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Enzymes have been shaped by evolution over billions of years to catalyse the chemical
reactions that support life on earth. Dispersed in the literature, or organised in online
databases, knowledge about enzymes can be structured in distinct dimensions, either
related to their quality as biological macromolecules, such as their sequence and struc-
ture, or related to their chemical functions, such as the catalytic site, kinetics, mechan-
ism, and overall reaction. The evolution of enzymes can only be understood when each
of these dimensions is considered. In addition, many of the properties of enzymes only
make sense in the light of evolution. We start this review by outlining the main paradigms
of enzyme evolution, including gene duplication and divergence, convergent evolution,
and evolution by recombination of domains. In the second part, we overview the current
collective knowledge about enzymes, as organised by different types of data and col-
lected in several databases. We also highlight some increasingly powerful computational
tools that can be used to close gaps in understanding, in particular for types of data that
require laborious experimental protocols. We believe that recent advances in protein
structure prediction will be a powerful catalyst for the prediction of binding, mechanism,
and ultimately, chemical reactions. A comprehensive mapping of enzyme function and
evolution may be attainable in the near future.

Introduction
Lying at the interface between biology and chemistry, enzymes are complex subjects to study. To
understand how they function, it is necessary to integrate diverse kinds of data, including amino-acid
sequence [1], three-dimensional structure [2], knowledge about their catalytic residues [3] and
co-factors [4], and the chemical reactions they catalyse [5,6]. Lastly, enzyme mechanisms [7], which
are the sequence of bond changes and atom movements that happen in the active site during catalysis,
present the fundamental explanation for how enzymes operate. Figure 1 provides an outline of the col-
lective understanding of enzymes across these six dimensions and shows some of the databases con-
taining this knowledge.
In addition to this complexity, enzymes should be viewed as changing entities. They have been

evolving for billions of years, as shaped by natural selection, and across millions of species. The study
of evolution and the aforementioned dimensions cannot be detached from one another. While genetic
mutations govern and constrain changes in the enzyme sequence (the first dimension in Figure 1),
natural selection acts primarily at the level of the biological function (the chemical reaction for
enzymes, the last dimension in Figure 1). Additionally, like the challenge of mapping genomes to phe-
nomes [8], establishing a causal link between sequence changes and catalytic activity in enzymes
requires examining the intermediate dimensions.
An ideal knowledge base of enzyme function and evolution would consist of multiple maps, each

representing one of the dimensions mentioned in Figure 1, and it would explain how these different
aspects of enzymes relate to each other and how they have changed through time. It would provide
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explanations, or predictions, for how changing one dimension would alter the others. This would allow us to
understand the historical and natural process of change, enzyme evolution, and would be a significant contri-
bution for enzyme engineering [9,10] and drug development [11,12].
How far are we from being able to build such a comprehensive resource? UniProt [1], the most extensively

annotated dataset of protein sequence data, currently covers the complete genomes of hundreds of thousands
of species, a substantial and partially representative collection of all life on earth. At the same time, data cover-
age on other aspects of proteins, and in particular enzymes, such as structure, ligand binding, mechanism, or
the reaction, is not as extensive. Nevertheless, equipped with what is already known about enzyme function
and evolution, and increasingly powerful and diverse methods, we believe it should be feasible to use sequence
data as the seed to populate all the other dimensions, all the way through to the enzyme reaction. The recent
advances in predicting structure from sequence [13] demonstrate that this seemingly utopian vision may be
within reach.

Enzyme evolution
Like other biological components, enzymes are best understood in the light of evolution. Similarities between
enzymes reveal their evolutionary relationships, with more similar sequences having diverged more recently.
Whereas all organisms on earth share a common origin, the Last Universal Common Ancestor (LUCA) [14],
proteins and enzymes can be grouped into several evolutionary families, which have, for the most part, separate
evolutionary histories. Within families, enzymes present a remarkable degree of conservation, emphasising the

Figure 1. Six dimensions of enzymes, related databases and data diversity and biases.

*The list of databases and resources is not exhaustive, but it aims to be representative of the type and amount of data available.
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significant selective pressure to preserve catalytic function. Certain structural folds and active sites, for example,
are so well conserved that they can be traced back to LUCA [15]. Although estimations about the number and
type of proteins in LUCA are uncertain [16,17], it is likely that a majority of them were enzymes. A recent con-
sensus analysis, identified 199 enzymes among 366 possible ancestral proteins [18].
Since then, new enzymes, like all proteins, have mostly evolved by gene duplication and divergence [19].

Other genetic events, such as the fusion and swapping of domains, are rarer but also important, since they
allow for larger evolutionary jumps and more significant changes of function [20]. Finally, de novo evolution of
proteins from non-coding DNA is also possible, and not limited to the ancient past, as previously thought
[21]. De novo proteins, are typically similar to small random peptidic chains, except for their improved solubil-
ity [22], and their physiological functions have been characterised for only a handful of cases, so they will not
be discussed further in this review.

Enzyme evolution by gene duplication and divergence
Following the first observations of proteins sharing similar sequences, suggesting homology and common
ancestry, Susumo Ohno proposed a neofunctionalization model based on gene duplication and divergence [23].
This model proposes that after a random duplication event, one of the gene copies can diverge without com-
promising organism fitness, and that these mutations may eventually result in the acquisition of a new function.
The importance of duplication and divergence for neofunctionalisation has been reinforced since, but alterna-
tive models have been proposed [24] to address some limitations of Ohno’s model. Most notably, these alterna-
tives take into account that deleterious mutations typically accumulate faster than gain-of-function mutations
[25], which often lead to complete loss of function and eventual deletion of the duplicated gene.
The IAD (Innovation–Amplification–Divergence) model, also called the Adaptive Radiation model [25,26],

solves this apparent dilemma while also considering the significance of promiscuity for enzyme evolution. The
sequence of events in the IAD model is depicted in Figure 2 and described below.

