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The identification and characterization of essential genes are central to our understanding of the core biological functions in eukaryotic
organisms, and has important implications for the treatment of diseases caused by, for example, cancers and pathogens. Given the major
constraints in testing the functions of genes of many organisms in the laboratory, due to the absence of in vitro cultures and/or gene
perturbation assays for most metazoan species, there has been a need to develop in silico tools for the accurate prediction or inference of
essential genes to underpin systems biological investigations. Major advances in machine learning approaches provide unprecedented
opportunities to overcome these limitations and accelerate the discovery of essential genes on a genome-wide scale. Here, we developed
and evaluated a large language model- and graph neural network (LLM–GNN)-based approach, called ‘Bingo’, to predict essential protein-
coding genes in the metazoan model organisms Caenorhabditis elegans and Drosophila melanogaster as well as in Mus musculus and Homo
sapiens (a HepG2 cell line) by integrating LLM and GNNs with adversarial training. Bingo predicts essential genes under two ‘zero-shot’
scenarios with transfer learning, showing promise to compensate for a lack of high-quality genomic and proteomic data for non-model
organisms. In addition, the attention mechanisms and GNNExplainer were employed to manifest the functional sites and structural
domain with most contribution to essentiality. In conclusion, Bingo provides the prospect of being able to accurately infer the essential
genes of little- or under-studied organisms of interest, and provides a biological explanation for gene essentiality.
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INTRODUCTION
Essential genes are those that are crucial for life in organisms and
cells [1]. These genes are usually involved in relative conserved
biological processes and pathways [2–4]. Thus, understanding
their functional roles has important implications for understand-
ing the minimum core set of genes (‘essentialome’) in eukaryotic
organisms [5, 6] and can enable the discovery of interventions
(e.g. [6–9]).

The multicellular model organisms Caenorhabditis elegans and
Drosophila melanogaster have been used for decades to study
fundamental biological processes and principles for multicellular

(metazoan) organisms employing functional genomic (i.e. gene
knock-down and knock-out) tools [8, 9]. Underpinned by the
knowledge of their complete genomes, these two species have
acted as surrogates to experimentally infer and/or study essential
genes. Most eukaryotic organisms, including most parasites, are
not amenable to functional genomics, because they cannot be
cultured continuously, or readily manipulated genetically, such
that the identification of essential genes is usually not possible
using conventional laboratory methods. Therefore, devising
reliable computational methods to identify and classify essential
genes in non-model organisms has major fundamental and
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applied implications, particularly for the identification drug
and/or vaccine targets in eukaryotic parasites [10].

Various research teams have made advances in the area of
bioinformatics [11–15], but the computational inference of essen-
tial genes remains a challenge due to its ‘context-dependency’ [10,
16] and a limited understanding of which gene features relate
to gene essentiality [17]. Nonetheless, some researchers have
indicated that machine-learning (ML) methods could significantly
advance this area [18–20], and some of our own studies have
also shown promise in predicting and prioritizing essential genes
in C. elegans and/or D. melanogaster using ML models, including
eXtreme Gradient Boosting (XGB), gradient boosting machines
(GBM) and random forest [21–24]. This work overcame previ-
ous limitations relating to annotations based on experimental
(phenomic) datasets, the discovery of predictors from large-scale
omics datasets, and parameter tuning and cross validation, and
provided a basis for the prediction of essential genes particularly
in ecdysozoans—to which both C. elegans and D. melanogaster
belong [10].

The use of deep-learning (DL) algorithms is highly likely
to further enhance accuracy of the computational prediction,
identification and/or prioritization of essential genes. Deep neural
networks, such as recurrent neural networks (RNNs), contextual
embedding-based convolutional neural networks (CNNs) and
topological feature-coupled graph neural networks (GNNs), have
the potential to automatically extract informative (semantic)
features from diverse datasets, including protein sequences,
protein–protein interactions (PPIs) and biological information
or data. The architectures of these networks can enable the
discover of cryptic patterns that are linked to gene essentiality.
For example, extending a previous study [25], Zeng et al. [15]
used a DL framework to identify essential proteins by integrating
three types of biological information. Specifically, they used
the node2vec framework for extracting topological features
from PPIs; applied the RNN-based bidirectional long short-term
memory (BiLSTM) to capture contextual information from gene
expression data and employed high-dimensional indicator vector
to characterize subcellular localization. Recently, Schapke et al.
[26] proposed Essential Prediction Graph Attention Network
(EPGAT), an attention-based GNNs approach for essentiality
prediction based on graph attention networks (GATs) employing
graph-structured data. EPGAT directly learns gene essentiality
patterns from PPI networks, and integrates other evidence
from multi-omics data encoded as node attributes. EPGAT was
shown to outperform network-based and shallow ML-based
approaches.

