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Abstract

Background and Aims: Genome-wide association studies (GWAS) of opioid use disorder 

(OUD) and cannabis use disorder (CUD) have lagged behind those of alcohol use disorder (AUD) 
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and smoking, where many more loci have been identified. We sought to identify novel loci for 

substance use traits (SUTs) in both African- (AFR) and European- (EUR) ancestry individuals to 

enhance our understanding of the traits’ genetic architecture.

Design: We used multi-trait analysis of GWAS (MTAG) to analyze four SUTs in EUR subjects 

(OUD, CUD, AUD and smoking initiation [SMKinitiation]), and three SUTs in AFR subjects 

(OUD, AUD and smoking trajectory [SMKtrajectory]). We conducted gene-set and protein–

protein interaction analyses and calculated polygenic risk scores (PRS) in two independent 

samples.

Setting: This study was conducted in the United States.

Participants: A total of 5692 EUR and 4918 AFR individuals in the Yale-Penn sample and 29 

054 EUR and 10 265 AFR individuals in the Penn Medicine BioBank sample.

Findings: MTAG identified genome-wide significant (GWS) single nucleotide polymorphisms 

(SNPs) for all four traits in EUR: 41 SNPs in 36 loci for OUD; 74 SNPs in 60 loci for CUD; 

63 SNPs in 52 loci for AUD; and 183 SNPs in 144 loci for SMKinitiation. MTAG also identified 

GWS SNPs in AFR: 2 SNPs in 2 loci for OUD; 3 SNPs in 3 loci for AUD; and 1 SNP in 1 locus 

for SMKtrajectory. In the Yale-Penn sample, the MTAG-derived PRS consistently yielded more 

significant associations with both the corresponding substance use disorder diagnosis and multiple 

related phenotypes than the GWAS-derived PRS.

Conclusions: Multi-trait analysis of genome-wide association studies boosted the number of 

loci found for substance use traits, identifying genes not previously linked to any substance, and 

increased the power of polygenic risk scores. Multi-trait analysis of genome-wide association 

studies can be used to identify novel associations for substance use, especially those for which the 

samples are smaller than those for historically legal substances.

Keywords

alcohol use disorder; cannabis use disorder; GWAS; opioid use disorder; polygenic risk scores; 
smoking initiation

INTRODUCTION

The etiology of substance use traits (SUTs) involves both environmental and genetic factors, 

with estimates of heritability ~50%. Genome-wide association studies (GWAS) of SUTs 

have successfully identified hundreds of genome-wide significant (GWS) risk variants [1–7], 

providing insight into the underlying biology that influences substance use and misuse. 

However, because common genetic variants have small effects on trait susceptibility, large 

samples are needed to identify GWS associations, with recent GWAS of SUTs requiring 

case sample sizes of over 20 000 to identify variants. Difficulty in recruiting large study 

samples has, therefore, limited gene discovery efforts [8], with variant discovery for some 

traits (e.g. opioid use disorder [OUD] and cannabis use disorder [CUD]) lagging behind 

that of more common SUTs such as alcohol and smoking-related phenotypes. Furthermore, 

underrepresentation of non-European-ancestry individuals has limited genetic discovery and 

exacerbated health inequalities [9]. In addition to identifying relevant biology, GWAS results 

are also necessary to calculate polygenic risk scores (PRS), which may have clinical use 
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[10]. Increasing the power of GWAS results for SUTs in multiple ancestries will improve 

our understanding of their underlying biology and inform diagnostic and treatment efforts.

Multi-trait analysis of GWAS (MTAG) was developed to boost the statistical power of 

GWAS by incorporating information from effect estimates across traits [11]. It enables the 

joint analysis of multiple, genetically correlated traits, generating trait-specific estimates of 

the effects of each single nucleotide polymorphism (SNP). MTAG is also valuable because 

it can be applied to summary statistics of GWAS rather than requiring individual genotypes, 

addressing the sample overlap often present across GWAS discovery samples for different 

traits using linkage disequilibrium (LD) score regression [11].

