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Background:  Consistent with postmortem findings in 
patients, most animal models for schizophrenia (SCZ) 
present abnormal levels of parvalbumin (PV), a marker 
of fast-spiking GABAergic interneurons, in the pre-
frontal cortex (PFC) and hippocampus (HIP). However, 
there are discrepancies in the literature. PV reductions 
lead to a functional loss of PV interneurons, which is 
proposed to underly SCZ symptoms. Given its complex 
etiology, different categories of animal models have been 
developed to study SCZ, which may distinctly impact 
PV levels in rodent brain areas.  Study Design:  We per-
formed a quantitative meta-analysis on PV-positive cell 
number/density and expression levels in the PFC and 
HIP of animal models for SCZ based on pharmacolog-
ical, neurodevelopmental, and genetic manipulations.  
Results:  Our results confirmed that PV levels are sig-
nificantly reduced in the PFC and HIP regardless of the 
animal model. By categorizing into subgroups, we found 
that all pharmacological models based on NMDA re-
ceptor antagonism decreased PV-positive cell number/
density or PV expression levels in both brain areas exam-
ined. In neurodevelopmental models, abnormal PV levels 
were confirmed in both brain areas in maternal immune 
activation models and HIP of the methylazoxymethanol 
acetate model. In genetic models, negative effects were 
found in neuregulin 1 and ERBB4 mutant mice in both 
brain regions and the PFC of dysbindin mutant mice. 
Regarding sex differences, male rodents exhibited PV 
reductions in both brain regions only in pharmacolog-
ical models, while few studies have been conducted in fe-
males.  Conclusion:  Overall, our findings support deficits 
in prefrontal and hippocampal PV interneurons in animal 
models for SCZ. 
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Introduction

Preclinical and clinical studies have indicated that changes 
in fast-spiking GABAergic interneurons containing the 
calcium-binding protein parvalbumin (PV) are common 
in schizophrenia (SCZ).1,2 Reductions in the number 
and density of PV interneurons in the prefrontal cortex 
(PFC) and hippocampus (HIP) have been found in the 
postmortem brain of SCZ individuals.3–8 Similar changes 
have been reported in animal models for SCZ.9

PV interneurons are critical for the rhythmic ac-
tivity of the PFC and HIP, given their essential role in 
maintaining a local excitatory-inhibitory (E/I) balance by 
synchronizing the firing state of pyramidal glutamatergic 
neurons.10–13 Dysregulation in the E/I balance is proposed 
to underline the main SCZ symptoms, including posi-
tive, negative, and cognitive. Abnormal PV interneuron 
function in the PFC has been associated with cognitive 
impairments and negative symptoms.14–16 In addition, the 
striatal hyperdopaminergic state, which has long been im-
plicated in psychotic symptoms, could result from a func-
tional loss of hippocampal PV interneurons.14,17,18

Animal models are valuable tools to test new drug tar-
gets and investigate the neurobiological basis of SCZ by 
mimicking genetic and environmental risk factors for the 
disorder.19–21 The main SCZ models currently employed in-
volve pharmacological interventions to mimic the striatal 
hyperdopaminergic state (using drugs such as ampheta-
mine) or hypofunction of glutamate NMDA receptors 
(using NMDA receptor antagonists, such as ketamine, 
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phencyclidine, or MK-801), neurodevelopmental disrup-
tion to mimic the exposure to environmental factors con-
tributing to SCZ during the prenatal and early postnatal 
period, and alterations in single risk genes implicated in 
the disease. Prefrontal and hippocampal PV changes have 
been described in most of these models. However, despite 
the numerous studies investigating these changes, they 
have yet to be systematically reviewed. Furthermore, the 
impact of these models on PV changes and their mag-
nitude of effect according to brain regions (PFC and/
or HIP) remain to be quantitatively explored. Here, we 
broadly categorized animal models used in SCZ research 
into pharmacological, neurodevelopmental, and genetic 
models. Next, we systematically reviewed and performed 
a meta-analysis of studies investigating PV changes 
through immunohistochemistry/immunofluorescence 
and/or western blot (WB) methods. Whenever possible, 
we presented a detailed subanalysis comparing the timing 
of drug intervention in pharmacological models, the age 
at which PV was evaluated, species (rats vs mice) and sex.

Methods

This review followed the preferred reporting items for 
systematic reviews and meta-analyses.22 All analytic de-
cisions were taken beforehand to reduce the risk of 
bias in our analysis. Protocol was preregistered at the 
PROSPERO platform (CRD42020214421, Available 
from: https://www.crd.york.ac.uk/prospero/display_
record.php?ID=CRD42020214421).

Search Strategy

Articles were searched in relevant web databases 
(PubMed, Scopus, and Web of Science) that were arbi-
trarily chosen considering their extensive collection of 
international publishers in basic biomedicine. The de-
scriptors (search terms) included the following combin-
ations: (Parvalbumin AND [schizop * OR psychosis]). 
The included references were analyzed using the Rayyan 
application to assist in the initial screening.23 Articles pub-
lished until April 21, 2020, were used as inclusion criteria.