Innovation
During evolution, some mutations grant enzymes the ability to catalyse additional reactions that have no
impact on fitness, since they are either too slow to affect metabolism or involve inaccessible substrates. These
so-called promiscuous reactions are widespread [27] and they are considered a latent pool of innovation for
evolution to use [27–29]. A promiscuous reaction might become important for fitness after a change in the
organism’s environment, such as the introduction of industrial chemicals in soils [30,31].

Amplification
The enzymatic efficiency for a new reaction is typically low and cannot be easily improved. Beneficial mutations
for the new reaction often have negative effects for the old one (pleiotropy), resulting in an evolutionary
impasse. Furthermore, distinct regulation of both reactions is impossible, unless they occur in different cells or
tissues. The solution for these problems is the duplication or further amplification of the gene. In IAD, this
amplification, defined as a selective expansion in the number of copies of a gene, is a favourable genetic event
in itself, since it results in a larger number of enzymes and, ultimately, in an increase in the reaction turnover
in the cell.

Divergence
After amplification, the copies of the gene are free to independently diverge. As some copies improve their cata-
lytic efficiency towards one reaction, others are deleted from the genome as they no longer provide an advan-
tage. Eventually, only two copies of the gene remain, each specialised in their chemical reaction and associated
regulation.

Expansion of enzyme evolutionary families
A family of related enzymes originated solely by duplication and divergence will have a unique common ances-
tor and can be organised in a well-ordered phylogenetic tree in a way that mimics the evolution of species and
the tree of life. This hierarchy is complicated by domain recombination, so this is discussed separately below.
While some enzyme families are very specific and tend to catalyse only one function across all the organisms
where they are expressed, in other cases, the process of duplication and divergence leads to, over time, an
increase in the number of members in protein families and also the number and variety of their functions.
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Some well-studied functionally diverse enzyme families include the haloacid dehalogenases [32], Glutathione
Transferases [33], and the amidohydrolases [34].
Using structural classification systems like CATH [35] or SCOP [36] to identify distantly related homologues

together with functional assignments, such as the enzyme commission (EC) [37], it is possible to categorise

(A)

(B)

Figure 2. Models of divergent evolution and possible evolutionary relationships among extant enzymes.

(A) The Innovation–Amplification–Divergence (IAD) model of enzyme evolution. Ohno’s model is shown for comparison. A

description of both models is given in the main text in the ‘Enzyme Evolution by Gene Duplication and Divergence’ section. (B)

Evolutionary and functional relationships between enzymes and non-enzymatic proteins. The colours of the squares are meant to

indicate enzyme efficiency from green (high efficiency) to red (low efficiency). Grey squares indicate that the enzyme is likely

promiscuous but was not tested for promiscuous reactions. Black circles indicate that the protein has a non-enzymatic reaction.

The types of evolutionary relationships are discussed in the ‘Evolutionary and Functional Relationships Between Enzymes’ section.
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enzyme families in an encompassing scale. FunTree [38] is a resource that shows phylogenetic and functional
relationships between enzymes based on CATH and EC, and has been used to study the general evolution pat-
terns of enzymes. For example, among 379 enzyme families [39] for which the catalytic function can be
assigned to a single structural domain, there are enzymes catalysing 2994 unique reactions, meaning that most
types of reactions (at least according to the EC classification) have diverged from a common ancestor. The EC
classification can also be used for a more detailed analysis. The EC hierarchy is composed by four levels: class,
subclass, sub-subclass, and serial number. The three first levels are used to define the type of the reaction while
the serial number specifies the substrates and products. Enzymes that have the same sub-subclass (the same
first three EC numbers) and only differ in the last digit, catalyse essentially the same type of reaction on a dif-
ferent substrate. Most evolutionary changes observed in FunTree and similar datasets are at the fourth EC level.
One can also use changes of EC class (the first number in the EC code) to find more radical changes of func-
tion, which for the mentioned 379 families account for <20% (18.6%) of the changes observed.
Illuminating as they may be, studies like these fall short of providing a casual explanation between the

changes in the protein sequence and the observed functional changes (akin to limitations in genome-wide asso-
ciations studies for the genome and phenome). To establish these causal links, a comprehensive analysis of the
mutation’s impact on the enzyme’s structure, ligand binding, and catalytic mechanism is necessary.
Evolutionary studies with this level of detail and across families are rare [40] because these analyses are difficult
to automate, in particular when considering mechanistic data. However, as we discuss in the ‘Enzyme
Mechanism’ section, we have recently made some progress in systematising the knowledge about enzyme
mechanisms into ‘rules of enzyme catalysis’, which might be a future foundation for such studies.

