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Abstract

Throughout evolution, pathogenic viruses have developed different strategies to evade the response of the adaptive immune system. To
carry out successful replication, some pathogenic viruses encode different proteins that manipulate the molecular mechanisms of host
cells. Currently, there are different bioinformatics tools for virus research; however, none of them focus on predicting viral proteins that
evade the adaptive system. In this work, we have developed a novel tool based on machine and deep learning for predicting this type of
viral protein named VirusHound-I. This tool is based on a model developed with the multilayer perceptron algorithm using the dipeptide
composition molecular descriptor. In this study, we have also demonstrated the robustness of our strategy for data augmentation of
the positive dataset based on generative antagonistic networks. During the 10-fold cross-validation step in the training dataset, the
predictive model showed 0.947 accuracy, 0.994 precision, 0.943 F1 score, 0.995 specificity, 0.896 sensitivity, 0.894 kappa, 0.898 Matthew’s
correlation coefficient and 0.989 AUC. On the other hand, during the testing step, the model showed 0.964 accuracy, 1.0 precision,
0.967 F1 score, 1.0 specificity, 0.936 sensitivity, 0.929 kappa, 0.931 Matthew’s correlation coefficient and 1.0 AUC. Taking this model into
account, we have developed a tool called VirusHound-I that makes it possible to predict viral proteins that evade the host’s adaptive
immune system. We believe that VirusHound-I can be very useful in accelerating studies on the molecular mechanisms of evasion of
pathogenic viruses, as well as in the discovery of therapeutic targets.
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INTRODUCTION

There have been significant pandemics in the last century, such
as the 1918 HIN1 influenza and HIV, which caused millions of
deaths. In the twenty-first century, there have been zoonotic
outbreaks, including SARS, MERS, Ebola, Hendra, Nipah and
COVID-19, which have become a major crisis with global con-
sequences [1]. Pathogenic viruses have evolved various strategies
to evade the immune system and successfully infect host cells
[2, 3]. The adaptive immune response is a key component of
the host’s immune system against viral pathogens, and many
of these pathogens have evolved to evade it [4]. Among the most
common mechanisms used by pathogenic viruses to evade this
type of response are inhibition of host major histocompatibility
complex class I (MHC-I) molecule presentation [5-7], MHC class II
(MHC-II) molecule presentation, proteasome antigen processing,
transporter associated with antigenic processing (TAP), and
tapasin [/]. For example, the human papillomavirus (HPV)
encodes a protein called E5 (HPV E5) that facilitates successful
infection by inducing loss of surface MHC-I expression in infected
basal cells, thereby preventing viral antigen presentation to
effector T cells. HPV16 E5 can bind to the transmembrane
domain of MHC-I, retaining it inside the Golgi apparatus, thus
preventing its trafficking to the cell surface [8, 9]. The US2
protein of human cytomegalovirus inhibits the MHC-II antigen
presentation pathway by degrading human leukocyte antigen
(HLA)-DR-« and -DM-«, thereby preventing recognition by CD4* T
cells [10]. Finally, the Epstein-Barr virus encoded nuclear antigen
1 protein interrupts proteasome substrate processing [11], among
many other examples. The study of virus proteins that evade
adaptive immune responses is crucial in the development of
vaccines and therapeutic drugs that help combat these pathogens
more efficiently [12]. However, despite advances in understanding
the molecular mechanisms by which viruses evade the immune
system, demonstrating that a virus protein confers the ability
to evade the immune system remains a difficult and resource-
intensive task. In this direction, the development of alternative
tools that allow for an accelerated process is an area of research
that must be considered to combat these unpredictable and
dangerous pathogens.

In recent years, different immunoinformatic tools based on
machine learning algorithms have been developed to address
various problems in the field of immunology, which have been
trained with experimental datasets of immunogenic proteins and
peptides. Most of these tools focus on predicting the binding affin-
ity of peptides to MHC-I and MHC-1I, as well as predicting B-cell
epitopes, based solely on the primary sequences of proteins [13,
14], which facilitates the large-scale study of potentially immuno-
genic peptides. On the other hand, there are other immunoinfor-
matic tools for the study of viruses based on machine learning
such as VirVACPRED and VaxiJen, which allow for specific predic-
tions of viral antigens [15, 16]. Other alternatives for the study
of viruses are tools for predicting the subcellular localization
of these pathogens such as MSLVP [17], Virus-mPLoc [18] and
pLoc_Deep-mVirus [19], among many other tools compiled in an
excellent review by Kumar and colleagues [20]. To date, there is
no tool for predicting virus proteins that evade the host adaptive
immune response. In this direction, the present work aims to
develop a novel tool to address this important problem. This tool
could be of great use in the study of the molecular mechanisms by
which these pathogens camouflage themselves against this type
of response, as well as facilitating the discovery of new therapeutic
targets.