Study Selection

Two independent reviewers applied eligibility criteria; 
a third reviewer solved discrepancies. The first phase 
of study selection was a prescreening based on the title 
and abstract, followed by the appraisal of the full text. 
The review included only original articles published 
in English that evaluated the expression levels of PV 
protein by WB and/or total PV-positive cells number 
and/or density (PV-positive cells per mm2 or mm3) by 
immunohistochemistry/immunofluorescence in the 
PFC and HIP, following 3 categories of SCZ animal 
models: (1) pharmacological models based on the ad-
ministration of NMDA receptor antagonists—MK-801, 

ketamine, phencyclidine (PCP); (2) neurodevelopmental 
models—methylazoxymethanol (MAM), maternal im-
mune activation (using poly I:C or lipopolysaccharide 
[LPS)]); neonatal stress, social isolation, adolescent 
stress, neonatal lesion (ventral HIP neonatal lesion); (3) 
genetic models included animals with single mutations 
in disrupted-in-schizophrenia-1 (DISC1), dystrobrevin-
binding protein 1 (DTNBP1), neuregulin (NGR1) and 
ErbB4, and NMDA receptor subunits genes. Although 
there are other genetic models related to SCZ (22q11.2 
deletion, reelin, and Gclm knockout), they were not in-
cluded given the few numbers or even lack of studies 
evaluating PV in the selected brain regions.

Articles that reported data from the medial PFC or its 
prelimbic portion (analogous to the Brodmann Area 32 
in humans) and the dorsal HIP (analogous to the poste-
rior HIP in humans) or its CA3 subregion were included. 
Since few studies have evaluated other medial PFC (such 
as its infralimbic portion), dorsal HIP subregions (such 
as the dentate gyrus and CA1), and the ventral HIP, they 
were not included. Exclusion criteria included: editor-
ials, comments and letters, abstracts, book and magazine 
chapters, dissertations and thesis, articles written in lan-
guages other than English, systematic and meta-analysis 
reviews, case studies, clinical studies, human postmortem 
studies, studies in vitro, and electrophysiological studies 
without evaluation of expression or the number of PV 
interneurons. Full texts without appropriate control 
groups, outcome measures of PV levels, brain regions/
subregions, intervention, or exposure protocol without 
dose or time of administration/evaluation were excluded. 
In the absence or inability to extract data for meta-analysis 
(eg, group size, mean, standard deviation, standard error 
of mean, or nonparametric test), the study was excluded 
during the second phase of data extraction.

Data Extraction

Two independent reviewers extracted data from text, 
table, or graphs (using a digital screen ruler or contacting 
authors), and a third reviewer resolved the discrepancies. 
Agreement between reviewers was assessed by using the 
“comparing columns” tool of Excel (qualitative data). 
For a qualitative summary of included studies, biblio-
graphic information, population, intervention, compar-
ison, and the qualitative and quantitative aspects of the 
outcomes were extracted. Qualitative data were extracted 
from each study to describe animal model characteristics 
(species, strain, sex, phenotype induced by an interven-
tion or exposure, or a transgenic construct), intervention 
characteristics (type of intervention or exposure, type of 
transgenic construct, lifetime period of intervention, life-
time period of evaluation, technical procedures, anatomic 
region (PFC, dorsal and ventral HIP), control character-
istics (type of control, technical procedures), outcome 
characteristics (type of PV immunoassay/molecular 
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biology assay, behavioral tests, scale of measure, timing of 
measure), and risk of bias assessment (RoB Syrcle tool24). 
Quantitative data (mean, standard error, or standard de-
viation of the mean, sample size per group, and number 
of comparisons among groups) was extracted to describe 
characteristics of the study design, the estimate of effect 
sizes, and meta-analysis.

Meta-analyses

Random effects model meta-analysis was used to calculate 
the combined effect size (CES, Hedges’ g), publication bias, 
and proportion of heterogeneity (I2) with relevant data ex-
tracted from the included studies (mean, standard devia-
tion, and sample sizes). When studies failed to report the 
precise sample sizes, the mean of the sample size reported 
in the calculations was used. Magnitudes of CES were in-
terpreted according to the following arbitrary definitions 
following previous studies: “very small” (0.01–0.2), “small” 
(0.2–0.5), “medium” (0.5–0.8), “large” (0.8–1.2), “very 
large” (1.2–2), and “huge” (≥2).25 CES was considered 
“statistically significant” when a 95% confidence interval 
spares the null effect and “inconclusive” when a 95% con-
fidence interval overlaps the null.26 The potential publica-
tion bias was estimated by Funnel plot and Trim-and-Fill. 
The proportion of heterogeneity (I2) was interpreted as the 
following arbitrary criteria: “very low” (0%–25%), “low” 
(25%–50%), “moderate” (50%–75%), and “high” (≥75%).27 
A pairwise meta-analysis (control versus animal model) 
was made per type of animal model (pharmacological, 
neurodevelopmental, or genetic models) per brain region 
(PFC or HIP). Data from the included studies were also 
stratified to subgroups meta-analysis based on: (1) subtype 
of intervention, (2) age of intervention, (3) age of PV eval-
uation, (4) species, and (5) sex.

Results

Characteristics of the Studies Included in the 
Meta-analysis

The bibliographic searches returned a total of 2256 ref-
erences. No additional articles were included. Duplicate 
results among databases resulted in the exclusion of 1112 
studies. The eligibility criteria excluded 1021 articles, in-
cluding 90 references for the full-screening phase (figure 
1). After screening, 90 articles were considered eligible for 
the meta-analysis (figure 1; also see reference list in the 
Supplementary material for details).

