incorporating LLMs in neurology. Fur-
thermore, neurologists must be aware of an LLM’s limitations
and understand its generalizability across different neurologic
conditions and patient demographics. It is crucial for them to
approach LLMs as an aid rather than a replacement for their
clinical judgment and expertise.

Need for Careful Technical Validation
The inherent complexity of LLMs can pose challenges in
neurology. For instance, addressing “hallucinations,"45 where a
model might generate significant errors, is critical in neurology
where precision in data interpretation is paramount. An ex-
ample of a “hallucination” from ChatGPT is shown in Figure 2,
where it inaccurately assigns a “young age” to a patient based on
a clinical note fragment without any age given.

To address this challenge, LLMs for neurology ought to un-
dergo careful technical validation to ensure that they are safe
and helpful for their intended uses. This validation should

include not only generalizable methods such as cross-
validation and independent testing on data sets with varied
demographics but also tests relevant to specific neurologic
disorders. For instance, a model’s ability to accurately predict
dementia onset from clinical notes or neuroimaging data
should be tested using data not involved in the model’s
training. Furthermore, as detailed above, careful attention
should be given to potential biases or limitations in the
training data. If the training data overrepresent certain de-
mographics, the model’s output may not be accurate or reli-
able when applied to underrepresented groups. Rigorous
methods should be used to mitigate bias during data collec-
tion and curation, and the model’s performance should be
tested across diverse demographics.

Need to Preserve Privacy and Maintain
Data Security
Machine learning model development in general, and specif-
ically LLMs, presents significant privacy and data security con-
cerns that must be addressed to protect the rights and
confidentiality of study participants and patients.46 In addition to
privacy concerns, there are data security concerns associated with
the use of LLMs in clinical practice. LLMs are complex models
that require significant computational resources to train and run.
Researchers must ensure that appropriate data security measures
are in place to protect themodels and the data used to train them,
such as secure cloud-based storage and access controls, and to
prevent data breaches, such as regular security audits, data en-
cryption, and secure data transmission. To address these con-
cerns, researchers must ensure that they comply with relevant
data protection laws and regulations, such as the General Data
Protection Regulation in the European Union and the Health
Insurance Portability and Accountability Act in theUnited States.

Several aspects regarding the usage of LLMs in practice must
be carefully considered to ensure that the research is con-
ducted in a responsible and transparent manner, particularly
with respect to the principle of autonomy, and the right to
decide how one’s protected health information (PHI) is used
by LLMs. The screening of large EHR databases may require
special notification to patients who are vulnerable and may
require a waiver of consent granted by institutional review
boards to use LLMs to screen EHR data. Inherent to this task
is ensuring the privacy and confidentiality of the data being
used to train the models. PHI must be carefully protected to
avoid any unintended harm or discrimination, particularly
against individuals who may have impairment or disability.

Another challenge associated with the use of LLMs in neurology
is obtaining proper informed consent from patients or their le-
gally authorized representatives, including in situations when the
initial consent to the use of PHI data is given when the individual
is cognitively intact, and only later becoming cognitively im-
paired. It is critical that the evaluation of institutional review
boards be included when making determinations about appro-
priateness of consent, particularly in the context of the evolution
of consent as new scientific advances continue to emerge.
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Role of Regulation
Federal regulations could serve as a useful adjunct to technical
and clinician expertise in addressing the limitations and
challenges of LLMs. Many areas of regulation lie outside the
scope of this article, although there are several regulatory
issues that are particularly important with respect to neurol-
ogy and more broadly, medicine, that pertain to the technical
and ethical challenges we raise.19,47,48

Software as a medical device (SaMD) is defined by the In-
ternational Medical Device Regulators Forum (IMDRF), as
software that is not embedded within hardware and which
performs medical tasks. Therefore, many medical LLMs
would fall under this umbrella. As Gilbert et al.19 note, even
LLM chatbots used for clinical decision support could be
considered medical devices. Under the IMDRF framework,
adopted as guidance by the FDA, SaMDwould need tomeet 3
standards during clinical evaluation. These include (1) that
there must be an association between SaMD output and the
relevant clinical condition; (2) that an input generates “ac-
curate, reliable, and precise” output; and (3) that the output
achieves the desired goal in the population of interest. Any
regulatory efforts should keep these standards in mind.

Bazoukis et al.49 introduce the idea of incorporating algorithm
auditing to augmented intelligence models. Adapted to LLMs
specifically, this could involve labelling models with segments of
the population on which a particular model may be less effective
or even untested. In addition, regulatory bodies could introduce
mandated testing of LLMs on a private validation data set with
demographics representative of the general population or spe-
cificmarginalized populations. These steps,mandating testing on
standardized data sets and labelling algorithms with expected
performance on different population segments, could help to
address bias and technological validation during an initial ap-
proval process and would help LLMs meet the standards set by
the IMDRF framework for clinical evaluation.

Regulation may also be helpful in safeguarding patient data.
There need to be specific timelines for removal of patient data
from models and data sets and rules regarding the use of gen-
erative models pretrained on a patient’s data if a respective pa-
tient wants their information removed. A balance between
feasibility and patient safety must be navigated carefully, and new
techniques may need to be developed to hasten this process.

Conclusion
LLMs offer opportunities within the realm of neurology,
promising to bolster diagnostic accuracy, expedite early in-
terventions, and unravel new biomarkers and therapeutic
pathways. LLMs can be valuable educational assets for pa-
tients and caregivers, elucidating complex neurologic condi-
tions and treatments in a digestible manner. The utility of
LLMs could also extend to the enhancement of diagnostic
precision, as demonstrated by the potential identification of

subtle linguistic changes indicative of early-stage cognitive im-
pairment, through patient narrative processing. Nonetheless, it is
crucial to address a few challenges, such as standardizing the
training of LLMs to minimize biases, safeguarding patient pri-
vacy, and ensuring technical validation. As we navigate these
challenges, there is a need for interdisciplinary collaboration,
encompassing computer scientists, neuroscientists, ethicists, and
clinicians. We call for further research efforts in areas, such as
neurology-specific data annotation, bias mitigation in LLM
application to neurologic conditions, and the development
of more transparent models capable of delivering clinically
meaningful insights. Despite these limitations, LLMs can
serve as powerful agents of change within neurology. We
must harness our collective knowledge and resources to
foster research collaboration, develop unbiased and trans-
parent LLMs, and undertake initiatives to bridge existing
knowledge gaps. It is through these concerted efforts that we
will move closer to fully unlocking the potential of LLMs in
improving accurate diagnosis and treatment of neurologic
disorders.
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