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Cerebellar volume and disease staging in Parkinson’s disease: 
an ENIGMA-PD study

A full list of authors and affiliations appears at the end of the article.

Abstract

Background: Increasing evidence points to a pathophysiological role for the cerebellum in 

Parkinson’s disease (PD). However, regional cerebellar changes associated with motor and non-

motor functioning remain to be elucidated.

Objective: To quantify cross-sectional regional cerebellar lobule volumes using 3D T1-weighted 

anatomical brain MRI from the global ENIGMA-PD working group.

Methods: Cerebellar parcellation was performed using a deep learning-based approach from 

2,487 people with PD and 1,212 age and sex-matched controls across twenty-two sites. Linear 

mixed effects models compared total and regional cerebellar volume in people with PD at each 

Hoehn and Yahr (HY) disease stage, to an age- and sex- matched control group. Associations with 

motor symptom severity and Montreal Cognitive Assessment scores were investigated.

Results: Overall, people with PD had a regionally smaller posterior lobe (dmax= −0.15). HY 

stage-specific analyses revealed a larger anterior lobule V bilaterally (dmax= 0.28) in people with 

PD in HY stage 1 compared to controls. In contrast, smaller bilateral lobule VII volume in the 

posterior lobe was observed in HY stages 3, 4 and 5 (dmax= −0.76), which was incrementally 

lower with higher disease stage. Within PD, cognitively impaired individuals had lower total 

cerebellar volume compared to cognitively normal individuals (d= −0.17).

Conclusions: We provide evidence of a dissociation between anterior ‘motor’ lobe and posterior 

‘non-motor’ lobe cerebellar regions in PD. Whereas less severe stages of the disease are associated 

with larger motor lobe regions, more severe stages of the disease are marked by smaller non-motor 

regions.

YdvdW: 1A, 1B, 2A, 2C, 3B
IHH: 1A, 1B, 2A, 2C, 3B
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Introduction

Anatomical abnormalities at the cerebral cortical and subcortical level are diffuse in 

Parkinson’s disease (PD), and have been reported across all symptomatic disease stages, in 

line with the progressive nature of PD.1 While the cerebellum is recognized for its cardinal 

role in motor functioning as well as various non-motor domains,2–9 relatively little research 

has been dedicated to characterizing the morphology of the cerebellum in PD.

Anatomically, the cerebellum consists of two hemispheres separated by the vermis, and 

is divided along its superior to inferior axis into three lobes: anterior, posterior and 

flocculonodular. The lobes are further subdivided into ten lobules, denoted by Roman 

numerals I-X.10,11 The anterior lobe, comprising lobules I-V, is largely associated with 

motor processes;12,13 the posterior lobe, comprising lobules VI-IX, can be further divided 

into superior (lobules VI, crus I and II (i.e. VIIA), and VIIB) and inferior (lobules VIIIA and 

VIIIB) divisions that represent non-motor and motor functional divisions, respectively.14,15 

Lastly, the flocculonodular lobe, comprising lobule X, is implicated in the governing of eye 

movements and body equilibrium during stance and gait.11

Perhaps surprisingly, a voxel-based morphometry meta-analysis from 2017 revealed no 

differences in cerebellar structure in people with PD compared to controls. This was 

possibly explained by heterogeneous clinical characteristics of the PD samples examined.16 

Furthermore, there is evidence to suggest that hypertrophy of subcortical regions may 

occur in mild stages of PD, which would further nuance meta-analysis findings.1 Other 

case-control findings suggest the involvement of the vermis, crus I, and lobule VI in 

PD,17,18 partly supported by a longitudinal analysis demonstrating subregional cerebellar 

atrophy in lobules I–IV, VI, crus I, crus II, VIIB, VIIIA, VIIIB, and the vermis.19 Some 

studies have shown associations between cerebellar atrophy and motor symptoms, cognitive 

dysfunction and disease severity.16,20–22 In a recent study, higher volume of lobule IV was 

associated with a higher intensity of resting tremor and total tremor severity in people 

with PD.23 Whilst there is some evidence to suggest cerebellar involvement is restricted 

to tremor-predominant patients,18 findings have been inconsistent.16 More spatially precise 

examinations of regional cerebellar volume in larger, more diverse samples, are required to 

understand the PD-related changes in cerebellar structure associated with disease staging 

and its association with motor severity and cognitive functioning.