In spite of the promise of these approaches, some challenges
remain for the DL-based prediction of essential genes, including:
(i) Most techniques rely heavily on manually engineered features,
orthology and/or biological networks, but extensive datasets are
often scant for most organisms, and novel genes encoding ‘orphan
proteins’ [27, 28] are common; (ii) PPI datasets (from different
studies) are produced using a variety of methods, and are often
not directly comparable. Models based on PPI cannot extend
themselves to genes that does not exist in current PPI network;
(iii) Existing models for the prediction of essential genes lack
interpretability [29], likely leading to a reduction in transparency
and understanding of the models and predictive results.

In the present study, we tackled these problems by establishing
a DL workflow with simple input, rich embeddings, accurate
prediction—which allows the model to be explained. So, we
focused on methods that take protein sequence as inputs and
did not focus on, or compare to those rely on protein networks.

Under this paradigm, we designed and evaluated the perfor-
mance of a large language model- and graph neural network
(LLM–GNN)-based workflow—called ‘Bingo’—for the prediction
of essential genes exclusively from their respective protein
sequences in the metazoan model organisms C. elegans and D.
melanogaster as well as for Mus musculus and Homo sapiens (a
HepG2 cell line). We employed a pre-trained protein language
model—Evolutionary Scale Modeling-2 (ESM-2) [30], GNNs and
a classification module, with adversarial training, to predict
essential protein-encoding genes. Then, we utilized the attention
mechanisms of ESM-2 and GNNExplainer [31] to explore the link
between protein motifs (both sequential and structural) and gene
essentiality. This approach provides the prospect of being able
to accurately infer the essential genes of little- or under-studied
organisms of interest, and offers a biological explanation for gene
essentiality.

MATERIALS AND METHODS
Datasets
Here, we selected data representing four eukaryotic species,
including C. elegans, D. melanogaster, M. musculus and H. sapiens
in our study for model training and performance evaluation.
Caenorhabditis elegans and D. melanogaster are well characterized
model organisms in relation to essential genes [10, 11, 17].
As a mammalian model organism, M. musculus is somewhat
more complex biologically and shares significant genetic and
physiological similarities to humans, having the potential of
shedding light on studying fundamental biological processes
shared by mouse and human [32]. In addition to these model
organisms, we also incorporated the HepG2 cell line into our study.
HepG2, a widely recognized human hepatocellular carcinoma cell
line, serves as a prominent model for liver research [33]. Highly
characterized and established for in vitro experiments, it can offer
relevant insights into liver biology and pathways.

We designed a data processing pipeline (Figure 1A) for retriev-
ing their protein sequences. First, we extracted protein-coding
genes of C. elegans, D. melanogaster, M. musculus or H. sapiens (i.e. the
HepG2 cell line; ATCC HB-8065) from the online gene essentiality
database (OGEE) [34] which are known to be essential or non-
essential based on published evidence from experimental studies.
Second, we generated a gene card for each gene and mapped
gene Ensembl identifiers to UniProt identifiers using the software
MyGene [35]. Third, for ensuring one-to-one mapping from genes
to protein sequences, we selected the isoform with the highest
annotation score. The processing scripts are available at https://
github.com/jianiM/Bingo.

The ‘Bingo’ methodology
Here, we designed and critically assessed the Bingo framework
(Figure 1B–E) for the prediction of gene essentiality exclusively
from protein sequence data. Bingo takes protein sequences as
input and employs a pre-trained language model ESM-2, GNNs
and classification module. ESM-2 learns dependencies among
amino acid residues of proteins by solving the task of filling in
randomly masked amino acids, generating residue-level feature
matrix and a protein contact map (Figure 1B). Using residue-level
information as node features, contact map as edges, GNNs prop-
agate the residue-level features (in a message passing and aggre-
gation manner), generating comprehensive graph embedding that
compresses both semantically enriched and structure informa-
tion (Figure 1C). A fully connected, linear network, with cross-
entropy loss, was applied to optimize the model during training.
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Figure 1. Schematic representation of the Bingo workflow developed here for the prediction of essential protein-coding genes. (A) Data processing.
We extracted protein-coding essential genes and non-essential genes of C. elegans, D. melanogaster, M. musculus and the H. sapiens HepG2 cell line from
the OGEE database. We undertook one-to-one mapping of the Ensembl gene identifier to the protein UniProt identifier, and eliminated low-quality or
uncurated protein sequences. For high-quality protein sequences, we retrieved FASTA files. (B) ESM-2 module. Using these FASTA files as input, ESM-
2 learns dependencies between the residues by solving the task of filling in randomly masked amino acids, generating residue-level feature matrix
and protein contact map for downstream analysis. (C) GNN modules. Embracing residue-level features as node features, contact map as edges, GNNs
propagate the residue-level features in a message passing and aggregation manner. As a result, GNNs generate a comprehensive graph embedding that
compress both semantically enriched and structurally grounded information. (D) Classification module and adversarial training. Final prediction using
Multilayer Perceptron (MLP) layers with cross-entropy loss was applied to optimize the model by training. To enhance the robustness of the workflow,
and ensure stable prediction results, adversarial training was applied to individual GNNs by adding adversarial perturbation to embeddings, where the
worst-case perturbation is determined by solving the min–max objective function. (E) Biological interpretability module. The attention mechanism and
GNNExplainer was used to explore the link between gene essentiality and key functional or structural domains, motifs and/or sites in proteins.