Enzyme evolution by recombination of domains
The duplication models discussed above assume that an entire gene is duplicated, followed by independent
changes in each copy. However, some genetic events can also lead to the insertion of genetic material from
some genes into or next to other genes. Proteins domains are regions of the protein that fold independently
and usually have a well-defined function. These domains serve as evolutionary units because genomic events
that do not copy or move the entire domain are likely to disrupt its folding and function, rendering the result-
ing protein inactive. Throughout evolution, domains with distinct functions have been combined in different
ways to create fully functional proteins [41,42].
The recombination of domains is also an important source of innovation in enzyme evolution. New domains

can alter substrate specificity, regulate binding or catalytic activity, change the catalytic function, or simply add
independent catalytic activities, resulting in multifunctional enzymes [43]. Furthermore, many enzymes that
use co-factors evolve by combining the co-factor binding domains with other domains that bind the substrate
or provide additional catalytic machinery. Notable examples include the Radical S-adenosylmethionine (SAM)
superfamily [44], and FAD binding enzymes, such as Flavin dependent nitroreductases [45] and monooxy-
genases [20] where, interestingly, the sequence of the co-factor binding domains (but not the structure) is
found interlaced with the sequence of the substrate binding domain.
Comprehensive and automated studies on the evolution of enzymes by domain recombination are challen-

ging because the annotation of function in protein databases is traditionally given to the whole sequence.
Preferably, one would want to know which function is contributed by each domain. The PDBe Knowledge Base
and associated data sources [46], which provide residue-level annotations, might be a good starting point for
future studies.

Convergent evolution
The same selective pressure keeping catalytic residues and mechanisms extremely well conserved during evolu-
tion, also leads to cases of convergent evolution, where enzymes evolve similar catalytic capabilities independ-
ently. The most clear-cut examples of convergent evolution in catalysis, are enzymes that have different structural
folds but can catalyse the same overall reaction (sometimes called Non-homologous Isofunctional Enzymes) [47].
From a bioinformatics point of view, for annotated enzymes, these can be detected by searching for enzymes that
have a different CATH code (or similar evolutionary classification), but the same EC number. In the FunTree
study mentioned above [39], it was observed that 59% of EC reactions are catalysed by proteins belonging to at
least two CATH superfamilies, suggesting that convergence of chemical function is surprisingly common.
Convergence can happen on different levels, as illustrated in the third panel of Figure 3. Complete conver-

gence would be an example where the two enzymes catalyse exactly the same overall reaction (which implies
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(A)

(B)

(C)

Figure 3. Some paradigms of enzyme evolution as defined by the similarities between the different dimensions of enzymes.

(A) Mechanisms are represented as graphs where nodes (circles) represent stable configurations of the active site along the

mechanism (reactants, intermediates and products) while edges (lines) represent the catalytic steps. Two mechanisms can be

compared by showing their graph representation side by side. An equal sign is used to represent steps with a high degree of

similarity. Nodes with the same colour represent the same ligand (substrate or product) in both mechanisms. Transformations

along the mechanism are indicated with a change of gradation to darker colours or complete change of colour when the

transformation between the two enzymes are different. (B) Three paradigms (among other possibilities) of the divergent evolution

of enzymes. Enzymes might evolve to (from left to right): catalyse the same reaction using the same mechanism on a different

substrate; catalyse a different reaction on the same substrate by a partial change in the mechanism; catalyse a completely

unrelated reaction on the same or different substrate. (C) Three paradigms (among other possibilities) of the convergent evolution

of enzymes. Enzymes with unrelated ancestry might converge to (from left to right): catalyse the same reaction using a similar

mechanism; catalyse the same reaction using another mechanism; bind the same substrate to perform unrelated reactions.
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having the same substrate and products) using an identical set of catalytic residues and reaction mechanism.
Convergence only at the reaction level would mean that the enzymes catalyse the same reaction using a differ-
ent mechanism and catalytic residues. It is also possible that enzymes catalyse a common catalytic step on dif-
ferent substrates or have converged to bind the same substrate or co-factor but catalyse a different reaction.
Once more, a detailed account of the convergent evolution of enzymes would need to consider similarities at
these different levels. This is even more important in the study of convergence than divergence because the
lack of sequence similarity means that most of these relationships (such as mechanistic similarities) might be
hidden in the data.

Functional and evolutionary relationships between enzymes
The complex interplay between the evolution of enzymes and the chemistry they catalyse leads to a rich tapes-
try of possible sequence-function(s) associations. For example, one enzyme can catalyse multiple reactions, dif-
fering in their substrates or overall chemical transformations, and the same reaction can be catalysed by related
or unrelated enzymes. The second panel of Figure 2 shows some of the different possibilities and Figure 3
shows how these can be explained in terms of the underlying binding capabilities, catalytic machinery, and the
reaction mechanisms.
All enzymes catalyse at least one chemical reaction that is important for the fitness of the organism. This

might be called the enzyme’s primary or native reaction. Some enzymes (protein D1 in Figure 2, for example)
are able to catalyse more than one reaction (or the same reaction on different substrates) where the additional
reactions are also important for fitness. This can be a well specified secondary reaction, or the case of broad-
specificity enzymes, which are able to catalyse the same type of reaction across a range of substrates, as in the
case of detoxifying enzymes.
Promiscuous reactions, on the other hand, are reactions that enzymes are able to catalyse but that are cur-

rently irrelevant for biological function and the fitness of the organism (there are other definitions of enzyme
promiscuity, but we think this is the most useful) [27]. For example. these might be reactions that are too slow
to have a metabolic impact, or reactions that involve substrates that do not exist in the organisms or their envir-
onment. Although not immediately important for fitness, promiscuity is crucial for the evolvability of enzymes,
as explained above [29,48]. It is increasingly clear from substrate profiling studies that most, if not all, enzymes
are promiscuous.
Enzymes might also perform non-catalytic functions. When the non-catalytic functions are independent

from the catalytic activity, these are sometimes called moonlighting enzymes [49]. Conversely, pseudoenzymes
(protein A4 in Figure 2) are proteins that do not have any catalytic function but are evolutionarily related to
enzymes [50]. Typically, pseudoenzymes evolve from a catalytic ancestor that has lost its catalytic function [51].
Orthologous enzymes (proteins A1 and C1 in Figure 2, for example) are homologous proteins that have

diverged following a speciation event and keep catalysing the same primary reaction. Paralogous enzymes (A1
and A2) arise from gene duplication within the same genome and evolve to catalyse different functions.
Isozymes (A2 and A3) are enzymes in the same organism that catalyse the same reaction but might have differ-
ential regulation and expression, which justify the presence of a duplicate. Convergent evolution is at play when
unrelated enzymes catalyse the same reaction (A2 and F2). The correct identification of all these evolutionary
relationships is crucial to predicting the function of uncharacterised enzymes [52].