The development of new machine learning based approaches for optimised and 

automated feature-based parcellation of the cerebellum allows for more spatially precise, 

finer-grained mapping of cerebellar anatomy.24 One such approach, called Automatic 

Cerebellum Anatomical Parcellation using U-Net with Locally Constrained Optimization 

(ACAPULCO), uses a deep learning algorithm to automatically parcellate the cerebellum 

into 28 anatomical subunits.25 ACAPULCO performs on par with leading approaches for 

automatic cerebellar parcellation including CERES2, has broad applicability to both healthy 

and atrophied cerebellums, and is more time-efficient than other approaches.25

Here, we applied the standardized ENIGMA cerebellum parcellation protocol (https://

enigma.ini.usc.edu/protocols/imaging-protocols/) which uses ACAPULCO to quantify 
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cerebellar lobule volumes from 2,847 adults with PD and 1,212 controls from the global 

ENIGMA-PD working group.26 We ran multisite mega-analyses to infer regional cerebellar 

volumetric differences people with PD compared to controls, comparing Hoehn and Yahr 

(HY) stages 1, 2, 3 and 4–5 with age- and sex-matched control groups. Relationships 

between total and regional cerebellar volume and i) time since diagnosis, and ii) motor 

symptom severity were assessed. Finally, exploratory analyses were conducted to assess 

cerebellar volume differences between PD with and without cognitive impairment.

Methods

Sample characteristics

Twenty-two sites were included in this cross-sectional study, totalling 2,487 adults with PD 

and 1,212 controls (Tables 1 and 2). Clinical information from the PD subjects included 

HY stage, time since diagnosis, age of onset of PD, scores from the (Movement Disorder 

Society sponsored revision of the) Unified Parkinson’s Disease Rating Scale part 3 (MDS-)

(UPDRS3) obtained in the ON or OFF state,27 medication status (currently on or off 

medication) and Montreal Cognitive Assessment (MoCA) score (Table 2).28 Individual-site 

inclusion and exclusion criteria are provided in Table S1. Some sites contributed multiple 

cohorts from separate testing environments including different MRI scanning acquisitions, 

yielding a total of 30 samples, henceforth referred to as “cohorts” (see “Image processing 

and analysis” section below). Disease severity was assessed using HY stages ranging from 

1 to 5, from HY1, “unilateral involvement only usually with minimal or no functional 

disability”, to HY5, “confinement to bed or wheelchair unless aided”. The modified HY 

scale,29 which includes intermediate increments of 1.5 and 2.5 to complement stage 2 

was used in 13 cohorts. We regrouped the cases so that HY1.5 (n = 79) and HY2.5 (n = 

208) individuals were included in the HY2 group. The HY4 (n = 67) and HY5 (n = 19) 

groups were merged into HY4–5, given their smaller samples. To address the issue of some 

people with PD being assessed with the original UPDRS and some being assessed with the 

MDS-UPDRS, we used a validated formula to convert original UPDRS3 scores to predicted 

MDS-UPDRS3 scores.30

Image processing and analysis: ACAPULCO

Whole-brain, T1-weighted 3D volumetric MR images were collected from each participant. 

Scanner descriptions and acquisition protocols for all sites are reported in Table S2. We 

treated each individual scanner and/or data acquisition protocol used in the collection 

of MRI scans as a separate cohort during statistical analysis (see below). Each image 

was processed in accordance with the ENIGMA cerebellum parcellation protocol, as fully 

described elsewhere (https://enigma.ini.usc.edu/protocols/imaging-protocols/).26 In brief, the 

cerebellum was parcellated into 28 subregions (left and right lobules I-III, IV, V, VI, Crus 

I, Crus II, VIIB, VIIIA, VIIIB, IX and X; bilateral vermis VI, VII, VIII, IX and X, and 

bilateral corpus medullare (central white matter) using ACAPULCO (version 0.2.1; https://

gitlab.com/shuohan/acapulco).25 As part of the pipeline, a measure of intracranial volume 

(ICV) is calculated for each participant using Freesurfer. At the individual-level, parcellated 

cerebellar masks were quality checked for segmentation errors (i.e., over or underinclusion 

of individual lobules) by visual inspection of the cerebellar mask overlaid on the respective 
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participants T1 image. This was followed by quantitative identification of outlier volumes 

that were greater or less than 2.698 standard deviations from the group mean. Outlier 

volumes (treated as NA) were subsequently excluded from group-level statistical analyses.

Statistical analysis

All statistical analyses of cerebellar volume were carried out using R version 4.1.0. We fit 

linear mixed effects regression models (LMM) using lme4 and lmerTest packages in R, with 

diagnosis (i.e., control or PD), age, sex and ICV as fixed factors and cohort as a random 

intercept. The main analysis investigated differences in total cerebellar volume (sum of all 

28 cerebellar regions of interest (ROI)) and each cerebellar lobule individually, in all people 

with PD vs. controls, using model 1:

Volume Diagnosis + Age + Sex + ICV + 1 coℎort (1)

ICV was included to control for between-subject differences in head size, which explains 

a substantial proportion of inter-individual variability (of non-interest) in brain volumetric 

assessments. In addition to modelling cohort as a random intercept in our linear mixed 

models, we also ran COMBAT on our raw dataset to correct for site-related heterogeneity. 