Adversarial perturbation was also applied to GNN embeddings
to establish the ‘worst-case’ perturbation by solving the min–
max objective function (Figure 1D). Subsequently, the attention
mechanism was used to relate the (normalized) importance of
an amino acid residue in a protein sequence to gene essential-
ity, and GNNExplainer [31] was employed to infer which struc-
tural domains/sites in a protein link most to this essentiality
(Figure 1E). The key components of Bingo are described in the
following:

ESM-2
Here, we used the pre-trained protein language model ESM-2 [30]
to ‘understand’ functional and evolutionary information embed-
ded in protein sequences, and captured dependencies among the
amino acids to generate residue-level features and a contact map.
Specifically, ESM-2 was trained on >180 million proteins in the
UniRef database at scales from 8 million parameters up to 15 mil-
lion parameters by solving the task of filling in randomly masked
amino acids in protein sequences. For a set of training protein
sequences S, ESM-2 maximizes the following masked language
modelling (MLM) objective:

LMLM (S, �) = E
s∼S

E
mask

∑
i∈mask

log P
(
si|sj/∈mask; �

)
(1)

where s = (s1, s2, . . . , sL) is the protein sequence with L residues,
mask is a randomly generated mask that includes 15% missing
amino acids of positions i in sequence s. The model tries to
identify missing residues si from the context sj/∈mask .� is the model
parameters. By predicting the missing tokens of the corrupted

sequence, ESM-2 must identify the dependencies between the
masked site and unmasked site. By leveraging the well pre-trained
ESM-2 model on essential/non-essential gene-encoded proteins,
Bingo generates residue-level feature matrix X ∈ R

L×c where c
denotes the dimension of residue features and protein contact
map A ∈ R

L×L for sequence s. Both are essential inputs for GNN,
which is described below.

GNN
For the present workflow, we assessed four different GNN
models, namely graph convolutional network (GCN) [36], GAT
[37], graph sample and aggregated network (GraphSAGE) [38] and
graph isomorphism network (GIN) [39] to propagate residue-level
features among amino acids, which are structurally proximal
to one another. The protein contact map captures the spatial
proximity between every conceivable pair of amino acids within
each protein. This compact two-dimensional, symmetrical matrix
is derived from the three-dimensional interactions among amino
acids in the protein’s structure [40]. To cast the contact map into
a graph, we set a specific threshold (γ ) to ensure that 20% of
the residue pairs can be retained in the contact map matrix.
For example, for two residues si and sj, if | si – sj | <γ , then
Aij = 1, (i, j = 1,2, . . . ,L) and Aij = 0, vice versa. Considering that some
residues that are distant from one another in primary sequence
but are close in structure, we utilized GNNs to further extract
the structure-derived embeddings that are complementary to the
primary features. Taking the contact map A ∈ R

L×L and residue-
based feature matrix X ∈ R

L×c as inputs, GNNs can learn the
protein-specific encoder to extract structural features and output
the probability of a genes’ essentiality. The detailed description
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of the four GNN models and how they “were” implemented are
given in the Supplementary Material, available online at http://
bib.oxfordjournals.org/.

Adversarial training
Adversarial training [41] is a regularization method for the neu-
ral networks to learn to increase the robustness of adversarial
attacks. Bingo extends the adversarial training strategy to GNN
models to prevent overfitting. Of the proposed adversarial training
methods available for image and text embedding, we leveraged
the fast gradient method (FGM) [42]. As shown by the Equation
(2), the BCEWithLogitsLoss function LBL is used to train our model
as a base loss function:

LBE
(
y|s, θ

) = −y log
(
σ

(
p (s; θ)

)) − (
1 − y

)
log

(
1 − σ

(
p (s; θ)

))
(2)

where (s, y) denotes a training sample; s is the input training
sequence; y is the true label; θ denotes the model parameters;
p (s; θ) denotes the prediction probability and σ is the sigmoid
function. For basic training, the optimal model parameter can be
obtained through the backpropagation procedure:

θ∗ = arg min
θ

E(s,y)∼DL
(
y|s, θ

)
(3)

where D is the training set.
In the previous work, the adversarial perturbation was directly

applied to the text embeddings of sequence data [43, 44]. The
learning procedure for finding the optimal adversarial perturba-
tion r∗

adv and model parameters θ∗ is commonly formulated as a
min–max optimization problem as follows:

θ∗, r∗
adv = min

θ
E(s,y)∼D

[
max

radv
LBL

(
y|f (s) + radv, θ

)]
(4)

where we used f (s) to represent the embedding feature of
sequence s, and radv denotes adversarial perturbation.