Most articles evaluated PV changes (eg, considering 
all methods together) in pharmacological (k = 39) and 
neurodevelopmental models (k = 35), whereas 15 studies 
were performed in genetic models (Supplementary table 
1). In addition, 1 article employed both pharmacological 
and neurodevelopmental models independently. Among 
the pharmacological models, 18 and 10 studies explored, 
respectively, PFC and HIP, while 12 of them evaluated 

both brain areas (Supplementary table 1.1). In models 
based on neurodevelopmental disruption, 6 studies evalu-
ated PV changes in the HIP, 14 investigated the PFC, and 
15 assessed both brain areas (Supplementary table 1.2). 
Considering the genetic models, 7 and 6 studies included 
prefrontal and hippocampal analyses, respectively, and 2 
explored both regions (Supplementary table 1.3). Most 
studies reported reductions in PV-positive cell number 
and/or PV expression levels. However, 5 studies reported 
increased PV levels, in which 2 applied pharmacological 
manipulation. Chronic ketamine treatment during adult-
hood enhanced PV-positive cell numbers in the HIP,28 
and neonatal ketamine treatment increased PV protein 
levels in the PFC.29 Other 2 studies described that ma-
ternal immune activation with LPS augmented prefrontal 
and hippocampal PV density.30,31 Transgenic mice with 
DISC1-L100P point mutation had enhanced hippocampal 
PV-positive cell number.32 Notably, 22 studies reported no 
changes in PV levels, which were distributed among phar-
macological (8), neurodevelopmental (9), and genetic (5) 
models. The most employed methodological approach 
was immunohistochemistry or immunofluorescence (75). 
Forty-one studies measured total PV-positive cell number 
and 34 PV density. WB was used in 12 of the included 
studies, and only 4 employed both methods to quantify 
PV interneurons.

PV Changes in Animal Models to Study SCZ

Considering all studies included in the review (eg, all 
methods together), the CES for PV was negative, large, 
and significant in the PFC and HIP (figures 2A and 
B, Supplementary table 2). Similar findings were ob-
served after stratifying the studies into pharmacolog-
ical, neurodevelopmental, and genetic models (figures 
2C and D). Still, the magnitude of  effect size varied 
among models and brain areas from medium to very 
large (figures 2C and D). The I2 test revealed a moderate 
proportion of  heterogeneity, suggesting the presence of 
subgroups across each animal model category. On the 
other hand, the proportion of  heterogeneity was con-
sidered low in hippocampal analyses performed in ani-
mals from neurodevelopmental models (Supplementary 
table 2). Therefore, we investigated PV changes in phar-
macological (table 1), neurodevelopmental (table 2), and 
genetic models (table 3) stratified in subgroups whenever 
possible by comparing the model employed, age of  drug 
intervention (neonatal, prepubertal, adolescence, and 
adulthood), period of  PV evaluation, species, and sex.

Prefrontal and Hippocampal PV Changes Stratified 
into Subgroups of Studies

Pharmacological Models. The CES estimated in the studies 
using pharmacological models were negative and signifi-
cant in both brain regions for most subgroups, including 
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“all models” (table 1). In the HIP, except for the inconclu-
sive estimates of CES in the “all ages of drug exposition,” 
“all ages of PV evaluation,” and “both species” subgroups, 
the CES were negative and significant. A similar pattern of 
results was observed in the PFC, except for the inconclusive 
estimate of CES in the “all sexes” subgroup.

In the conclusive estimates of the CES, the magnitude 
varied across types of models and brain regions. CES in 
the “MK-801” subgroup was defined as huge in the PFC 
and medium in the HIP, while “Ketamine” and “PCP” sub-
groups were classified as large and very large, respectively, 
in both brain areas. By comparing the time of drug ad-
ministration subgroups, we found that CES was negative 

and significant in most evaluated periods and brain re-
gions, except for analysis in the HIP of the “Adolescence” 
subgroup. In addition, CES was considered very large 
in the PFC of all-time drug intervention subgroups. A 
very large CES was identified in animals exposed to phar-
macological models during adulthood in the HIP. CES 
was considered large and small in the “Neonatal” and 
“Prepubertal” subgroups, respectively. Regarding the 
time of PV evaluation, all CES were negative and signif-
icant, except for the “Adolescence” subgroup in the HIP. 
In the “Adolescence” subgroup, our analysis revealed a 
huge CES in the PFC, which was very large in both brain 
regions of “Adulthood” subgroups.

Fig. 1. PRISMA flowchart showing the inclusion of studies for the meta-analysis.
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Fig. 2. Forest plots of PV interneuron changes in animal models to study SCZ. Meta-analysis of studies measuring PV interneurons cell 
number, density, and protein expression levels in the (A) PFC and (B) HIP. (C and D) Meta-analysis of selected studies stratified into 3 
categories (pharmacological, neurodevelopmental, and genetic models) according to brain areas.
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Across rodent species, the CES of the “Mice” and 
“Rats” subgroups were significant in the PFC, while only 
the CES of the “Rats” subgroup was significant in the 
HIP. When we stratified the subgroups according to sex, 
the CES of studies using “Male” or “Female” were neg-
ative and significant in the PFC and HIP, suggesting that 
pharmacological models impact PV levels in both sexes. 
Specifically, we found that “Female” subgroups exhibit 
huge and very large CES in the PFC and HIP, respec-
tively, while in “Male” subgroups, it was very large and 
large. In addition, the CES of studies that evaluated pre-
frontal PV changes considering the “Male and Female” 
subgroup were inconclusive in the PFC and unavailable 
in the HIP studies.