Because SUTs have shown high degrees of genetic correlation in GWAS and twin and 

family studies [12], they are ideally suited to MTAG. MTAG has been used to boost genetic 

findings for SUTs, both for traits involving the same substance and for cross-substance 

traits. In a meta-analysis of problematic alcohol use (PAU) [13], MTAG analysis of PAU and 

a measure of weekly alcohol consumption [4] increased the number of independent loci for 

PAU from 29 to 76. MTAG analysis of OUD with AUD and CUD [14] increased the number 

of GWS loci for OUD to 18 from three in the initial GWAS meta-analysis. Because MTAG 

for multiple genetically correlated SUTs yields greater statistical and interpretive power than 

individual-trait GWAS, the availability of large GWAS of alcohol- and smoking-related traits 

could enhance findings from GWAS of traits with smaller accumulated samples (e.g. CUD 

and OUD).

Here, we conduct an MTAG analysis of the largest available GWAS for three SUTs 

in African-ancestry (AFR) individuals: OUD, alcohol use disorder (AUD) and smoking 

trajectory (SMKtrajectory); and four SUTs in European-ancestry (EUR) individuals: OUD, 

CUD, AUD and smoking initiation (SMKinitiation). We integrated information from the 

GWAS summary statistics to identify novel loci for each SUT. We also conducted gene 

prioritization, gene-set and protein–protein interaction (PPI) analyses to characterize the 

underlying biology of the novel genes in the context of SUTs. Finally, we generated 

polygenic risk scores (PRS) to examine the power increment for each set of MTAG-GWAS 

summary statistics in two independent samples.

METHODS

GWAS summary statistics

We identified available GWAS summary statistics for opioid (use disorder) [1], cannabis 

(use disorder and lifetime use) [3, 5], alcohol (use disorder and drinks per week) [2, 4] and 

tobacco (smoking initiation, Fagerström Test for Nicotine Dependence [FTND], smoking 

trajectory) [4, 6, 7] in both AFR and EUR individuals. Other ancestries were not included 

because of lack of data.

Genetic correlation

Genetic correlation (rg) measures the genetic similarity between two different traits [15]. 

We calculated pairwise genetic correlations for the SUTs within each ancestry using 

linkage disequilibrium score regression (LDSC) [16] and HapMap 3 SNPs. Pre-computed 
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EUR linkage disequilibrium (LD) scores and weights were downloaded from the LDSC 

GitHub website (https://github.com/bulik/ldsc). We computed AFR LD scores and weights 

in Million Veteran Program (MVP) genotype data using cov-LDSC [17].

Phenotype selection

To maximize the power of the joint analysis, for each substance we selected the trait with 

the strongest genetic correlations with other SUTs (Table S1). We selected three SUTs for 

MTAG analysis in AFR samples: OUD [1], AUD [2] and SMKtrajectory [7] and four SUTs 

for MTAG analysis in EUR samples: OUD [1], CUD [3], AUD [2] and SMKinitiation [4]. 

Because our downstream PRS analysis used the Yale-Penn dataset and the CUD GWAS 

included genotype data from Yale-Penn subjects, we avoided sample overlap by generating 

summary statistics for CUD using a ‘leave-one-out’ meta-analysis that excluded Yale-Penn 

subjects. All other GWAS were independent of the Yale-Penn dataset.

Multi-trait analysis of GWAS summary statistics (MTAG)

We used trait-specific effective sample sizes and transformed Z-scores. SNPs present in all 

of the SUT summary statistics were included in the MTAG calculation (AFR n = 2 648 506; 

EUR n = 2 888 727), which used default MTAG parameters (i.e. each SNP’s sample size 

was larger than two thirds of the 90th percentile of all SNPs’ sample sizes). We calculated 

maximum False Discovery Rate (maxFDR) [11] as the upper bound of False Discovery Rate 

(FDR) for each MTAG result. We used PLINK1.9 to perform clumping procedures on the 

four MTAG results across a range of 3000 kb and r2 > 0.1. GWS variants located within 1 

Mb were merged into a single locus. Loci were annotated with the nearest protein-coding 

gene (within 1 Mb) using SNPsnap [18].

Identification of novel variants for each SUT

Loci that were not previously GWS for any SUT were labeled as ‘novel.’ To ascertain 

this, we systematically evaluated whether variants identified in the MTAG analysis were 

previously associated with either the primary SUT or other SUTs. First, for each lead 

variant, we determined whether any nearby variant (within 1 Mb) was GWS in the initial 

GWAS or in the other three contributing GWAS. We, then, determined whether the locus 

had prior SUT associations using the GWAS catalog [19] implemented in FUMA [20], 

annotating all lead variants with prior associations with any SUT (not limited to the 

GWAS included in this study). For completeness, we also labeled the variant with the 

closest protein-coding gene (within 1 Mb) and searched the GWAS catalog [19] for prior 

associations of that gene with SUTs.