In Bingo, we applied the adversarial perturbation to the GNN
layers, and solved the following objective function:

θ∗, r∗
adv = min

θ
El=1,2,...,L

[
max

radv
LBL

(
y|H(l) + radv, θ

)]
(5)

Following a two-stage process at each training step to obtain
the worst-case perturbation r∗

adv and optimal model parameter θ∗,
we initially obtained r∗

adv by solving:

max
radv

LBL

(
y|H(l) + radv, θ̂

)
, l = 1, 2, ..., L (6)

where θ̂ is a temporarily fixed value of θ .
However, the exact maximization with respect to radv is

intractable for GNNs. Thus, for FGM, we linearized LBL
(
y|H(l) +

radv, θ̂
)

around H(l) with an L2-norm constraint, that is:

LBL
(
y|H(l) + radv, θ̂

) = LBL
(
y|H(l), θ̂

) + radvLBL
(
y|H(l), θ̂

)

where ‖radv‖2 ≤ ε (7)

The adversarial perturbation causes the loss function to grow
by radvLBL

(
y|H(l), θ̂

)
. Maximizing LBL

(
y|H(l) + radv, θ̂

)
is equivalent

to maximizing radvLBL
(
y|H(l), θ̂

)
. Thus, by considering the L2-norm

constraint on radv, we assigned:

r∗
adv = ε

∇H(l) LBL

(
y|H(l), θ̂

)
∥∥∥∇H(l) LBL

(
y|H(l), θ̂

)∥∥∥
2

(8)

After obtaining the optimal perturbation r∗
adv, θ∗ can be

achieved by solving:

min
θ

El=1,2,...,LLBL

(
y|H(l) + r∗

adv, θ
) ]

(9)

RESULTS
Here, we curated the gene and protein datasets for C. elegans, D.
melanogaster, M. musculus and HepG2 cells; compared and intu-
itively analyzed the performance of Bingo with Transformer [45],
BiLSTM [46] and CNN [47], using separately balanced and imbal-
anced datasets, employing a 10-fold cross validation; assessed the
performance of Bingo for ‘zero-shot’ (i.e. de novo) cross-species
prediction and cross-domain prediction for C. elegans; evaluated
and analyzed the contribution of each module in our model; elu-
cidated how each module worked and provided biological insights
in explaining our model’s decision. All models in this section were
trained on an NVIDIA A100 with 80 GB of memory; early stops
were controlled by validation loss.

Curated datasets obtained
First, we extracted data from OGEE and identified protein
sequences linked to essential and non-essential genes (Table 1).

We primarily employed balanced datasets, while also taking
imbalanced datasets into account when evaluating performance.
Specifically, we obtained balanced datasets for individual species
by randomly sampling non-essential genes; this sampling set was
the same in size as the set representing essential genes.

Predictive performance of Bingo using balanced
and imbalanced datasets
We compared the performance of Bingo with those of Trans-
former, BiLSTM and CNN using balanced datasets (representing
C. elegans, D. melanogaster, M. musculus and the human HepG2
cell line) on a 10-fold cross-validation test. The rationale for
using Transformer, BiLSTM and CNN as comparative benchmark
models is given in the Supplementary Material, available online at
http://bib.oxfordjournals.org/. The models were trained and eval-
uated using the same training sets and test sets. The performance
was mainly measured using Area Under the Receiver Operating
Characteristic Curve (AUC) and Area Under the Precision-Recall
Curve (AUPR), followed by other measurements such as F1 score,
Accuracy (ACC), Recall, Specificity and Precision. How to calculate
them can be found in Supplementary File, available online at
http://bib.oxfordjournals.org/. Figure 2A–E illustrates the overall
comparative performances between Bingo and each of the three
other methods using balanced protein datasets for C. elegans, D.
melanogaster, M. musculus and the HepG2 cell line.

As Figure 2A–D shows, Bingo achieved the best AUC and AUPR
values, leading by a 12.5–27.3% for AUC, 14.7–29.3% for AUPR
for C. elegans, 12.3–26.8% for AUC, 12.6–26.8% for AUPR for D.
melanogaster, 13.7–21.1% for AUC, 13.9–20.1% for AUPR for M.
musculus, 19.45–30.45% in AUC and 20.65–29.13% in AUPR for the
HepG2 cell line, respectively. Figure 2E further demonstrates the
superiority of Bingo over Transformer, BiLSTM and CNN, in terms
of the F1 score, Precision, Recall, ACC and Specificity for all four
balanced datasets. Taken together, these results demonstrated

http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Figure 2. Comparison of the overall performance of Bingo and other methods using balanced data (10-fold cross validation). (A–D) The ROC and PR
curves of Bingo (and its competing methods on balanced datasets for C. elegans, D. melanogaster, M. musculus and the H. sapiens HepG2 cell line. (E)
Performances of Bingo, Transformer, BiLSTM and CNN using four balanced datasets, in terms of ACC, Precision, Recall, F1 score and Specificity (10-fold
cross validation). (F–I). Feature distributions for Bingo, Transformer, BiLSTM and CNN using balanced datasets for C. elegans, D. melanogaster, M. musculus
and HepG2 cells, respectively. Red and green dots denote essential (positive) and non-essential (negative) genes, respectively.
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Table 1: Statistical summary of essential and non-essential protein-coding genes from C. elegans, D. melanogaster, M. musculus and H.
sapiens (HepG2 cell line)