Neurodevelopmental Models . The CES estimated in the 
neurodevelopmental model studies was negative and sig-
nificant in both brain regions for most subgroups (table 2, 
Supplementary table 2). Although large and negative, the 
CES in the subgroups “all models,” “both species,” and “all 
sexes” were inconclusive in both brain regions (table 2). The 
CES in the subgroup “all ages of PV evaluation” was large, 
significant in the HIP, and inconclusive in the PFC.

Among the significant estimates, a large CES was found 
in the “Neonatal Stress” and “Poly I:C” subgroups in the 
PFC. In the HIP, CES was significant for “MAM,” “Poly 
I:C,” and “LPS” subgroups, and their magnitude varied 

from medium to very large. These findings confirmed 
PV changes after environmental insults were applied 
in perinatal and neonatal periods. Due to the exclusion 
criteria, data from studies regarding “Neonatal Stress,” 
“Adolescent Stress,” and “Neonatal lesion” subgroups in 
the HIP were not included in the meta-analysis.

By stratifying data according to the time of PV evalua-
tion, subgroups showed that the CES of the “Adulthood” 
subgroup was negative and significant in the PFC and 
HIP, in which both magnitudes of effect size were large. 
Heterogeneity was moderate in the PFC and very low 
in the HIP. Moreover, CES was not significant for the 
“Prepubertal” and “Adolescence” subgroups in the PFC 
and unavailable for the HIP.

Considering findings stratified by species, CES was sig-
nificantly negative for the “Mice” and “Rats” subgroups 
in the PFC, with a medium effect size for both. In con-
trast, significant CES was observed only in the “Rats” 
subgroup of HIP analysis. Our analysis of PV changes 
according to sex showed that CES in all sex subgroups 
was considered negative and significant, except for the 
“female” subgroup in the HIP. The magnitude of effect 
size was diverse from medium to large.

Genetic Models . The CES estimated in the studies 
using genetic models were negative, varying in magni-
tude and significance from subgroup to subgroup (table 

Table 1. CES (Hedges’ g) of PV Changes in Pharmacological SCZ Models Stratified into Subgroups of Studies

PFC HIP

CES
95% 
CLL

95% 
CLU

N analysis/
samples I² P-value CES

95% 
CLL

95% 
CLU

N analysis/
samples I² P-value

All models −1.61 −3.04 −0.18 40/577 71.5% 0.15 −1.05 −1.47 −0.62 24/352 69.2% 0.43
  MK-801 −2.02 −2.74 −1.29 16 71.9% −0.69 −1.02 −0.37 10 0.0%
  Ketamine −1.28 −1.88 −0.69 16 71.2% −1.15 −2.18 −0.11 7 85.6%
  PCP −1.28 −1.98 −0.59 8 65.0% −1.43 −2.25 −0.62 7 70.5%
All ages of 
drug exposition

−1.50 −3.53 0.52 40/577 71.7% 0.22 −0.61 −1.80 0.59 24/352 69.2% 0.11

  Prenatal −1.67 −2.93 −0.42 3 76.1% NA NA NA NA NA
  Neonatal −1.80 −2.50 −1.10 19 74.8% −0.88 −1.24 −0.52 9 2.4%
Prepubertal NA NA NA NA NA −0.46 −0.73 −0.18 2 0.0%
  Adolescence −1.29 −2.16 −0.43 7 70.4% 0.22 −0.17 0.60 2 0.0%
  Adulthood −1.62 −2.26 −0.99 11 70.1% −1.57 −2.35 −0.80 11 78.8%
All ages of PV 
evaluation

−1.59 −3.62 0.43 39/565 72.2% 0.19 −0.93 −3.01 1.14 23/340 67.8% 0.35

  Adolescence −2.26 −3.81 −0.71 7 83.7% −0.72 −1.50 0.05 3 21.3%
  Adulthood −1.44 −1.84 −1.05 32 68.0% −1.02 −1.49 −0.54 20 71.1%
Both species −1.53 −3.55 0.44 40/577 71.1% 0.11 −0.95 −2.41 0.51 24/352 69.2% 0.32
  Mice −1.24 −1.87 −0.61 14 69.1% −0.66 −1.34 0.03 8 57.6%
  Rats −1.74 −2.24 −1.23 26 72.1% −1.18 −1.70 −0.66 16 72.3%
All sexes −1.50 −2.93 −0.07 40/577 71.1% 0.28 −1.24 −3.30 0.83 24/352 69.2% 0.32
  Male −1.45 −1.83 −1.07 35 67.1% −1.00 −1.46 −0.54 22 70.5%
  Female −3.66 −6.69 −0.63 3 89.6% −1.57 −2.25 −0.89 2 0.0%
  Male and fe-

male
−1.30 −2.76 0.17 2 0.0% NA NA NA NA NA

CES = combined effect size; 95% CLL = 95% confidence interval lower limit; 95% CLU = 95% confidence interval upper limit; 
N = number; NA = not available.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbad123#supplementary-data
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3, Supplementary table 2). Effect size magnitudes were 
very large and medium in the PFC and HIP, respectively. 
Indeed, most of the CES estimates were inconclusive, ex-
cept for the subgroups “neuregulin/ErBb4” in both re-
gions, “adulthood” and “males” in the PFC, “dysbindin” 
and “neuregulin/ErBb4” in the HIP (table 3). CES in the 
“NGR1/ErBb4” subgroup was negative and significant in 
both brain areas. Moreover, CES for the “dysbindin” sub-
group was significant and very large in the HIP. Regarding 
the age of PV evaluation, only CES of the “Adulthood” 
subgroup in the PFC was considered significant, along 
with a negative and large effect size. In addition, our anal-
ysis revealed that CES in the “Male” subgroup was the 
only significant in the PFC, which was considered large. 
Notably, no included genetic studies assessed PV changes 
in “Female” subgroups in the PFC or HIP.