Evolution as an algorithm
As a search algorithm with the goal of finding catalytic proteins for a host of chemical reactions, enzyme evolu-
tion has several biological constrains, which limit the potential solutions it can find. Point mutations, the most
common genetic event, restrict the size of potential changes to one residue position and to a small selection of
the 20 amino acids (due to the genetic code, most amino acids changes are unreachable after mutating only
one nucleotide). Series of mutations, which can be thought as a walk through the sequence space, cannot go
through states where the activity of the enzymes is compromised or, depending on the selective pressure, even
slightly lower. This means that the algorithm can get stuck in local maxima of fitness, and better maxima
might be inaccessible because there is no favourable path to reach them (Evolution does not have foresight).
One of the advantages of rational enzyme engineering is precisely the ability to make targeted jumps to parts
of the sequence space that are unreachable to natural or even directed evolution.
The complexity of enzymes makes this a difficult search problem. Each of the dimensions discussed in this

paper represent competing evolutionary goals, such as the maintenance of structural fold and stability or the
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enhancement of binding and the catalytic rate [45]. This results in an intricate evolutionary space where the
effect of pleiotropic mutations and epistasis is significant [53]. It also explains why small changes and the
overlap of catalytic functions (promiscuity) are so common, as opposed to large functional jumps, which will
likely be deleterious. Finally, the presence of competing goals, coupled with the absence of a need for optimis-
ing beyond selective pressure, also justifies why evolution tends to produce enzymes that are ‘good enough’
rather than perfect.
Epistasis refers to the differential effect of mutations in one position being dependent on mutations in other

positions of the same or different gene [54]. Epistasis is a reflection of the vast and multidimensional sequence/
fitness space, where a particular mutation can only be called beneficial or deleterious (for enzyme activity, for
example) in the context of a specific sequence, and where the role and importance of each position is not abso-
lute but dependent on the environment. Pleiotropy refers to any genetic variants that affect more than one
phenotype [53]. Pleiotropic mutations, in the context of enzyme evolution, are mutations that improve the
ability of the enzyme to catalyse one reaction, while being detrimental to the other. These effects might be
noticed at the level of the binding, the catalytic rate, or the overall mechanism. Pleiotropic mutations are an
important reason for the necessity of the duplication of genes (together with independent regulation), because
in most cases it is impossible to find a particular sequence that can effectively catalyse the two reactions of
interest with optimal rates and expression.

Mapping the dimensions of enzyme catalysis
Information about the various dimensions of enzyme catalysis can be found scattered throughout the literature
but also consolidated in several databases, each dedicated to specific types of data [46]. In addition to providing a
centralised location for accessing information, databases offer the added benefits of normalisation and structured
data models, which facilitate analysis and the re-use of data. Prediction methods, typically trained or tested
against these data, allow researchers to use certain data points (like sequence) to fill the gaps in knowledge about
other data (such as structure). Figure 1, together with the sections below, provide an outline of the collective
understanding of enzymes across the six dimensions and shows some of the databases containing this knowledge.
We also discuss how some of the missing data can be predicted from computational methods (summarised in
Figure 4) and give a non-exhaustive account of some of these tools for each dimension.

Sequence
Among the 6 dimensions shown in Figure 1, sequence is the one for which there are more experimentally
determined data. This can be attributed to the increasing availability of sequencing methods, including recent
advancements in metagenomic experiments, which enable the simultaneous sequencing of genomes from mul-
tiple species [55]. UniProtKB [1], a comprehensive database of protein sequences and associated biological
knowledge, currently holds more than 246 million sequences belonging to more than 163 thousand proteomes

Figure 4. Overview of existing computational methods used to predict the dimensions of enzymes based on known data

[13,35,52,77–79,87,93,99,103,105,106,113,120,123,126–133].

*Ligand Binding refers both to the identification of ligand binding sites and the prediction of native ligands and their binding poses.
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(not considering redundant and excluded proteomes). At the same time, the MGnify database [56], which
archives predicted protein sequences from the sequencing of metagenomic samples, contains more than 2.4
billion sequences.
The fraction of these proteins that has been experimentally characterised is minimal. Indeed, for most of the

sequences in these databases, not even the existence of the protein has been confirmed, as protein sequences
are solely predicted from genomic sequencing data. Swiss-Prot, a manually curated subset of UniProtKB that
focus on well-studied organisms and proteins, contains 569 213 sequences (release 2023_1), or 0.23% of the
total UniProt. Only 19.6% of the entries in Swiss-Prot contain evidence for the existence of the protein at the
protein level, and another 9.8% at the transcription level. For TrEMBL, the non-curated portion of UniProt,
these numbers are 0.08% and 0.55%, respectively. Finally, while the number of entries in Swiss-Prot has been
essentially static for the past few years, TrEMBL and Mgnify have been growing exponentially, increasing the
gap between the amount of raw sequence data and their functional characterisation.
Enzymes comprise 48.2% of Swiss-Prot (274 342), identified as all the entries associated with at least one EC