Dataset representing organism/cell line No. of essential genes No. of non-essential genes

C. elegans 578 13 104
D. melanogaster 365 7178
M. musculus 2016 7491
H. sapiens (HepG2 cells;
ATCC HB-8065)

877 16 040

Figure 3. AUC and AUPR values for ‘zero-shot’ predictions of essential genes. (A) AUC heatmap of cross-species transfer learning with Bingo, Transformer,
BiLSTM and CNN. (B) AUPR heatmap of cross-species transfer learning using Bingo, Transformer, BiLSTM and CNN.

superior performance of Bingo compared with Transformer, BiL-
STM and CNN.

To explain why Bingo performed better than these other meth-
ods, we assessed the distribution of the feature embedding space
for Bingo as well as for Transformer, BiLSTM and CNN for all test
sets generated by stratified 10-fold cross validation, revealing the
models’ capabilities to exploit the underlying pattern of feature
space and the discriminability to differentiate essential from non-
essential genes. Figure 2F–I shows the t-distributed stochastic
neighbour embedding (t-SNE) visualization [48] results of them
on C. elegans, D. melanogaster, M. musculus and HepG2 cells, respec-
tively, in which red dots represent the positive samples (essential
genes), while green dots represent the negative samples (non-
essential genes). As can be seen in Figure 2F and I, the feature
space of essential genes and that of non-essential genes are
distinct. In addition, the samples within one cluster are compact
rather than disperse. In contrast, the samples of feature space
generated by Transformer are somewhat mixed, whereas for BiL-
STM and CNN, they are connected and totally mixed, preventing
clear classification. As for Figure 2G and H, although the feature
spaces for Bingo are not as discriminative as those achieved using
C. elegans or HepG2 cell data, they are clearer than those generated
by the three other methods using data from D. melanogaster and
M. musculus. Moreover, the t-SNE performance aligned perfectly
with the comparative results shown in Figure 2A–E. Thus, the

performance of Bingo can be attributed to its excellent ability to
recognize and harness the distinctive feature patterns of essential
and non-essential genes in distinct species. The predictive perfor-
mance and analysis of four imbalanced datasets (i.e. for C. elegans,
D. melanogaster, M. musculus and HepG2 cells) using a stratified 10-
fold cross validation are present in the Supplementary Material,
available online at http://bib.oxfordjournals.org/. Figure S1 shows
that our workflow achieved the best performance for the predic-
tion of essential genes compared with the three other methods
using imbalanced datasets.

Assessing the performance of Bingo for
‘zero-shot’ (i.e. de novo) prediction of essential
genes
Here, we evaluated Bingo to cross-predict essentiality from one
species to another using transfer learning on their balanced
datasets. Specifically, in the model training process, we divided
the large-scale samples into the training dataset and validation
dataset with 8:2 ratio. By temporarily hiding the essential gene
annotations of their samples, the small-scaled organism was
regarded as ‘unseen’ one. Applying the well-trained model into
‘unseen’ species, we obtained the ‘zero-shot’ prediction results.
For each model, we used AUC and AUPR to measure the overall
performance for cross-species transfer learning experiments
(Figure 3).

http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad472#supplementary-data
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As a result, Bingo achieved higher AUC and AUPR scores
than did other models for transfer learning for all metrics
(Figure 3), highlighting its applicability and adaptability in ‘zero-
shot’ prediction and its potential to provide reliable essential gene
predictions for ‘unseen’ species. In addition, for each model, the
performance for the ‘C. elegans–D. melanogaster’ pair (i.e. C. elegans
is the source dataset and D. melanogaster is the target dataset)
consistently surpassed that achieved for the ‘M. musculus–D.
melanogaster’ pair. This finding indicates that C. elegans data are a
more reliable source to train quality models to learn and prioritize
essential genes in an ‘unseen’ species.

Cross-species prediction was conducted using the C. elegans
data as a training set for the prediction and prioritization of
essential genes. We compared Bingo with three protein sequence-
derived state-of-the-art (SOTA) methods: DeepCellEss [49], Essen-
tial Protein-Ensembl Deep Learning (EP-EDL) [50] and Essential
Protein-Gradient Boosting Decision Tree (EP-GBDT) [51], using a
‘zero-shot’ cross-domain prediction for C. elegans. The rationale
for selecting DeepCellEss, EP-EDL and EP-GBDT as competitive
SOTA methods is given in the Supplementary File, available online
at http://bib.oxfordjournals.org/. In addition, a Top-K gene strat-
egy was used as an evaluation criterion to intuitively assess the
predictive capability of cross-domain predictions using C. elegans
data. Detailed information regarding the Top-K gene scheme and
how Bingo, DeepCellEss, EP-EDL and EP-GBDT were implemented
is given in the Supplementary File, available online at http://
bib.oxfordjournals.org/. Figure S2 compares the results achieved
using the Top-K gene scheme.