Publication Bias and Methodological Quality of the 
Studies

Estimating potential publication bias, funnel plot and 
Trim-and-Fill proposed 2 studies missing to adjust 
CES of analyses conducted for the PFC, with a modest 
change to a value of −1.00 (−1.26, −0.74), but still neg-
ative and without changing the large CES and moderate 

heterogeneity (Supplementary figure 1A). Our anal-
ysis also revealed no studies missing to adjust the CES 
of analyses that evaluated hippocampal PV changes 
(Supplementary figure 1B).

The methodological quality of the selected studies was 
assessed using the RoB Syrcle tool, which evaluates the 
risk of bias concerning sequence generation, similar base-
line characteristics of the groups, allocation selection, an-
imal randomization, blinding of the researchers during 
the experiment and data analysis, randomization of data 
analysis, incomplete outcome data, selective outcome re-
porting, and other sources of bias. No study presented 
a high risk of bias for all the parameters. However, ex-
cept for baseline characteristics, the risk of bias is unclear 
due to the absence of detailed information in the articles 
(Supplementary figure 2).

Discussion

Distinct animal models have been developed in the last 
decades based on neurochemical, genetic, and environ-
mental perturbations associated with SCZ etiology. These 
models attempt to uncover neurobiological aspects of 
this disorder, such as new insights into cell types affected 

Table 2. CES (Hedges’ g) of PV Changes in Neurodevelopmental SCZ Models Stratified into Subgroups of Studies

PFC HIP

CES
95% 
CLL

95% 
CLU

N analysis/
samples I² P-value CES

95% 
CLL

95% 
CLU

N analysis/
samples I² P-value

All models −0.60 −1.42 0.22 51/709 63.5% 0.13 −0.86 −2.08 0.36 19/275 30.7% 0.17
  MAM −0.70 −1.47 0.07  9 63.2% −1.52 −2.06 −0.97 3 0.0%
  Poly I:C −0.74 −1.05 −0.44 11 0.0% −0.50 −0.81 −0.10 7 0.0%
  LPS −0.94 −2.01 0.13 7 78.3% −1.13 −1.94 −0.32 3 44.3%
  Neonatal 

stress
−0.86 −1.60 −0.11 7 63.2% NA NA NA NA NA

  Social iso-
lation

−0.94 −2.40 0.51 4 72.0% −0.48 −0.98 0.02 4 0.0%

  Adolescent 
stress

−0.05 −0.50 0.40 10 52.6% NA NA NA 1 NA

  Neonatal 
lesion

−0.82 −2.99 1.35 3 88.7% NA NA NA 1 NA

All ages of 
PV evaluation

−0.60 −2.02 0.82 50/696 64.1% 0.11 −0.69 −0.95 −0.43 17/246 9.0% 0.45

  Prepubertal −0.43 −1.11 0.25 3 10.9% NA NA NA NA NA
  Adoles-

cence
−0.45 −0.98 0.09 14 70.58% NA NA NA NA NA

  Adulthood −0.72 −1.09 −0.36 32 64.2% −0.69 −0.95 −0.43 17 9.0%
Both species −0.63 −2.64 1.38 51/709 63.5% 0.11 −0.64 −2.74 1.46 19/275 37.3% 0.32
  Mice −0.66 −1.10 −0.22 19 52.5% −0.38 −0.82 0.07 7 18.9%
  Rats −0.61 −0.97 −0.26 32 67.4% −0.88 −1.26 −0.50 12 38.3%
All sexes −0.63 −2.05 0.79 51/709 63.5% 0.13 −0.58 −2.06 0.91 19/275 37.3% 0.55
  Male −0.60 −0.96 −0.24 34 66.9% −0.80 −1.20 −0.39 11 42.7%
  Female −0.75 −1.42 −0.07 9 69.9% −0.84 −1.93 0.26 4 67.6%
  Male and 

female
−0.60 −1.18 −0.02 8 45.9% −0.35 −0.68 −0.03 4 0.0%

CES = combined effect size; 95% CLL = 95% confidence interval lower limit; 95% CLU = 95% confidence interval upper limit; 
N = number; NA = not available.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbad123#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbad123#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbad123#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbad123#supplementary-data
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in these models, treatment, and prevention.33 PV inter-
neurons have received great attention since their expres-
sion and associated functions are impaired in the PFC 
and HIP of patients with SCZ and individuals at high 
risk for psychosis.34–36 Here, we meta-analyzed data from 
the most common animal models for SCZ based on phar-
macological, neurodevelopmental, and genetic manipu-
lations and confirmed a significant PV reduction in the 
PFC and HIP across these models, even though the effect 
size varies among them. We observed experimental vari-
ables in which PV abnormalities were more evident, such 
as the age of animal model intervention and the period of 
PV evaluation. In addition, comparing the PFC and HIP 
without differing animal models into categories, the de-
crease in the number of PV-positive cells and/or PV pro-
tein levels in these brain regions presented similar effect 
size magnitudes.