MATERIAL AND METHODS
Datasets

In this study, we identified 98 virus proteins involved in evading
the host adaptive immune response (VPEs) from the scientific
literature. The primary reference sequences of these proteins
were identified and downloaded from the UniProt database [21] to
construct a positive dataset (positive dataset). On the other hands,
to create the negative dataset, we randomly selected 285 virus
proteins (negative dataset) lacking this biological functionality
(non-VPEs) in the UniProt database. These were also compared
with the scientific literature to ensure that they are not involved
in invading the host adaptive immune response.

Feature computation

From both datasets, four different types of molecular descrip-
tors were calculated: amino acid composition (AAC, 20 features),
amphiphilic pseudo amino acid composition (APAAC, 50 features),
dipeptide composition (DPC, 400 features) and pseudo amino acid
composition (PAAC, 50 features). All calculations of the molecular
descriptors were performed using the propy3 package (https://
propy3.readthedocs.io/).

Data augmentation using generative adversarial
network
GAN architecture

Considering the disproportion between the positive and negative
datasets in terms of the number of virus protein sequences, we
proceeded to balance this imbalance by generating synthetic data
from the positive dataset. For this purpose, a Generative Adversar-
ial Network (GAN) was used, and it was separately fed with each
of the molecular descriptors calculated from the positive dataset.
The implementation of our strategy for generating synthetic data
consists of three models: the generator, the discriminator and
the GAN. The generator was provided with a noise input, and
synthetic data resembling the real data were generated from
this input. Subsequently, the architecture was configured so that
the discriminator received real or synthetic data and attempted
to classify them as true or false. The GAN developed in this
work combines the generator and the discriminator in a neural
network to train them together. The generator seeks to improve its
ability to generate increasingly realistic synthetic data, while the
discriminator aims to improve its ability to distinguish between
real and synthetic data. The GAN was trained in a zero-sum game
process where the generator tries to deceive the discriminator,
and the discriminator tries to correctly identify the fake data.
This feedback process was iteratively repeated until the GAN
was capable of generating synthetic data that is indistinguishable
from the real data.

Generator configuration

A neural network was configured consisting of three central
layers. First, an input layer with a dimensionality of 128 was used.
Subsequently, hidden layers were implemented, each composed
of two dense layers with 128 units. These layers are followed by
LeakyReLU activations with a slope factor of 0.01 and dropout
layers with a retention rate of 50%. Finally, the output layer was
configured as a dense layer designed to generate synthetic data,
maintaining the same dimensionality as the input dataset.

Discriminator configuration

An input layer with a dimensionality equal to the number of
entities in the dataset was used. The hidden layers consist of
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two dense layers, each comprising 128 units. These layers were
followed by LeakyReLU activations with a slope factor of 0.01 and
dropout layers with a retention factor of 0.5. The output layer was
configured as a dense layer with a sigmoid activation for binary
classification of data as real or synthetic. The discriminator was
trained to distinguish between real and synthetic data using the
binary cross-entropy loss function and was optimized with the
Adam algorithm, configured with a learning rate of 0.0002 and a
beta factor of 0.5. Simultaneously, the GAN was trained over 1000
epochs, with a batch size of 30 examples per epoch, aiming to
deceive the discriminator by generating synthetic data resembling
real data. Losses for both the discriminator and the generator
were recorded in each epoch, and these losses were summed as
the evaluation metric.

The entire strategy carried out for generating synthetic data
was written using the TensorFlow 2.0 framework (https://www.
tensorflow.org/). The code written for this task was deposited
along with all the code used in this work and the datasets in the
GitHub repository: https://github.com/jfbldevs/virushound-1I.