Gene-set analysis

To determine whether the identified genes are involved in important biological processes, 

GWS SNPs from the EUR sample were mapped to genes by ANNOVAR [21] implemented 

in FUMA [20]. Next, we curated gene-set enrichment and Gene Ontology (GO) terms using 

the GO annotation database [22, 23], with gene-set enrichment P-values adjusted using a 

Bonferroni correction for each test (adjustment P-value <0.05).
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PPI

To further investigate the relationship between the prioritized protein-coding genes from 

each MTAG result in EUR, we used STRING database v11.5 s [24] to conduct PPI analyses. 

For each SUT MTAG result, we used annotated GWS genes as input to query the PPIs 

in the database. PPI enrichment P-value and pairwise interaction scores were reported by 

the STRING database. We used a cut-off interaction score >0.4 to identify PPIs with high 

confidence.

Yale-Penn dataset

The Yale-Penn sample was recruited for genetic studies of substance use disorders (SUDs) 

[25]. It was deeply phenotyped using the Semi-Structured Assessment for Drug Dependence 

and Alcoholism (SSADDA), a comprehensive psychiatric interview schedule [26, 27]. The 

Yale-Penn phenome-wide association studies (PheWAS) dataset includes 4917 unrelated 

AFR and 5692 unrelated EUR genotyped individuals and over 650 summarized phenotypes 

categorized into 20 substance, medical, demographic and psychiatric sections [25].

Penn Medicine BioBank Dataset

The Penn Medicine BioBank (PMBB) is an electronic health recordlinked biobank at 

the University of Pennsylvania [28]. Patients at Penn Medicine are recruited under a 

single umbrella institutional review board (IRB) protocol that provides consent for blood 

collection, genotyping and access to medical records for research purposes. The PMBB 

dataset includes genotype data for 10 383 AFR and 29 355 EUR individuals. International 

Classification of Diseases (ICD)-9 and -10 codes were extracted from the electronic health 

record. Case/control status for each substance use disorder (OUD, CUD, AUD and TUD) 

was determined based on the presence or absence of relevant ICD-9 and -10 codes (Table 

S2).

PRS and phenotype association test

We used PRS-continuous shrinkage (PRS-CS) [29] to generate PRS in both the Yale-Penn 

[25] and PMBB datasets, pre-computed LD reference for HapMap3 SNPs in AFR and EUR 

samples to account for local LD, and an optimal global shrinkage parameter learned from 

the data. We generated a GWAS-based PRS and a MTAG-based PRS for each of the SUTs 

in both AFR and EUR individuals. To ensure comparability between GWAS-based and 

MTAG-based PRS, only the SNPs used in the MTAG calculation were included in PRS 

calculation. Effective sample sizes were used to generate GWAS- and MTAG-based PRS.

To compare the power of GWAS-based PRS with MTAG-based PRS, we tested the 

associations of each PRS in the Yale-Penn dataset with phenotypes in the corresponding 

substance section (e.g. AUD PRS were tested with alcohol-related phenotypes). We used 

the PheWAS package in R [30] with linear or logistic regression models as appropriate. We 

used age, sex and 10 genetic principal components (PCs) as covariates [31]. Each substance 

section includes Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV and 

DSM-5 diagnoses for the corresponding SUD. For diagnoses, we calculated the incremental 

pseudo R2 value after adding the polygenic score to the logistic regression models. To 
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account for multiple testing, we used a significance P-value <0.05 divided by the number of 

phenotypes in each substance.

In the PMBB dataset, we tested the associations of each PRS with case/control status for the 

corresponding substance use disorder using logistic regression in R, including sex, age and 

the top 10 PCs as covariates.

The analysis described here was not preregistered, and as such the results should be 

considered exploratory.