PV interneurons are the most abundant inhibitory 
neurons in the PFC, constituting around 40% of cortical 
interneurons.37 In the HIP, they comprise 20% of inhibi-
tory neurons, somewhat more concentrated in CA1 and 
CA3 than other hippocampal subregions.38 Despite some 
methodological challenges in interpreting the findings,39 
decreases in the density and number of PV-positive cells 
have been found in prefrontal regions3–5 and HIP6–8 in 
postmortem samples from SCZ individuals. PV mRNA 
levels are also lower in the PFC of SCZ patients.40,41 
Despite evidence indicating that changes in cortical PV 
mRNA levels in SCZ are not due to fewer neurons,41 a 
large transcriptomic study on bulk-postmortem tissue in 
SCZ showed reduced PV cell numbers instead of changes 
in mRNA levels.42 Notably, a recent meta-analysis study 

confirmed prefrontal PV reductions at protein levels, but 
not in mRNA levels, in patients with SCZ.5 Therefore, we 
only analyzed studies investigating PV reductions in an-
imal models of SCZ that employed methods to evaluate 
protein level changes, including immunohistochemistry/
immunofluorescence and WB.

Animal Models Based on NMDA Receptor Antagonism

Animal models based on pharmacological manipulation 
using NMDA receptor antagonists, such as MK-801, ke-
tamine, and PCP, have received considerable interest in 
preclinical studies to mimic glutamatergic dysfunction, 
a primary pathophysiological change seen in SCZ.43,44 
NMDA receptors control the intrinsic excitability of PV 
interneurons, and their antagonism reduces the firing of 
these interneurons, which drives pyramidal neuron disin-
hibition, and, consequently, greater hyperactivity of cor-
tical and hippocampal areas.45,46 This observation has led 
to the idea that functional loss of PV interneurons results 
from NMDA receptor hypofunction in these cells.

In humans, the administration of ketamine and PCP 
induces changes related to psychotic, negative, and cog-
nitive symptoms.47,48 Behavioral impairments associated 
with these symptoms are also observed after adminis-
tering NMDA receptor antagonists to rodents.49–51 Our 
meta-analysis revealed that NMDA receptor antagon-
ists negatively impacted PV levels in the PFC and HIP, 
with MK-801 having the highest effect size in the PFC. 
This could be related to the greater inhibitory potency on 
NMDA receptors of MK-801 (IC50 4.1 ± 1.6 nM) com-
pared to ketamine and PCP (IC50 508.5 ± 30.1 nM and 

Table 3. CES (Hedges’ g) of PV Changes in Genetic SCZ Models Stratified into Subgroups of Studies

PFC HIP

CES
95% 
CLL

95% 
CLU

N analysis/
samples I² P-value CES

95% 
CLL

95% 
CLU

N analysis/
samples I² P-value

All models −1.10 −2.37 0.17 12/111 66.9% 0.30 −0.90 −2.48 0.68 11/186 71.7% 0.35
  DISC1 −0.77 −2.18 0.64 4 74.0% −0.42 −1.78 0.94 5 79.0%
  Dysbindin −0.53 −2.11 1.06 4 75.1% −1.61 −2.84 −0.38 2 83.7%
  Neuregulin/

ErBb4
−1.88 −2.22 −1.54 2 0.00% −0.80 −1.51 −0.10 4 21.4%

  NMDAr −0.47 −2.02 1.09 2 59.0% NA NA NA NA NA
All ages of PV 
evaluation

−0.79 −2.99 1.41 12/111 66.9% 0.37 −0.77 −3.03 1.49 10/162 73.5% 0.34

  Adoles-
cence

−0.41 −1.72 0.90 3 71.6% −0.76 −2.21 0.70 2 58.6%

  Adulthood −0.96 −1.84 −0.08 9 67.6% −0.78 −1.68 0.13 8 77.3%
All sexes −0.38 −2.58 1.82 12/111 66.9% 0.15 −0.77 −3.03 1.49 10/162 73.5% 0.35
  Male −1.04 −1.84 −0.24 10 66.1% −0.75 −1.68 0.13 8 77.3%
  Female NA NA NA NA NA −0.42 −1.78 0.94 2 58.6%
  Male and 

female
0.19 −0.22 0.60 2 0.00% NA NA NA 1 NA

CES = combined effect size; 95% CLL = 95% confidence interval lower limit; 95% CLU = 95% confidence interval upper limit; 
N = number; NA = not available.
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IC50 91 ± 1.3 nM, respectively).52 Although pharmaco-
logical animal models were primarily proposed as tools 
to mimic SCZ symptoms rather than uncover its patho-
physiology,21 our findings indicate that NMDA receptor 
antagonism could also affect PV interneurons at the mo-
lecular level.