Both ESM-2 and GAT improved prediction
performance
Here, we wanted to understand how its components contribute
to the high performance and adaptability of Bingo. To evaluate
the effectiveness of ESM-2, we replaced ESM-2 with simple one-
hot encoding scheme, followed by GNN and adversarial training.
In addition, to assess the impact of GAT, we systematically deac-
tivated its functionality and employed a linear neural network
for the fine-tuning of ESM-2. Throughout the training process, we
consistently employed an adversarial training scheme. Figure 4A
shows the AUC and AUPR scores of ablation experiments using
balanced datasets representing C. elegans, D. melanogaster, M. mus-
culus and HepG2 cells.

As shown in Figure 4A, the ablation studies were conducted to
assess the performance of individual module. Comparing these
models to Bingo, the ones that involve ESM + adversarial train-
ing, GAT + adversarial training and ESM + GAT exhibit varying
degrees of performance decline across metrics, except for Recall
on C. elegans, D. melanogaster, M. musculus and the HepG2 cell line.
Notably, the models without ESM-2 displayed the most significant
performance decreases, highlighting the substantial contribution
that ESM-2 makes to enhancing the Bingo’s prediction perfor-
mance. Similarly, GAT also plays a crucial and indispensable role
in improving the predictive performance.

ESM-2 and GAT capture complementary
information
Here, we focused on elucidating the reason(s) for its high
predictive performance of Bingo. We selected, at random, four
protein-coding genes from C. elegans and extracted the attention
maps of ESM and GAT, and deciphered the contextual or structural
independence that they learned from the protein sequence.
Figure 4B–E presents the attention maps of protein transport
protein Sec61 subunit gamma (UniProt ID: Q19967; Ensembl ID:

WBGene00001303), barrier-to-autointegration factor 1 (UniProt
ID: Q03565; Ensembl ID: WBGene00000235), actin-2 (UniProt
ID: P10984; Ensembl ID: WBGene00000064) and eukaryotic
translation initiation factor 3 subunit F (UniProt ID: Q18967;
Ensembl ID: WBGene00001229), with each subfigure delineating
the attention maps generated by ESM and GAT.

Notably, each entry in the attention map reflects the degree
of relevance between two residues along the protein sequence.
Intensified colours signify heightened correlation, signifying
the importance of the association. In the ESM attention maps,
we observed that highly correlated elements are concentrated
around the diagonal, indicating that ESM can capture the
contextual information of residues by considering their upstream
and downstream amino acids within the protein sequence.
In contrast, the attention maps generated by GAT exhibited
a more dispersed distribution of highly correlated elements.
This indicates that GAT can capture the spatial correlations
among residues that may be distantly positioned within a protein
sequence, but are in close spatial proximity. Remarkably, the
contextual correlation information extracted by ESM and spatial
proximity information extracted by GAT are complementary,
providing a holistic and clear feature space and indicating
that ESM and GAT play key roles in enhancing predictive
performance.

Adversarial training shows the robustness of the
Bingo workflow
Adversarial training is another key component of Bingo. To investi-
gate its contribution to the model’s performance, we first trained
our workflow without adversarial training (see dark blue bar in
Figure 4A), and compared its performance with that of the original
model. Compared with the performance of the original model,
denoted as the orange bars, we found that its contribution to
prediction performance improvement is limited. Subsequently,
using the training of C. elegans data as an example, we further
analyzed the loss curves with and without adversarial training
(Figure 4F). In Figure 4F, we see that the model with adversarial
training achieved lower and a more stable training-loss than
that without adversarial training. This indicates that adversarial
training promotes a better convergence of the model and miti-
gates potential overfitting risks, likely eventually enhancing the
robustness of our workflow.

GAT performs best of a range of GNN models
To examine the power of the GNN models GAT, GCN, GraphSAGE
and GIN, we ran our workflow with these GNN variants using
balanced C. elegans, D. melanogaster. Mus musculus and HepG2
cells datasets on 10-fold cross validation. Figure 4G shows the
performance (measured as AUC and AUPR) for each fold using
these four balanced datasets. Notably, the performance of Bingo
with these four GNN variants is consistent with that using
the four distinct datasets for both metrics. GAT achieved the
best performance with the highest mean AUC/AUPR and the
least variation, followed with GraphSAGE, and GCN. GIN did
not perform well, which may be attributable to its feature/label
invariant for isomorphic graph (limited sensitivity to node-
embedding features and high reliance on structure). Specifically,
GIN was designed with the concept of graph isomorphism, i.e. for
proteins with similar structures (contact map here), GIN generates
a very similar graph representation, rendering it unable to
differentiate reliably essential from non-essential genes based on
protein data alone. On the other hand, GAT, GIN and GraphSAGE
are more sensitive to node-embedding and are not totally