RESULTS

Genetic correlation between SUTs

Pairwise rg calculated using LDSC were significant and moderate or high between OUD, 

CUD, cannabis lifetime use, AUD, drinks per week, SMKinitiation and SMKtrajectory in 

EUR; and OUD, AUD and SMKtrajectory in AFR (Figure 1, Table S1). In EUR, CUD 

had stronger genetic correlations with other SUTs than cannabis lifetime use, and AUD had 

stronger genetic correlations than drinks per week. FTND was not significantly genetically 

correlated with CUD, cannabis lifetime use or drinks per week in EUR. There was not 

enough power for CUD to compute genetic correlations with other SUTs in AFR. We 

therefore selected OUD [1] (effective n = 74 635), CUD [3] (effective n = 48 900), AUD [2] 

(effective n = 171 601) and SMKinitiation [4] (effective n = 632 802) for MTAG in EUR; 

and OUD [1] (effective n = 32 240), AUD [2] (effective n = 67 686) and smoking trajectory 

(SMKtrajectory; effective n = 40 736) [7] for MTAG in AFR.

MTAG SUTs and locus discovery

The pairwise genetic correlations for the SUTs ranged from 0.45 to 0.80 in EUR and 0.61 

to 0.66 in AFR, supporting the use of MTAG to conduct a joint analysis of these traits. 

MTAG increased the effective sample size and the number of independent loci identified for 

each SUT, with low maxFDR values supporting the robustness of the results (Table 1). In 

EUR, the number of independent loci increased from 4 to 36 for OUD, 2 to 60 for CUD, 

12 to 52 for AUD and 74 to 144 for SMKinitiation. In AFR, the number of independent 

loci increased from 1 to 2 for OUD and 0 to 1 for SMKtrajectory, whereas the number of 

independent loci for AUD remained the same. Among the four sets of MTAG results in 

EUR (Figure 2, Tables S3–S5, S7), 20 loci were significantly associated with all four SUTs, 

the most significant of which was the locus containing NCAM1, supported by two intronic 

variants in complete LD (rs1940701 for OUD and AUD and rs4479020 for CUD and SMK). 

Other loci associated with all four SUTs in EUR included intronic variants in DPP4 and 

CADM2 and an intergenic variant near ZNF184. In AFR no loci were associated with all 

three SUTs.

Opioid use disorder (MTAG-OUD)

In EUR, of the 41 independent GWS SNPs in 36 loci (Table S3), three were GWS in the 

OUD GWAS, 17 were GWS in at least one of the other of the three SUT GWAS used for 

MTAG, and 30 were GWS in other GWAS of SUTs, not limited to the GWAS included in 
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this study. Variants including exonic SNPs in OPRM1 and FURIN were GWS in previous 

OUD GWAS [1,14]. Five GWS loci are novel (i.e. no prior associations with OUD or any 

SUT). These include a variant in the 3′ untranslated regions of POR, intronic variants in 

CNOT4 and MTMR2 and intergenic variants near TMEM170B and SNAI1. In AFR, one 

of the two independent GWS SNPs in two loci (Table S3) is novel—an intronic variant in 

GIHCG.

Cannabis use disorder (MTAG-CUD)

MTAG yielded 74 independent GWS SNPs in 60 genomic risk loci in EUR (Table S4). 

Of the 60 loci, three were GWS in the CUD GWAS, 43 were GWS in at least one of the 

other three SUT GWAS used for MTAG, and 51 were GWS in other GWAS of SUTs. We 

replicated previously associated loci for CUD [3], including an intergenic variant near CLU 
in the same locus identified in the input CUD GWAS, an intronic variant in GBF1, and 

an exonic variant in FURIN. We identified four novel GWS loci, including three intronic 

variants—one each in CNOT4, TMEM245 and MTMR2—and an intergenic variant near 

TMEM170B.

Alcohol use disorder (MTAG-AUD)

We identified 63 independent GWS SNPs in 52 genomic risk loci for AUD in EUR (Table 

S5). Of these, 9 loci were GWS in the AUD GWAS, 23 were GWS in at least one of the 

other three SUT GWAS used for MTAG, and 40 were GWS in other GWAS of SUTs. 

These included multiple previously reported AUD-associated variants—exonic variants in 

GCKR and SLC39A8, and intronic variants in ANKK1 and FTO [2]. We also identified 

10 novel GWS loci, including exonic variants in POR and SYNGAP1; intronic variants in 

DNM3, CSMD3, CNOT4, LRFN5, ZNF804A and TCF20; and two intergenic variants near 

TMEM170B and SORCS3. Of note, SNP rs1229984, located in the alcohol dehydrogenase 

gene ADH1B, did not pass the default MTAG quality control parameter in EUR as it was not 

present in at least two thirds of the sample. Because of the well-known strong association 

of rs1229984 with alcohol phenotypes [2, 13], we conducted a separate analysis with a less 

stringent filter to include that SNP (Table S6). In AFR, we identified three independent 

SNPs in two loci, all which had prior associations with SUTs (Table S5).