It has been postulated that blockage of NMDA re-
ceptors on PV interneurons diminishes GABAergic in-
hibition, stimulating glutamatergic release, which can 
lead to glutamate neurotoxicity.53 In addition, NMDA 
receptor-mediated neurotransmission is critical for sev-
eral neurodevelopmental processes. During the neonatal 
period, the limbic system is highly vulnerable and sensi-
tive to the NMDA receptor antagonism,54,55 potentially 
affecting brain maturation and leading to functional 
and behavioral features relevant to SCZ. Also, the devel-
opmental trajectory of PV interneurons is an extended 
process. PV expression begins late in development (after 
postnatal day 7 in rodents and between 3 and 6 months 
in humans) and is completed around late adolescence 
and early adulthood.56,57 Interestingly, this expression 
occurs later than other calcium-binding proteins, such 
as calbidin and calretinin.58 We evaluated if  the timing 
of NMDA receptor antagonism (neonatal, prepubertal, 
adolescence, or adulthood) would differently impact PV 
levels. Most studies in our meta-analyses exposed ani-
mals to NMDA receptor antagonists during the neonatal 
period and adulthood. Despite the late development of 
the PFC and that PV interneurons continue to mature 
through adolescence in both PFC and HIP,56,59 only a few 
studies investigated the effects of administering NMDA 
receptor antagonists during this period. Our analyses 
indicated a significant PV reduction in the PFC inde-
pendent of the age of administration, suggesting that 
NMDA receptor antagonism during periods in which 
PV interneurons have not reached their mature state did 
not lead to greater PV reductions. For the HIP, data from 
models based on NMDA receptor antagonism were in-
conclusive, indicating the need for further studies.

Animal Models Based on Neurodevelopmental 
Disruption

Early exposure, particularly during pregnancy and the 
perinatal period, to adverse socioenvironmental fac-
tors such as viral infections, maternal stress, maternal 
malnutrition, obstetric complications, and birth in-
juries are proposed to favor SCZ development later in 
life.60 Based on these findings, animal models based on 
neurodevelopmental disruption to study SCZ have been 
employing environmental or drug manipulations during 
pregnancy or the perinatal periods.61 Among these models, 
the MAM model has provided a translational framework 
considering its face, predictive, and construct validity.62,63 
At the molecular level, administration of MAM to preg-
nant rats at gestational day 17 leads to abnormal DNA 

methylation, affecting neuroblast proliferation in the 
offspring.62 Several studies with the MAM model have 
shown molecular and functional changes associated with 
impairments in prefrontal and hippocampal PV inter-
neurons.18,31,64–66 Our meta-analysis results regarding the 
MAM model confirmed abnormal PV levels in HIP and 
were inconclusive for PFC.

Infectious diseases affecting pregnant mothers in the 
second to the third trimester of fetal life increased the 
risk of SCZ emergence in the offspring.67 In preclinical 
studies, an experimental approach based on MIA models 
involves the administration of poly I:C, a synthetic 
double-stranded RNA analog that mimics viral infec-
tions, and LPS, a major component of the outer mem-
brane of gram-negative bacteria, to pregnant rats.67,68 We 
observed a significantly negative effect on prefrontal and 
hippocampal PV levels in the poly I:C model, whereas the 
LPS model negatively affects PV levels only in the HIP.

Lesioning the ventral HIP during the neonatal period 
has also been proposed to model neurodevelopmental 
disruptions related to SCZ.69 A critical feature of this 
model is the narrow time window for the emergence of 
SCZ-like symptoms, as observed in patients.69 In addi-
tion, lesioned rats show disruption in connections be-
tween PFC and HIP during adolescence, which is critical 
for brain function maturation.70 Although our meta-
analysis was inconclusive for PV changes in the PFC of 
lesioned rats, maturation of prefrontal interneurons in re-
sponse to dopamine is disrupted in those animals, along 
with prefrontal glutamatergic hyperactivity.71,72

Other neurodevelopmental models include exposure 
to stressors during early life, such as maternal separa-
tion during the neonatal period and social isolation after 
weaning.73–76 Insults during developmental periods can 
shape circuits’ maturation, resulting in hyperresponsivity 
to stress and behavioral changes.77,78 Indeed, children and 
adolescents at risk of developing SCZ may be unable to 
adapt to stress, and those who show greater stress sensi-
tivity and increased anxiety tend to be the ones that develop 
frank SCZ later in life.79 Stress during critical develop-
mental periods, such as childhood and adolescence, is pro-
posed to have a deleterious impact on PV interneurons.80 
In addition to the prolonged developmental trajectory 
of PV interneurons,56–59 until early adulthood these inter-
neurons are not entirely surrounded by the perineuronal 
nets (PNNs), a glycosaminoglycan matrix sheath that 
protect them from metabolic and oxidative damage.81 
Therefore, it is proposed that exposure to perturbations 
during sensitive periods, in which PV interneurons are not 
fully mature and protected by PNNs, may be sufficient to 
induce abnormalities in PV levels and behavioral and cir-
cuit deficits related to SCZ.80 Our meta-analysis uncovered 
a significant negative effect on cortical PV levels of ani-
mals exposed to neonatal stress (modeled by the maternal 
separation procedure). In contrast, it was inconclusive in 
social isolation and adolescent stress models, mainly due 
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to the small number of studies. Only a few selected studies 
have analyzed PV changes in the PFC and HIP of animals 
exposed to stress in critical developmental periods, sup-
porting the need for future studies to uncover the impact 
of stress during peripubertal and adolescent periods on PV 
abnormalities as a risk factor for SCZ.