http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad472#supplementary-data
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Figure 4. Analysis of the performance and interpretability of each module of Bingo. (A) Performance comparison of Bingo, ‘ESM-2 + Adversarial
Training’, ‘GAT + Adversarial training’ and ‘ESM-2 + Adversarial Training’. (B–E) Attention maps to illustrate the features captured by ESM-2 and GAT
of protein transport protein Sec61 subunit gamma, barrier-to-autointegration factor 1, actin-2 and eukaryotic translation initiation factor 3 subunit F.
(F) Performance comparison of Bingo employing GAT, GCN, GraphSAGE or GIN for the analysis of datasets for C. elegans, D. melanogaster, M. musculus and
the H. sapiens HepG2 cell line. Training curves for Bingo with and without the adversarial training on the C. elegans data set. (G) 10-fold cross validation
of Bingo with GAT, GCN, GraphSAGE and GIN, respectively, for C. elegans, D. melanogaster, M. musculus and the HepG2 cell line.

reliant on structures. They use diverse means of propagating the
embedding of nodes – GCN aggregates embedding in a simple
way, i.e. averaging the embedding of all neighbours’ features
without selection. For each node, GraphSAGE first samples its
neighbours and then updates the embedding by concatenating
current embedding and aggregated neighbour information.
Averaging may cause ‘noise’, while randomly sampled node’s
neighbourhoods should mitigate this situation. For this reason,
GraphSAGE achieved a better performance than GCN. Compared
with GCN and GraphSAGE, it seems that GAT leverages a ‘smarter’
and more reasonable node feature aggregation approach. GAT
introduces the attention mechanism during the message passing
procedure, assigning weights to node’s neighbours according
to their contribution to the control and/or target node. Taken
together, these findings indicate that the full exploration of nodes’
embedding underpins the superior performance of our workflow
employing GAT.

Linking protein motifs, domains and sites to
essentiality
Many proteins carry out their biological functions through
important residues or motifs (e.g. active sites on enzymes, DNA
binding sites on transcription factor proteins, binding sites and
post-transcriptional modification sites) and functional domains.
These elements might relate to the essentiality of a gene. To
better interpret the decision-making of a model at the molecular-
level, Bingo outputs the normalized importance of an amino acid
residue through the attention mechanism of ESM-2, and localizes
substructure contributing most via GNNExplainer [31] without
residue-level annotation. To gain insights into how Bingo makes
predictions at the sequence-level, we first extracted the attention
matrix generated by ESM-2, which records the correlations among
all residues. Then, we quantified the contribution of each residue
by summing up its correlations with all other residues, and
submitted the summed value via min–max scaling to derive a
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Figure 5. Exploring links between essential genes and their protein features (examples). (A–D) Normalized residue importance, generated by
attention mechanism and ground truth annotations for UDP-glucose 6-dehydrogenase, high mobility group protein DSP1, cGMP-dependent 3′,5′-cyclic
phosphodiesterase and serine/threonine-protein kinase B-raf, respectively. (E–H) Most contributed connected domain analyzed by GNNExplainer and
ground truth annotations of UDP-glucose 6-dehydrogenase, high mobility group protein DSP1, cGMP-dependent 3′,5′-cyclic phosphodiesterase and
serine/threonine-protein kinase B-raf, respectively.

normalized value. A higher normalized value indicates a stronger
correlation/dependency with the upstream and downstream
regions in the protein, thus demonstrating the important role that
each residue plays in the determination process. Furthermore, to
offer insight into how Bingo makes decision at the structure-level,
we applied GNNExplainer to the contact map by detecting the
compact connected subgraph with the maximum connectivity.

Here, we present examples of essential genes encoding UDP-
glucose 6-dehydrogenase (UniProt ID: Q19905; Ensembl ID:
WBGene00005022), high mobility group protein DSP1 (Q24537;
FBgn0278608), cyclic guanosine monophosphate (cGMP)-
dependent 3′,5′-cyclic phosphodiesterase (Q922S4; ENSMUSG000
00110195) and serine/threonine-protein kinase B-raf (P15056;
ENSG00000157764) from C. elegans, D. melanogaster, M. musculus
and HepG2 cells, respectively. Figure 5A–D shows the distribution
of the importance scores for individual residues and functional
motifs/domains in the protein sequences encoded by these
four genes. Figure 5E–H shows the connected subgraphs that
contribute most (i.e. with highest importance residue score) for
each protein structure analyzed by GNNExplainer, along with
the ground truth structural functional domains annotated using
SMART Domain tool [52] and the UCSF Chimera tool [53].