Smoking initiation and trajectory (MTAG-SMK)

We identified 183 independent GWS SNPs in 144 genomic risk loci (Table S7). Of these, 86 

were GWS in the SMKinitiation GWAS, seven were GWS in at least one of the other three 

SUT GWAS used for MTAG, and 130 were GWS in other GWAS of SUTs. Eight GWS loci 

were novel, including a variant within TNRC6B and seven intergenic variants: one each near 

WDR12, PCDH7, ITGA1, TMEM170B, SP4, CTDP1 and SORCS3. In AFR, one novel 

locus for SMKtrajectory was identified in GIHCG (Table S7).

Gene-set analysis

Enriched gene sets were identified for all studied traits in EUR: 28 for MTAG-OUD, 

73 for MTAG-CUD, 51 for MTAG-AUD and 70 for MTAG-SMK (Tables S8–S11). The 

gene-set ‘regulation of cell differentiation’, which contains the novel gene POR and the 
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opioid-specific gene OPRM1, showed significant enrichment for OUD (PBon = 0.001). 

‘Protein dimerization activity’, one of the significantly enriched gene-sets for CUD (PBon = 

3.7 × 10−9), harbors the novel genes MTMR2 and FOXP2. For AUD, the enriched gene set 

‘regulation of synapse structure or activity’ (PBon = 0.012) contains the novel genes DNM3, 
LRFN5 and SYNGAP1 along with DRD2. For SMK, 70 gene sets showed significant 

enrichment, with the novel gene TNRC6B mapping to 12 of them. Of note, the gene set 

‘neuron differentiation’, which includes NCAM1, is significantly enriched (PBon = 0.031).

Protein–protein interaction

We observed significant PPI enrichment (P < 0.05) for protein-coding genes that were 

GWS for MTAG-AUD and MTAG-SMKinitiation in EUR, whereas PPI enrichment was 

nonsignificant for GWS genes in MTAG-OUD (P = 0.175) and MTAG-CUD (P = 0.175) 

(Tables S12–S15). For GWS genes in MTAG-AUD, we identified high PPI for NF1 and 

SYNGAP1 (interaction score = 0.697), NF1 and CSMD3 (interaction score = 0.42) and 

NCAM1 and SEMA6D (interaction score = 0.467). For GWS genes in MTAG-SMK, 

TNRC6B and FOXO3, two smoking-associated genes, showed high PPI (interaction score = 

0.9).

PRS associations with primary phenotypes

For EUR, all four MTAG-based PRS (PRSMTAG) showed stronger associations with the 

primary diagnosis than the individual-trait GWAS-based PRS (PRSGWAS) in the Yale-Penn 

dataset (Figure 3, Tables S16–S19) and the PMBB dataset (Table S20). This difference was 

most evident for CUD, where in the Yale-Penn dataset the Bonferroni-corrected association 

with DSM-IV cannabis dependence was nonsignificant for PRSGWAS-CUD (OR = 1.16, P = 

1.94 × 10−3), but it was significant with PRSMTAG-CUD (OR = 1.30, P = 2.18 × 10−9). This 

was replicated in the PMBB dataset, where the association with CUD was nonsignificant for 

PRSGWAS-CUD (OR = 1.14, P = 0.08), but was significant with PRSMTAG-CUD (OR = 1.29, P 
= 7.86 × 10−4).

The Yale-Penn dataset contains additional related phenotypes for each substance. For 

each of the SUTs, there were more Bonferroni-corrected significant associations with 

PRSMTAG than PRSGWAS (Tables S16–S19). Notably, the number of significantly associated 

phenotypes for PRSGWAS-CUD was 6, whereas for PRSMTAG-CUD it was 25. Phenotypes 

that were significantly associated when using PRSMTAG-CUD included age of first use of 

marijuana, the DSM-IV cannabis dependence diagnosis and the DSM-5 CUD criterion 

count.