number, while 15.5% (38.2 M) of TrEMBL entries are associated with an EC number. The enzyme coverage in
Swiss-Prot and TrEMBL do not reflect the percentage of enzymes across life or even across the annotated
species. On the one hand, there is an overrepresentation of enzymes in curated datasets such as Swiss-Prot,
because enzymes have been more extensively studied in the past compared with other proteins. On the other
hand, in non-curated datasets many proteins have not been assigned any function, including enzymes.
We have previously discussed the different ways enzymes are annotated in Swiss-Prot, and the data support-

ing these assignments, in the context of pseudoenzyme classification [57]. In that study, we verified that only
11% of Swiss-Prot entries contained experimental evidence related to the function of the protein, and of these,
46.9% (29 731) were labelled as enzymes. There is no better way to illustrate the challenge and the importance
of computational methods to make correct functional assignments than contrast this number with the already
mentioned number of non-redundant proteins in Mgnify, 2.4 billion, a difference of five orders of magnitude.
As discussed above, proteins (or domains) that evolve by duplication and divergence can be grouped in evo-

lutionary families. Proteins in the same family can be identified by sequence similarity and typically perform
the same or similar functions. These principles are the basis for several systems that try to organise the known
protein sequence space. For example, the current version of Pfam [58] organises UniProt sequences into 19 632
related families of protein domains, based on matches to HMMs (hidden Markov models), representing each
family. All sequences in a Pfam family share a common ancestor but they may not share the same function.
Other notable classification systems of protein families include the CCD [59] and PantherDB [60]. PIRSF [61],
rather than using domains, focus on the annotation of entire proteins. InterPro [62], which integrates these
and other signatures in a single resource, assigns at least one signature to 84.1% of the sequences in
UniProtKB. Evolutionary units smaller than the domain have also been identified and have been used to
explain the evolutionary history and evolutionary relationships between domains [63].

Structure
Protein structures are available through the Protein Data Bank (PDB) [2], a structural archive of biological
macromolecules. As of June 2023, the PDB archives 206 462 structures, most of them containing proteins (201
976). In contrast with most protein sequences in UniProt, which are determined in bulk by genome sequencing
of entire organisms, methods to solve protein structures (X-ray crystallography, Electron Microscopy and
NMR) are costly and time intensive and so, are typically used to characterise one system at a time. For this
reason, the size and growth of PDB is more modest than UniProt. PDB is also more redundant, since many
structures deposited in the PDB belong to the same protein. The current 201 976 protein structures in PDB
correspond to only 62 433 UniProt sequences. PDB is also biased to better studied organisms and proteins.
Almost one third of the PDB structures are of human proteins, for example, and more than two thirds are
enzymes.

Structural families and structure prediction
Structural similarity can also be used to find evolutionary relationships among proteins and to define families
and, because protein structure is much more conserved than sequence, it allows us to retrieve much older rela-
tionships. It is possible to recognise homologous proteins based on their overall fold even when their sequences
have diverged beyond recognition. SCOP [36], CATH [35] and ECOD [64] are well known structural classifica-
tion systems that group evolutionary related proteins together. Taking CATH as an example, all protein
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domains within the same superfamily (such as CATH:3.40.50.720 — NAD(P)-binding Rossmann-like Domain)
share a common ancestor, and have emerged by duplication and divergence, either by speciation events
(leading to the appearance of orthologs) or gene duplication (leading to the appearance of paralogs). As of
June 2023, CATH categorises more than 536 000 domains, belonging to more than 186 000 PDB structures,
into 6631 distinct superfamilies.
For many years, template-based methods, which can predict a protein’s structure starting from the structure

of a homologous protein, were the most efficient tool to bridge the gap between the number of known
sequences and the number of available structures [65]. Recently, deep-learning methods, most notably
Alphafold [13], which only requires an alignment of homologous sequences to the query, have been able to
generate high quality structural models, even for proteins that do not have a known structural homologue. The
alphafold database [66] currently provides structural predictions for most sequences in UniProt. ESMFold,
another deep-learning structure prediction method, has been used to predict the structure of more than 700
million metagenomic sequences [67].

Ligand binding
The active site is the region of the enzyme where the reaction takes place. It needs to fulfil two main roles for
the catalytic activity to happen: to bind the required substrates and co-factors; and to provide the catalytic resi-
dues and surrounding environment that are conducive to catalysis. When it comes to binding, there are two
levels of knowledge that we might have for a given enzyme. The first is to know which ligands bind the enzyme
and what is their binding affinity. Binding databases typically include data on both natural substrates and
enzyme inhibitors. BrendaDB [68], a database containing kinetic information of enzyme reactions, contains
176 610, 69 886, and 46 076 values of KM, IC50, and KI, respectively. BindingMOAD [69] and PDBbind [70],
which focus on complexes that exist in the PDB, contain affinity data for 15 223 and 19 443 complexes, respect-
ively. BindingDB [71] has more than 2.7 million data points extracted from both academic papers and patents.
The second type of knowledge about binding is related to where the ligand binds in the active site and what

are the conformations the ligand and the enzyme adopt upon binding. These types of data are ultimately
derived from the PDB, since many enzymes in the database include ligands in their active site, but other data-
bases curate this information in different ways. These include the sc-PDB [72], BioLip [73], the already men-
tioned BindingMoad and the NLDB [74], which also includes predicted complexes.
We have previously analysed how well the PDB covers the binding of native ligands to enzyme structures

against the known reactions in EC and KEGG [75]. We found that most enzymatic structures in the PDB have
either no ligand in the active site or a ligand with low similarity to the native one. Only 26% of the enzyme
structures in the PDB bind a molecule that is at least 70% similar to the cognate ligand. This coverage increases
to 58.9% and 62.9% if we aggregate all the structures belonging to the same KEGG reaction, or EC number,
respectively. Nonetheless, this still means that there is no adequate enzyme–ligand structure for more than one
third of the reactions curated in these databases.