UDP-glucose 6-dehydrogenase is an enzyme involved in carbo-
hydrate metabolism for C. elegans, utilizing NAD+ as a co-factor
for oxidizing UDP-glucose to UDP-glucuronic acid [54]. Its activity
and interactions with other proteins are primarily influenced
by NAD+ binding sites, catalytic sites, and the UDP-binding
domain. Figure 5A and E shows that positions with higher residue
importance align well with NAD+ binding sites (green) and
catalytic sites (red) at the sequence level, while the UDP
functional domain can also be found in the most-contributed
connected subgraph of its whole structure. In addition, the
high mobility group protein DSP1 functions as a transcriptional
co-activator of D. melanogaster, which is characterized by its
ability to bind to DNA and regulate gene expression [55]. As
depicted in Figure 5B, two distributions with relatively high
residue importance are generally overlapped with DNA binding
regions. Simultaneously, High-Mobility Group (HMG) domain,
a compact DNA binding domain consists of 3 α-helice, has
also been detected with GNNexplainer. cGMP-dependent 3′,5′-
cyclic phosphodiesterase [56] and Serine/threonine-protein
kinase B-raf [57] are two essential genes selected from M.
musculus and the HepG2 cell line. Both are enzymes and have
abundant functional sites such as initiator methionine, binding
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sites, active sites, post-transcriptional residues, etc. Figure 5C
and D illustrates the distribution and overlapping situation of
annotated key functional sites. As for cGMP-dependent 3′,5′-
cyclic phosphodiesterase, the residues with relatively higher
importance values are well mapped with those functional
sites (Figure 5C). cGMP-specific phosphodiesterase, adenylyl
cyclase, FhlA (GAF) and HDc domains have also been detected
by finding/searching the connected subgraph with maximum
connectivity with GNNExplainer. However, the functional sites of
serine/threonine-protein kinase B-raf are not well characterized
with the predicted distribution of residue importance, particularly
for modification sites (cf. Figure 5D). Nonetheless, its functional
domains, including Receptor Binding Domain (RBD) as well as
C1, were identified during the post-training analysis employing
GNNExplainer. These findings indicate that, even though Bingo
was not designed or trained explicitly to identify key functional
sites and/or structural domains, it has the potential to identify
them via post-training analysis methods with the ultimate task
of predicting essential genes.

DISCUSSION
Herein, we have developed an LLM–GNN-based workflow, called
Bingo, to predict gene essentiality of C. elegans, D. melanogaster,
M. musculus and H. sapiens (a HepG2 cell line) exclusively from
protein sequence. Leveraging ESM-2 and GNNs, Bingo can harness
complex and intrinsic patterns in protein sequences and con-
tact maps, and achieves a high predictive performance based on
comparative analyses, ablation studies and ‘zero-shot’ prediction.
Importantly, Bingo can predict essential genes under a “zero-
shot’ scenario using transfer learning, which means Bingo might
be able to compensate for a lack of high-quality genomic and
proteomic datasets for non-model organisms.

Notably, even without explicit annotations for amino acid
residues, the present pipeline has the potential to infer intrinsic
essentiality-linked elements, including functional sites and/or
structural functional domains, via the attention mechanism
and GNNExplainer, offering biological insights into the decision-
making process of the model. Thus, Bingo should provide a
promising tool for the prediction of essential genes within and
among species, enabling the identification of novel intervention
(drug or vaccine) candidates in socio-economically important
parasites.

Nonetheless, Bingo might benefit from a more rigorous data
pre-processing procedure and hypergraph model. Housekeeping
genes [58], owing to their high conservation and widespread pres-
ence, may introduce bias, particularly in the cross-species essen-
tial gene prediction tasks. In future work, we aim to address
this by collecting and using expanded experimental datasets,
excluding highly conserved house-keeping genes, and focusing
on species-specific genes during the data pre-processing phase.
Furthermore, protein structures are complex and involve multiple
levels of hierarchy, including primary, secondary, tertiary and qua-
ternary structures. However, GNNs extract structure-level embed-
dings from a contact map and only provide a compressed two-
dimensional map of a protein’s tertiary structure, which likely
loses relevant information. Recently, hypergraph neural networks
have emerged for enhanced protein structure and molecular
interaction predictions [59–61]. These networks will likely be able
to extract relevant multimodal structure information by allowing
hyperedges to connect different types of nodes, capturing diverse
relationships within the protein structures more efficiently than
GNN models. These are areas that we plan to tackle in due course.

Key Points

• Bingo is an LLM–GNN-based workflow for the prediction
of essential genes from protein datasets (both balanced
and imbalanced) representing C. elegans, D. melanogaster,
M. musculus and H. sapiens (i.e. a HepG2 cell line).

• This workflow uses ESM-2 to capture the contextual
information from amino acid residues by considering
their location (both upstream and downstream) in pro-
tein sequences, employs GAT to capture spatial cor-
relations among residues in protein structures and is
complemented by adversarial training.

• Bingo has a high performance for ‘zero-shot’ prediction,
with C. elegans data being most reliable for training
to learn and prioritize essential genes in an ‘unseen’
species.

• Bingo also exhibits excellent generalization and robust-
ness when compared with three SOTA methods (Deep-
CellEss, EP-EDL and EP-GBDT) for cross-domain predic-
tion using C. elegans data.

• Even without explicit annotations for proteins, Bingo
has the potential to infer intrinsic essentiality-linked
functional sites and structural functional domains via
the attention mechanism and GNNExplainer, offering
biological insight into the decision-making process.
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