Classification and assessments

The random forest classification algorithm (RF) was used
to develop predictive models for viral proteins that evade
the adaptive immune system (abbreviated as VPEs). Before
developing models using each molecular descriptor tested,
robust hyperparameter optimizations were performed on the
training dataset, made up of 80% of the data, and subjected to
a 10-fold cross-validation step. Cross-validation is a statistical
technique used to assess the performance and generalizability
of a predictive model. It involves dividing a dataset into multiple
subsets, typically a training set and a validation set, multiple
times to ensure robust model evaluation. This helps to mitigate
the risk of overfitting and provides a more reliable estimate of
how well the model will perform on new, unseen data [22, 23].
Subsequently, the optimized models were tested on the remaining
20% of the data (unseen data). The hyperparameters and their
associated values were as follows, n_estimators: the number of
trees in the forest. The possible values range from 100 to 1000,
with increments of 100. criterion: The function to measure the
quality of a split. The possible values are ‘gini’ (Gini impurity) and
‘entropy’ (information gain). max_depth: The maximum depth of
the tree. The possible values are 5, 10, 15, 20, 25, 30 and None
(unlimited depth). min_samples_split: The minimum number of
samples required to split an internal node. The possible values
are 2, 5 and 10. min_samples_leaf: The minimum number of
samples required to be at a leaf node. The possible values are
1,2 and 4. max_features: The number of features to consider when
looking for the best split. The possible values are ‘sqrt’ (square
root of the total number of features), ‘log2’ (log2 of the total
number of features) and None (all features). bootstrap: Whether
bootstrap samples are used when building trees. The possible
values are True and False. class_weight: Weights associated with
classes. The possible values are None (all classes have equal
weight), ‘balanced’ (weights are inversely proportional to class
frequencies) and ‘balanced_subsample’ (similar to ‘balanced’
but computed based on the bootstrap sample for every tree).
min_weight_fraction_leaf: The minimum weighted fraction of the
sum total of weights required to be at a leaf node. The possible
values are 0.0, 0.1 and 0.2. max_leaf_nodes: The maximum number
of leaf nodes in the tree. The possible values are None (unlimited
leaf nodes), 5, 10, 20 and 50. ccp_alpha: Complexity parameter
used for Minimal Cost-Complexity Pruning. The possible values
are 0.0, 0.1 and 0.2. The scikit-learn machine learning library
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(https://scikit-learn.org/) was used for the entire workflow during
the development of all predictive models. The following perfor-
mance measures were evaluated for this binary classification
problem:

Sensitivity (TPR) = TP/ (TP +FN) (1)
Accuracy (ACC) = TP+ TN/ (TP + FP + FN + TN) 2)
Precision (PPV) = TP/ (TP + FP) 3)

F1 score (F1) = 2TP/ (2TP + FP + FN) (4)
Specificity (TNR) = TN/ (FP + TN) (5)

k (kappa) = 2 % (TP« TN — FN % FP))/ (TP + FP) * (FP + TN) +
(TP +EN) « (EN+TN) (6)

MCC = (TP) (TN) — (FP) (FN) //(TP + FP) (TP + EN) (TN + FP) (TN + FN) (7)

with Matthew's correlation coefficient (MCC), true positive (TP),
false positive (FP), true negative (TN) and false negative (FN).
Along with these performance measures, the receiver operating
characteristic (ROC) curve was also evaluated at all stages of
predictive model assessment. The ROC curve compares two oper-
ating characteristics (TPR and FPR), where TPR is the sensitivity
mentioned earlier and FPR is the false positive rate defined as

FPR = FP/ (FP + TN) 8)

On the other hand, a web application named VirusHound-
I was developed using the Python 3.11 programming language
(https://www.python.org/). This web application scores the out-
puts with a probability ranging from 0 to 1. Figure 1 shows all the
workflow implemented in this study (Figure 1).

RESULTS

In this work, using a GAN-based strategy and starting from the
four molecular descriptors evaluated, synthetic data were gener-
ated to augment the positive dataset. The plots of the molecular
descriptor values for the synthetic data, when compared with the
real data, showed that both exhibit a high similarity in all cases
(Figure 2). Taking these results into account, datasets were created
for the subsequent training and testing phases. The synthetic data
was used to augment the positive datasets for VPE classification,
by using RF (Figure 1). The 10-fold cross-validation on the training
dataset showed that, in general, all evaluated descriptors allow
obtaining predictive models with good performance according to
the assessed metrics (Table 1 and Figure 3).