In addition, the incremental R2 values both for diagnoses and related phenotypes were 

higher for PRSMTAG than PRSGWAS (Table 2). The greatest improvement was between 

PRSMTAG-CUD and PRSGWAS-CUD, where the incremental R2 for ‘ever used cannabis’ 

was 1.62% and 0.38%, respectively. Moderate improvement was also observed for 

PRSMTAG-SMK compared with the well-powered PRSGWAS-SMK.

Findings were less consistent in the AFR datasets. For OUD, neither the PRSGWAS-OUD 

nor the PRSMTAG-OUD showed significant associations in the Yale-Penn dataset or the 

PMBB dataset. For SMKtrajectory, the PRSGWAS-SMK performed slightly better than the 
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PRSMTAG-SMK in the Yale-Penn dataset, whereas the opposite was true in the PMBB 

dataset. For AUD, PRSMTAG-AUD showed stronger associations than PRSGWAS-AUD in 

both datasets, and there were more Bonferroni-corrected significant associations with 

PRSMTAG-AUD (n = 13) than PRSGWAS-AUD (n = 6).

DISCUSSION

We performed a joint analysis of SUTs using MTAG, which yielded an effective sample 

size up to fourfold that of the individual GWAS. This yielded novel associated variants in 

loci not previously linked to any SUT, including a novel locus in AFR associated with both 

OUD and SMKtrajectory. Interestingly, one of our novel associations, CNOT4, was recently 

identified in a GWAS of maximum alcohol use [32] and a GWAS of smoking initiation [33], 

which supports our discovery here. A prior MTAG analysis of PAU [13], which leveraged 

information from a GWAS of drinks per week, identified 119 GWS variants. Of the 45 SNPs 

in EUR in common between that analysis and ours, 14 were associated with MTAG-AUD in 

our sample. In our EUR MTAG-OUD analysis, we also replicated 6 of 9 variants in common 

with a recent OUD MTAG analysis of OUD, CUD and AUD [14]. Although OPRM1 was 

not significantly associated in the prior MTAG, our EUR MTAG-OUD analyses identified 

the OPRM1 SNP rs1799971 as a lead variant, potentially because of our inclusion of the 

smoking initiation GWAS or the larger input OUD GWAS sample in our analysis.

Among the most significant risk loci for SUTs are those that encode proteins with clear 

connections to the substance involved. This includes the μ-opioid receptor for OUD [34], 

various nicotinic cholinergic receptor subunits for smoking initiation [4] and alcohol 

metabolizing enzymes for alcohol consumption and AUD [35]. However, beyond the 

substance-specific proteins that directly interact with the drug a wide range of biological 

mechanisms are common to all addictive behaviors—these include reward pathways, 

learning and memory, withdrawal and other functions [36]. We, therefore, expected that the 

greater statistical power of MTAG would reveal novel genes with associations to multiple 

substances based on common mechanisms of risk (i.e. an addiction factor) [37, 38]. In fact, 

5 of 19 novel loci identified in our EUR analysis were significantly associated with two or 

more substances. The use of multiple substances is common and has been associated with 

poorer treatment outcomes in individuals with SUDs [39]. These shared genes may represent 

targets for therapies aimed at treating co-occurring SUDs.

Patients with SUDs also have higher rates of comorbid psychiatric disorders than the 

general population [40] PheWAS using electronic health record (EHR) data have shown 

associations between PRS for SUTs and non-substance use psychiatric diagnostic codes 

[13], suggesting genetic overlap between them. Consistent with this hypothesis, 9 of 19 

novel genes identified in our EUR MTAG analysis were significant in GWAS of depression 

or schizophrenia [41–45]. Furthermore, several of the novel genes (SYNGAP1, ZNF804A, 
CSMD3, DNM3, LRFN5, TCF20 and TNRC6B) have been previously associated with 

neurodevelopmental disorders [46–52]. Mutations in SYNGAP1 reduce protein activity, 

leading to impaired synaptic plasticity, a key factor in brain development [46]. Autism 

patients have lower expression of ZFN804A in the anterior cingulate gyrus [47], and 
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CSMD4 has been identified as a risk gene for autism spectrum disorder [48]. Our results 

suggest a connection between SUTs and neurodevelopmental disorders.

We functionally annotated the EUR GWS loci in all four SUTs to explore plausible 

underlying biological processes. We found that associations for AUD were enriched in genes 

(including CNOT4) involved in regulating synaptic structure and activity, an enrichment not 

previously observed in the AUD GWAS [2]. In addition, we find evidence for neuronal 

differentiation in smoking initiation, in line with findings in the original GWAS [4]. 