Animal Models Based on Genetic Alterations

There is compelling evidence that SCZ is a highly polyge-
netic disorder with a complex array of risk loci.82 Genetic 
mutations are an important risk factor for SCZ, in which 
the risk is around 9% for first-degree relatives, 13% for 1 
parent affected, and 50% for both parents affected or iden-
tical twins.83 Despite the polygenic nature of SCZ, most 
animal models based on genetic changes focus on deletions 
of single genes. Here, we restrict our analyses to the models 
based on the deletion of DISC1, DTNBP1, NGR1, or 
ErbB4, and mutations in NMDA receptor subunits.

Although cortical and hippocampal alterations in PV 
interneurons have been observed in DISC1 models,84–86 
our meta-analysis revealed inconclusive effects for these 
models in both brain areas. Another gene related to SCZ 
susceptibility is the DTNBP-1, which encodes the presyn-
aptic protein Dysbindin-1, essential for regulating and 
stabilizing the dopaminergic and glutamatergic neuro-
transmission.87,88 Dysbindin-1 deletions elicit alterations 
in NMDA receptors located in pyramidal neurons and 
affect presynaptic GABAergic transmission.87 We found 
a significant effect in hippocampal PV levels, with no 
changes in the PFC. The inconclusive findings reported 
for the PFC may be due to the limited number of genetic 
studies included in this review and the different mutation 
types among studies.

Specific mutations in NMDA receptors or alterations 
in the candidate “risk” genes for the cell adhesion mol-
ecule NGR1 and its receptor ErbB4 are proposed to be 
involved in abnormal SCZ excitatory and inhibitory neu-
rotransmission.89–91 NGR1 and ErbB4 are strongly linked 
to the etiology of SCZ since it controls glutamatergic in-
puts onto PV interneurons during neurodevelopment.92 
In fact, Erbb4 deletion from inhibitory interneurons 
leads to analogs of in vivo neuroimaging alterations pre-
viously identified in psychosis.93 Aligned with these find-
ings, NGR1/ErbB4 models significantly negatively affect 
PV levels in both PFC and HIP. Despite not being in-
cluded in our meta-analyses, PV reductions in the PFC 
and HIP have been reported in other models based on 
genetic alterations, such as the 22q11.2 deletion model.94

General Factors (Age of Evaluation, Species, Sex, 
Experimental Bias)

SCZ is often diagnosed in late adolescence and early 
adulthood. Along with the illness onset, patients show 
deficits in GABAergic transmission and impairment in 

cortical gamma frequency oscillations, which are thought 
to depend upon the normal functioning of PV inter-
neurons.1 We found that all animal models significantly 
affected PV interneurons in both brain areas when PV 
markers were evaluated in adulthood. Although PV inter-
neurons continue to mature through adolescence in both 
PFC and HIP, leaving them more vulnerable to insults,95 
our analysis indicated that changes in PV markers evalu-
ated at adolescence were significant only in the PFC of 
pharmacological SCZ models. Nevertheless, only a few 
selected studies evaluated hippocampal PV levels during 
adolescence, which may have influenced our analysis. We 
also found that rat models had significant PV interneuron 
reduction in both brain areas, whereas significant results 
for mice were observed only in the PFC. Regarding sex 
differences, most of the included studies evaluated PV 
changes in male rodents. Only a few studies used females 
or both sexes. In males, decreased PV levels were con-
firmed in all analyses except in the HIP of genetic models.

Overall, our meta-analyses revealed that a decrease in 
the number of PV-positive cells and/or PV protein levels 
in the PFC and HIP is consistent across distinct animal 
models. These findings complement evidence indicating 
functional impairments in PV interneurons and gain-of-
function studies in which the activation of these inter-
neurons in the PFC and HIP rescued behavioral deficits 
in animal models for SCZ.96,97 These results point to PV 
interneuron deficits as a potential target for SCZ treat-
ment.98 Accordingly, preclinical studies have already 
shown that some antipsychotics prevent and reverse PV 
deficits in SCZ rodent models.50,99 Further studies are 
needed to evaluate these effects in the clinics. However, 
it is worth mentioning that, despite these findings in an-
imal models, PV deficits are found in postmortem brain 
studies in SCZ,3,4,6,7 in which most patients underwent 
chronic treatment with antipsychotics.

The magnitude of PV reduction in the PFC and HIP 
in the animal models may be smaller than estimated in 
our meta-analysis. Previous data indicate that publica-
tion and other types of bias may inflate the effect sizes 
in animal model studies.100,101 Although publication bias 
seems to be a minor problem in this review, the risk of 
other bias factors (selection, performance, detection, at-
trition, report) is unclear for most of the included studies, 
hampering the appraisal of the research quality. The use 
of guidelines like ARRIVE102 may help to increase the 
quality of reports of animal studies in general, including 
of our field of research. Additionally, negative PV data 
that might not have been published could also be another 
poorly controlled bias source.

In sum, our findings support the significant role of 
PV interneurons, a specific class of GABAergic inter-
neurons, in the pathophysiology of SCZ. Converging 
evidence suggests that SCZ is a disorder caused by mul-
tiple interacting factors. PV interneuron dysfunction is a 
hallmark in its etiology and is well established in clinical 
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and basic science studies. This meta-analysis confirmed 
PV reductions in the PFC and HIP of widely used an-
imal models in SCZ research, even though further studies 
are needed to explore these abnormalities in specific sub-
groups (for instance, in female animals and across dif-
ferent developmental periods).

Supplementary Material

Supplementary material is available at https://academic.
oup.com/schizophreniabulletin/.
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