On the other hand, good performance measures were also
observed during the testing step, demonstrating the efficiency of
the models in generalizing over new data (Table 1 and Figure 3).
While all models presented excellent performance measures dur-
ing the mentioned stages, we highlight the predictive model based
on the DPC molecular descriptor because it showed the best
performance measures on the test dataset, indicating better gen-
eralization over new data (Table 1 and Figure 3H). In this regard,
this model was selected and incorporated into our web applica-
tion VirusHound-I for VPE predictions. Considering the limited
computational resources available to us to date, we limited the
analysis to only 100 virus sequences per query. However, this
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used to train and test predictive VPE models.
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Figure 2. Plots of real values corresponding to each evaluated molecular descriptor and false values generated with the GAN.

Table 1: Performance measures were obtained through 10-fold cross-validation on the training data, with the testing phase conducted

using RF

MD/P ACC F1 PPV TNR TPR k MCC AUC
AA/CVTr 0.942 0.939 0.966 0.970 0.914 0.885 0.886 0.986
AAC/Te 0.956 0.958 1.0Te 1.0Te 0.920 0.912 0.915 0.998
APAAC/CVTr  0.953T 0.951™ 0.985 0.987 0.918Tr 0.907™ 0.909™ 0.989™
APAAC/Te 0.947 0.95 1.0Te 1.0Te 0.904 0.894 0.899 0.995
DPC/CVTr 0.947 0.943 0.994™ 0.995T 0.896 0.894 0.898 0.989T
DPC/Te 0.964T 0.967T 1.0Te 1.0Te 0.936 0.929Te 0.931T 1.0Te
PAAC/CVTr 0.929 0.926 0.943 0.948 0.909 0.859 0.859 0.984
PAAC/Te 0.964T 0.967Te 0.983 0.980 0.952Te 0.929Te 0.929 0.995

The measures obtained from the 10-fold cross-validation represent the averaged values from each fold. MD/P: molecular descriptor/phase, CVTr: 10-fold
cross-validation phase on training data, Te: testing phase, AAC: amino acid composition, APAAC: amphiphilic pseudo amino acid composition, DPC: dipeptide

composition, PAAC: pseudo amino acid composition.

number will gradually increase in the future as much as pos-
sible. The VirusHound-I tool is freely available at https://www.
biochemintelli.com/VirusHound-I.

DISCUSSION

Throughout evolution, pathogenic viruses of humans and animals
have developed numerous strategies to camouflage themselves
from the immune system [12, 24]. One of these strategies is the

coding of proteins that evade the adaptive immune system, which
is crucial for the successful replication of these pathogens in host
cells [7, 25]. Therefore, identifying such viral proteins is crucial to
developing vaccines and therapeutic drugs that can help combat
these viruses.

In recent years, machine learning techniques have been key
in the development of bioinformatics tools for studying virus
proteins like the examples mentioned above [15-18], as well
as others for the discovery of peptides with antiviral activity
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Figure 3. ROC curve for each molecular descriptor evaluated in the training and testing stages. AA (A and E), APAAC (B and F), PAAC (C and G) and DPC

(D and H).

[26-34], which have experienced a recent explosion as a result
of the lessons learned from the COVID-19 pandemic crisis.
Discovering viral proteins that evade the immune system is a
challenging task through both in vivo and in vitro experimental
methods [35-37]. Firstly, in in vivo studies, which involve observing
the interaction between the virus and the immune system within
living organisms, numerous ethical and practical limitations arise.
The use of animal models or even humans for such research raises
ethical dilemmas concerning exposure to potentially harmful
viruses [38]. In addition, viruses can evolve rapidly, further com-
plicating the detection of proteins evading the immune system
in some scenarios [2, 5, 35-37, 39-41]. On the other hand, in vitro
studies conducted in controlled laboratory environments with
cell cultures also present significant challenges in discovering
these proteins. Viruses are inherently complex, and in vitro
systems often oversimplify viral interactions, which could lead
to inaccurate or incomplete results [42, 43]. Ultimately, in vitro
methods often require sophisticated and costly techniques,
limiting their applicability on a larger scale.