In the PPI analysis, we observed significantly enriched protein interaction networks for 

MTAG-AUD and MTAG-SMK. In addition, we observed multiple interactions between 

novel genes identified by MTAG and previously identified SUT-associated genes, which 

provide biological support for the MTAG results.

In PRS analyses, the PRSMTAG outperformed the PRSGWAS for all SUTs in EUR, but 

only for AUD in AFR. This was evident for the CUD PRS, where in EUR the PRSMTAG 

was significantly associated with the diagnosis, whereas the PRSGWAS was not. As PRS 

for many traits are being considered as potential biomarkers for disorders [53], the use of 

MTAG may yield more powerful PRS without having to recruit larger samples for GWAS.

Our study has some limitations. Careful evaluation is required to assess the broader impact 

of MTAG-based PRS on phenotypic associations beyond the primary phenotype. A loss of 

specificity may result from the inclusion of multiple genetically correlated traits, potentially 

confounding PheWAS of MTAG-PRS. Because of smaller sample sizes for GWAS of 

tobacco use disorder, we selected GWAS for smoking traits that reflect tobacco use more 

generally, in contrast to the selection of substance use disorder for our other traits. Finally, 

although we included data for AFR individuals, the smaller sample size meant that our 

results were less conclusive, and we were unable to include a GWAS of cannabis use in this 

population. Future GWAS should prioritize recruitment of non-European datasets.

In summary, in an MTAG analysis of SUTs we identified 19 novel loci in EUR and 1 

in AFR, and, in two independent datasets, found that the associations of PRSMTAG with 

relevant traits were more significant than with PRSGWAS. As the size of GWAS samples 

continues to increase, MTAG analyses could provide a complementary method to leverage 

more powerful GWAS to boost the findings of risk variants for genetically correlated 

traits, particularly where case ascertainment is more challenging, thereby enhancing our 

understanding of the biology underlying these phenotypes and its clinical applicability.
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Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Overview of the analysis. The four substance use traits (SUTs) that were used in multi-

trait analysis of genome-wide association studies (MTAG) analysis have pairwise genetic 

correlations between 0.45 and 0.80. For each SUT MTAG-genome-wide association studies 

(GWAS) result, we identified novel loci, performed gene-set analysis, protein–protein 

interaction analysis and examined the increased predictive power of the corresponding 

polygenic risk score.

Xu et al. Page 15

Addiction. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
Manhattan plots of MTAG-OUD (NEffective = 176 876), MTAG-CUD (NEffective = 223 956), 

MTAG-AUD (NEffective = 282 208) and MTAG-SMK (NEffective = 709 603). Dashed lines 

indicate genome-wide significance (P < 5 × 10−8) and yellow dots indicate genome-wide 

significance single nucleotide polymorphisms. AUD, alcohol use disorder; CUD, cannabis 

use disorder; OUD, opioid use disorder; MTAG, multi-trait analysis of genome-wide 

association studies; SMK, smoking.
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FIGURE 3. 
Comparison of GWAS-based PRS and MTAG-based PRS. Red and blue dots in each plot 

represent the GWAS-based PRS and MTAG-based PRS, respectively. Vertical dashed lines 

indicate significance threshold after Bonferroni correction. GWAS, genome-wide association 

studies; MTAG, multi-trait analysis of GWAS; PRS, polygenic risk scores.
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TABLE 2

PRS increment R2.

GWAS-PRS MTAG-PRS

Opioid Ever used opioid 0.97% 2.31%

DSM-IV diagnosis 1.03% 2.26%

DSM-5 diagnosis 1.01% 2.16%

Cannabis Ever used cannabis 0.38% 1.62%

DSM-IV diagnosis 0.19% 0.91%

DSM-5 diagnosis 0.23% 1.13%

Alcohol Ever used alcohol 0.26% 1.11%

DSM-IV diagnosis 0.91% 1.68%

DSM-5 diagnosis 0.84% 1.72%

Smoking Ever used smoking 1.81% 2.04%

DSM-IV diagnosis 3.43% 4.16%

Abbreviations: DSM, Diagnostic and Statistical Manual of Mental Disorders; GWAS, genome-wide association studies; MTAG, multi-trait analysis 
of GWAS; PRS, polygenic risk scores.
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