Protein–ligand prediction
While Alphafold and similar methods helped filled the gap in structural coverage, when compared with
sequence, and fixed some of the experimental biases in PDB, it did not help with the lack of enzyme–ligand
structures, since its predictions do not include ligands. Alphafill [76] alleviates this problem somewhat by
finding ligands that bind structurally similar protein regions in PDB and transposing these ligands to the
Alphafold structure, but this solution does not extend to ligands that do not exist in the PDB.
When it comes to predict binding to uncharacterised proteins, there are at least three subproblems to solve,

the identification of ligand binding sites, the identification of the correct ligands and their binding pose, and
the estimation of the binding affinity. There are numerous computer tools dedicated to answer one or more of
these questions [77,78]. Template-based methods work by looking at similar sequences or structures that have
been previously characterised. Knowledge about the phylogenetic relationships can also be useful here, since it
is expected that orthologous enzymes will bind the same substrates while paralogues might differ. Machine
learning methods are also trained on existing data and can use both sequence or structural features to identify
binding sites and potential ligands. Simulation methods, most notably molecular docking [79], can be used to
predict binding poses and affinities ab initio, starting from the protein structure.
Despite the abundance of tools to predict protein–ligand binding, this is still an open problem. An accurate

and general solution to identify good ligands for a given protein would be useful not only for the study of
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evolution and enzyme function but would be revolutionary for drug discovery, so progress in this area is bound
to continue.

Catalytic residues and co-factors
The catalytic residues are the amino acids in the active site of the enzyme that are responsible for accelerating the
chemical reaction by lowering the energy of transition states or providing mechanistic paths that are not available
elsewhere. The M-CSA (Mechanism and Catalytic Site Atlas) is the most comprehensive dataset of catalytic resi-
dues and includes curated annotations of the specific functions that the residues perform in each catalytic step.
This data has been used in the past to better understand enzyme function and evolution. We recently did an
overview of the frequency, roles and conservation of the catalytic residues across 648 enzyme families [3] and
have also studied how mutations in the catalytic residues correlates with the evolution of pseudoenzymes [51,57].
The same dataset has also been used by others to answer biological questions [80,81], and to develop other data
resources and methods [82–86], including most of the prediction methods discussed below.
Catalytic residues are extremely well conserved in evolution, even more so, in some examples, than the

overall protein fold. For this reason, they are extremely important in the study of divergent evolution. Unlike
the rest of the sequence, changes in catalytic residues are almost always associated with either a change or loss
of catalytic function. Conversely, and unlike the overall protein sequence and structure, catalytic residues are
also crucial to understand convergent evolution since the same active site composition and disposition can be
found in unrelated enzymes.
We have recently reviewed the literature on studies and applications of 3D templates of catalytic residues

[87], have analysed their flexibility in PDB structures [88], and their distribution in related and unrelated
enzymes [89] using the M-CSA dataset. In related enzymes of both similar or divergent functions, active sites
exhibit different degrees of structural variation, with the relative 3D disposition of catalytic residues being
affected by their role in the mechanism and by binding of different substrates or products. With this geometric
information we have generated several consensus templates representing compact clusters of catalytic residues.
Recurring instances of these templates, which we have defined as the ‘3D modules of enzyme catalysis’ [89], are
typically associated with one or more functions and types of ligands and can themselves be used to better
understand biological catalysis and evolution, and aid in enzyme design.
Co-factors are non-protein molecules that are required by many enzymes to perform their catalytic function.

These molecules provide catalytic roles that cannot be performed by the canonical amino acids [90]. The evolu-
tionary history of co-factors is interesting in its own right, since they are thought to be molecular fossils, cata-
lysing reactions that can be traced back all the way to the origins of life. This argument has been initially made
for nucleotide-like co-factors, which might be remnants of an RNA world [91], but has been extended to other
organic and inorganic co-factors, which might have been the original catalysts in prebiotic geochemistry
systems and later co-opted by RNA and protein-based enzymes [92]. Information about the roles of co-factors
in enzyme mechanisms can be found in the M-CSA and the Co-factor database [4].

Prediction of catalytic residues
The identity of the catalytic residues of uncharacterised enzymes can be computationally inferred using both
sequence and structural data. Due to their high conservation, a simple homology search and multi sequence
alignment might be enough to identify potential catalytic residues, in particular, if the enzyme exists in dis-
tantly related species. In automated methods, conservation data is typically combined with other sequence-
based features [93] and phylogenetic information [94,95]. Structurally, the clustering of catalytic residues in a
well-defined pocket or cleft (the active site) and other features such as solvent accessibility, calculated pKa, and
number of contacts, have been used by other methods [96,97]. It is also possible to create a network representa-
tion of the protein structure, which yields other descriptors such as closeness centrality that can also be used to
distinguish catalytic residues [98]. Finally, some methods take an integrative approach by combining different
types of data, typically with the help of machine learning algorithms to identify the best combination of fea-
tures [99–103].