While it is true that there has been an increase in research in
the field of machine learning applied to the study of pathogenic
viruses in recent years, to date, there are no studies focused on
the prediction of VPEs. Within the field of deep learning, GANs
have been shown to be very useful in the development of bioin-
formatic predictive models [44]. For example, this type of neural
network has been used as a data augmentation technique in
the study of protein post-translational modifications [45], antivi-
ral peptides [28] and protein solubility [46], among other cases
reported in an excellent review by Wan et al. [44], showing excel-
lent results. The results of our study regarding data augmentation
using the proposed GAN (Figure 2) allowed us to obtain excellent
models with the four molecular descriptors evaluated (Figure 3
and Table 1), corroborating the robustness of this technique to
deal with few data. It is important to highlight that, although
in this study there were cases where the evaluated molecular
descriptors represented low (AAC=20 features, APAAC=50 fea-
tures, APAA=50 features) and high (DPC=400 features) dimen-
sionality, in all cases, good performance measures were obtained
using synthetic data generated with the GAN. In fact, our study

corresponds to what has been reported by Wan and Jones, who
demonstrated that through a GAN-based approach, this type of
neural network accurately learns the high-dimensional distri-
butions of biophysical features based on protein sequences, as
well as allowing the generation of high-quality synthetic pro-
tein feature samples that improve predictive model performance
measures [47].

All the molecular descriptors in general allowed the devel-
opment of predictive models of VPEs with good performance
(Table 1 and Figure 3). However, we determined that models based
on the molecular descriptors APAAC and DPC showed the best
performances in predicting VPEs according to the metrics calcu-
lated during cross-validation and the testing stage (Table 1 and
Figure 3). It is important to note that although both models per-
formed well, they do exhibit differences. The APAAC-based model
performed better in the training phase than the DPC-based model;
however, the latter showed better performance on the indepen-
dent test set. In this regard, we consider the DPC-based model
to be a better choice for predicting VPEs, taking into account its
better ability to generalize to new data. On the other hand, the
computational resources needed to carry out predictions based
on DPC are significantly lower than those required for APAAC.
The utility of the DPC molecular descriptor has been widely
demonstrated in many studies focused on the development of
predictive models. For example, it has been used for the prediction
of subcellular localization of eukaryotic proteins [48], antioxidant
proteins [49], multiple subcellular localization of viral proteins
[17], phage virion proteins [50], protein—protein interactions [51],
thermophilic proteins [52], druggable proteins [53] and antifreeze
proteins [54], among other studies. Consequently, considering the
excellent performance of this molecular descriptor in our work, as
well as the background of its successful use in the development
of models based on machine learning, the DPC-based model was
selected for the prediction of VPEs with the VirusHound-I tool.

Studying the proteins that allow viruses to evade the adaptive
immune system is key to understanding how these pathogens
infect host cells. Currently, there are some specific tools for
studying viruses; however, none of them allow the prediction of
VPEs. Therefore, we propose a machine learning-based tool called



VirusHound-I for VPE predictions. VirusHound-I is a powerful tool
based on a model developed with the DPC molecular descriptor,
which showed good performance during the training and testing
stages. The primary innovation of VirusHound-I is to expedite
the large-scale discovery of VPEs, which would otherwise be
unattainable using conventional in vitro and in vivo methods
without significant resource and time expenditure. This tool
can be employed as a preliminary step prior to laboratory

ex

periments to explore and reduce the number of VPE candidates.

We believe that VirusHound-I can be very useful in understanding
the molecular mechanisms by which pathogenic viruses evade
the adaptive immune response, as well as in discovering new
therapeutic targets.

Key Points

* Pathogenic viruses have evolved diverse strategies to
evade the adaptive immune system by encoding proteins
that manipulate host cell mechanisms.

¢ Existing bioinformatics tools for virus research do not
address the prediction of viral proteins that evade the
adaptive immune system.

e The study introduces VirusHound-I, a novel machine
learning-based tool using the Composition + Transition
+ Distribution molecular descriptor and generative
antagonistic networks for data augmentation.

e VirusHound-Idemonstrates high accuracy, precision and
specificity in predicting viral proteins evading the host’s
adaptive immune system, providing insights into the
molecular mechanisms of pathogenic virus evasion and
facilitating the discovery of potential therapeutic targets.
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