Enzyme mechanism
The enzyme mechanism comprises all the atomic movements and bond changes in the active site that are
responsible for moving the catalytic reaction forward. It is a crucial piece of data to understand how enzymes
work and how they have evolved. The M-CSA (Mechanism and Catalytic Site Atlas) database [7] contains
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detailed annotations of the individual catalytic steps of 734 enzymes mechanisms. This is a small number when
compared with the other databases mentioned in this review, which reflects both the lower number of studies
in the literature and the complex nature of the problem, which requires many different types of data coming
from different types of experiments. Nevertheless, since many related enzymes share the same mechanism, the
coverage across the protein space is more extensive than it initially appears. By assuming that homologous
sequences with the same set of catalytic residues and catalysing the same reaction also share the same mechan-
isms, the annotations in M-CSA can be extended to more than 15 000 PDB structures and 70 000 Swiss-Prot
sequences.
The literature is lacking in studies looking at the evolution of enzymes at the mechanistic level. Twenty years

ago, Bartlett et al. [40] performed a manual analysis of 27 pairs of homologous enzymes with different func-
tions, to learn how they differed in catalytic residues and mechanisms. The picture for this small subset of
enzymes was diverse. While all enzyme pairs had at least some active site similarities, only 15 pairs exhibited
mechanism similarity. In this last group, enzymes shared some catalytic steps and diverged at others, and these
changes, typically at the start or end of the mechanism, were enough to completely change the overall catalysed
reaction. Another study [104] charted the appearance of new catalytic steps over evolutionary time to find that
half of the observed chemistry in enzymes was already present in LUCA, while the other half appeared progres-
sively over time.
A large scale and complex analysis of the evolution of enzyme mechanisms has not been possible because

until recently there was no way to automatically compare reaction mechanisms. We have recently generated a
set of ‘catalytic rules’ (see Figure 5) that are based on the catalytic steps annotated in M-CSA [105], which
should be useful to automatically find similarities between the mechanisms of related and non-related enzymes.

Predicting the mechanism of enzymes
Simulation methods, such as QM/MM (Quantum Mechanism/Molecular Mechanics), are widely used to study
the mechanism of enzymes in silico [106]. These methods provide a window to the active site by showing all
catalytic events with atomic-level detail, something that is not accessible experimentally, due to the transient
nature of the transition states and unstable intermediates. Although powerful, these methods are computation-
ally expensive and difficult to setup, which limits their usage in large scale.
Homology can also be used to infer the mechanisms of enzymes but only if another enzyme with identical

active site and function has already been characterised, in which case it can be assumed that both enzymes
follow the same mechanism. To make use of the accumulated knowledge about enzyme mechanisms available
in M-CSA, we have developed EzMechanism [105], a tool that can automatically generate mechanistic hypoth-
eses for a given active site and chemical reaction. EzMechanism only takes into account local chemical similar-
ities, so it also works for unrelated enzymes. Furthermore, it is able to compose mechanisms that have never
been seen before. We are currently working on coupling the mechanistic hypotheses generated by
EzMechanism to QM/MM calculations, with the objective of automatically describing their energetic profile.

Figure 5. Some rules of enzymatic catalysis.

Each rule represents a type of chemical step observed in one or more reaction mechanisms annotated in the M-CSA

(Mechanism and Catalytic Site Atlas). We have previously described the process of creating these rules and their possible

usages for studying enzyme evolution [105,134].
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Enzyme reaction
Thousands of biological reactions have been identified, particularly those associated with the primary metabol-
ism, and have been categorised by different resources. The EC list [37], the most widely used classification
system for enzyme reactions, currently includes 6743 EC numbers [107]. KEGG Reaction [108] and Rhea [5],
two databases of biological enzyme reactions, contain annotations for 11 858 and 15 116 distinct chemical reac-
tions, respectively. EnviPath [109], which focuses on reactions involved in the biotransformation of environ-
mental contaminants, contains 4398 reactions. Of the 569 793 sequences currently annotated in Swiss-Prot,
274 744 are annotated with an EC number [1]. In TrEMBL, which comprises the 248 M unreviewed sequences
of UniProt, and where most of the annotation attributions have been done by homology, there are almost 40 M
sequences associated with an EC number.
Like protein sequence and structure, chemical reactions can also be grouped by similarity, and the number

of these clusters give a better indication of the size of the chemical space than the total number of reactions.
For example, many enzymatic reactions describe the same transformation performed on molecules that share a
common chemical group [39]. Typically, these arise from cases of divergent evolution, where binding residues
are mutated, while catalytic residues, and the overall mechanism remain conserved. However, unlike sequences
and structures, similar enzyme reactions can also be the result of convergent evolution, as discussed in the
‘Convergent Evolution’ section.
A possible measure of the true diversity of enzyme reactions is the third level of the EC classification. As

explained in the ‘Expansion of Enzyme Evolutionary Families’ section, reactions that only differ on the fourth
level can be considered the same type of reaction applied to a different substrate. According to this measure,
the EC currently describes 316 types of reactions, or sub-subclasses. The KEGG database groups their reactions
in 65 reaction classes defined by a transformation pattern, which can also be understood as types of reaction.
Both the EC hierarchy and the definition of KEGG reaction classes, are manually curated. An automated ana-
lysis using EC-BLAST on a set of 6000 fully specified and balanced reactions built from the KEGG reaction
database, was able to create clusters based on similar bond changes and reaction centres. In this analysis, more
than 700 clusters with more than one reaction were created [110].
While the data discussed above focus on the classification of reactions and the identity of substrates and pro-

ducts, other databases such as Brenda [68] and Sabio-RK [111] hold information about the kinetics of reac-
tions. Brenda contains more than 85 000 kcat values while Sabio-RK contains more than 50 000 kinetic
parameters, overall. Traditionally, using kinetic data for broad studies of enzyme function has been challenging
because data has not been consistently provided in the literature. For example, in many papers of kinetic
studies, the exact sequence of the protein being studied was either unknown, or not reported. Experimental
conditions, which can greatly affect enzyme turn over, have also not been reported consistently. This problem
has been addressed on recent years after the recognition of the importance of data standards. The STRENDA
(Standards for Reporting Enzymology Data) guidelines, and their adoption by the main publications publishing
enzymology studies, have been key to these advancements [112].

Prediction of enzyme reactions
Identifying the function of uncharacterised protein sequences and structures remains one of the most import-
ant outstanding goals in biology, and the number of existing tools to address this problem vast. As with the
other dimensions, understanding conservation and neofunctionalization throughout evolution, is key to most
of these prediction methods. Enzymes in the same family that contain the same conserved catalytic residues
probably catalyse the same type of reaction, for example. The conservation of binding residues can further
inform if the substrate specificities are the same. The existence of two orthologous enzymes in related species,
and particularly when there are not paralogs, can also give a strong indication that both enzymes have the
same function.
The CAFA (Critical Assessment of Functional Annotation) challenge is a competition aimed at evaluation

existing computational tools for protein function prediction from sequence [113]. Methods are scored by how
well they identify the most relevant GO terms for each sequence. In CAFA 3, the last challenge for which there
is a report, the best methods at predicting the molecular function ontology were GoLabeler (now superseded
by NetGo 3.0) [114] and CATH funfams. Both of these tools, as well as more recently developed methods,
such as ProteinBert [115] and DeepGo [116], combine traditional sequence similarity methods with varied
machine-learning approaches that are able to identify function-defining residues or motifs. Similar approaches
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do exist specific to enzymes, where the goal is to predict an EC number. A non-exhaustive list includes
EzyPred [117], DEEPre [118], ECPred [119], and DeepEC [120]. Structural information is also considered by
other methods, such as ProFunc [121], CO-FACTOR [122], and DeepFRI [123]. While using structure to
predict function was traditionally less useful than using solely sequence, due to the limited availability of
protein structures, this might now change with the ease of generating good structures for most sequences.
Finally, information specific to the catalytic sites can also be used [124]. Methods that use templates of catalytic
residues should be able to detect active site similarities in related but also unrelated enzymes when the catalytic
residues converged to the same geometry [89].
By design, the methods discussed above are limited to identify chemical reactions that are already annotated

in the classification system. Furthermore, most methods using sequence information together with machine
learning lack interpretability, making the evaluation of assignments for specific enzymes tricky. Considering the
methodologies described in the previous sections to predict the intermediate dimensions from sequence, it
should be also possible, in principle, to predict the reactions of enzymes ab initio, in a way that is not limited
to existing reactions. Alphafold and similar methods are already able to satisfactorily predict the structure of
proteins from sequence. If predicting ligand binding and the enzyme mechanism becomes straightforward in
the same manner, it will be possible to predict the reaction from sequence while establishing a clear causality
chain across the six dimensions discussed here.

Conclusion
Theodosius Dobzhansky famously stated that ‘Nothing in Biology Makes Sense Except in the Light of
Evolution’. This is clearly the case for enzymes, for which catalytic sites can be found conserved between bac-
teria and humans, and possible catalytic reactions can only arise by evolutionary paths that navigate the
complex protein space while being nudged by epistatic and pleiotropic effects.
Most new catalytic reactions arise as a result of gene duplication and divergence. Changes in substrate speci-

ficity can be traced to changes in the binding residues and typically correspond to a last-digit modification of
the EC number. Changes in the catalytic residues are much rarer but can lead to completely new chemical
activities. Studies to understand the precise evolutionary processes of neofunctionalization are still lacking, in
particular the role of mutations in the catalytic residues and changes in the enzyme mechanism. Ideally, we
would like to classify all functional changes across several enzyme families according to the paradigms shown
in Figure 3 (together with other possibilities).
Neutral drift and enzyme promiscuity have an important role in exploring the catalytic space without

impacting fitness. Promiscuous functions can become adaptive after an environment or cellular change, and
while initially inefficient, their activity can be improved after duplication and specialisation. The extent at
which promiscuity is relevant for enzyme function and evolution has been recognised for several examples, but
these kinds of data have not yet been used for large-scale computational studies, since available information
and in its curation in databases is still limited [125].
The evolution of new enzymes through recombination of domains is another area that, in our opinion,

would benefit from further studies. As explained above, domain recombination allows for big jumps in function
and is particularly relevant for co-factor-containing enzymes. Studies focusing on the contribution of each
domain for binding, catalytic residues, and the catalytic mechanism, would be helpful to understand domain
recruitment during evolution.
In this review, we highlighted some databases with information about enzymes as well as some computa-

tional methods that can be used to close gaps in knowledge. These examples were meant to illustrate some of
the available tools but are by no means exhaustive. Similarly, in the interest of brevity, other topics pertinent to
enzyme function and evolution such as metabolic databases, enzyme engineering, in particular directed evolu-
tion and rational design, ancestral reconstruction, and the role of structural dynamics, have been excluded from
the discussion.
One of the challenges of studying enzymes from the point of view of bioinformatics is related with the

variety of the available data, which mirrors the complexity of enzymes as biological catalysts The integration of
all these kinds of data, which we have organised here across six dimensions, is necessary to explain enzyme
function and evolution, and crucial for efforts of enzyme design. Another challenge is the limited availability of
data for certain dimensions, particularly when compared with the number of protein sequences. Our optimistic
viewpoint is that by using different computational approaches, including template-based, machine learning,
and simulation methods, it will be possible in the future to have a comprehensive knowledge base of enzyme
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function and evolution across these dimensions. In our opinion, the biggest obstacles to this vision are currently
the prediction of protein–ligand binding and of the enzyme reaction mechanism.
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