Results and comparisons of the results from the linear mixed models for COMBAT-corrected 

data and model 1 are reported in the supplementary material. For HY stage-specific 

analyses, we selected a subsample of controls matched on age and sex to each HY 

stage. To do this, we used the nearest neighbor-matching procedure implemented in the 

MatchIt package for R,31 to select an age- and sex-matched subsample of controls for 

each HY group based on a propensity score estimated with logistic regression (MatchIt 

“glm” distance measure, ratio 2, caliper 0.15). Using this approach ensured that HY 

stages could be qualitatively compared. Matched subsamples were assessed using a two-

sample Kolmogorov-Smirnov test for age and the Chi-squared test for sex. Model 1 was 

repeated for each of the HY stage-specific analyses. For all analyses, results were FDR 

(P<0.05) corrected for multiple comparisons. Cohen’s d effect sizes with 95% confidence 

intervals were calculated for each of the ROIs, based on the estimated marginal means 

and Satterthwaite’s approximation for degrees of freedom.32 Negative effect size values 

correspond to people with PD having lower values relative to controls.

We used linear mixed effects models to test for associations between each ROI volume (and 

total cerebellar volume) and i) motor symptom severity (MDS-UPDRS3 total score) and ii) 

time since diagnosis. For these models, age, sex, and ICV were modeled as fixed factors, 

and cohort as a random factor. For assessment with motor symptom severity, our primary 

analysis focused on MDS-UPDRS3 scores that were measured during the person’s ‘OFF’ 

state. If both ON and OFF state scores were available for each individual with PD (n = 1 

cohort), the OFF state score was selected and used as a fixed factor in the model. Here, 

‘OFF’ state is when the research team determines the participant is not receiving benefit 

from dopaminergic treatment, such as after a scheduled stop in therapy before the research 

session.27 For these analyses, partial η2 (eta-squared) is reported as a measure of effect size. 

Finally, to assess the relationship between cerebellar volume and cognitive ability within the 

entire sample, we first fit a linear mixed model with MoCA score, age, sex, MDS-UPDRS3 

score and ICV modeled as fixed factors, and cohort as a random factor. MDS-UPDRS3 
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score was included in the model as we wanted to test for the association between cerebellar 

volume and cognition independent of disease progression. Then, we stratified the PD group 

based on their MoCA scores, into cognitively impaired (MoCA score < 26) and cognitively 

normal (MoCA score ≥ 26) groups and fit the above linear model to test for differences in 

regional and total cerebellar volume.33

Results

Complete sample

Demographics—A two sample t-test showed that, on average, the people with PD were 

significantly older than the controls, mean age for people with PD = 63.2, SD = 9.7, mean 

age controls = 59.9, SD = 11.8, (t3697 = −8.9, P < 0.001). There were significantly more 

males in the PD group (62%) compared to controls (52%), χ2(1, n = 3698) = 37.6, P < 

0.001.

Total and regional cerebellum volume—There were no significant between-group 

differences in total (gray and white) cerebellar volume in people with PD vs. controls (P 
> 0.05 FDR). ROI analyses, however, revealed significantly lower gray matter volume in 

people with PD in 3 cerebellar lobules with small effect sizes (dmin= −0.11, dmax= −0.15, all 

P < 0.05 FDR; Figure 1). Effects were localized to the superior posterior lobe, specifically 

left and right VIIB and right Crus II. There were no significant between-group differences 

for the remaining cerebellar lobules (Table S3). An additional sensitivity analysis with an 

age and sex-matched subsample of 1,195 people with PD (49% female, mean age = 60.2, SD 

= 9.8) and 1,195 controls (51% female, mean age = 61.0, SD = 10.5) revealed lower volume 

of left and right VIIB and right Crus II in PD, with similar effect sizes (see Supplementary 

table S4).

Associations with time since diagnosis, motor symptom severity and MoCA 
scores—A total of 2,297 people with PD had time since diagnosis scores available for 

analysis and 1,189 had MDS-UPDRS3 scores obtained in the OFF state. There was no 

significant association between time since diagnosis and total or regional cerebellar volume, 

in PD participants (all PFDR > 0.05). There were no significant associations between 

overall motor symptom severity and total or regional cerebellar volume. A trend negative 

relationship between motor symptom severity and total cerebellar volume was observed 

(PFDR = 0.06). Given the known role of the cerebellar motor lobe (particularly lobules 

IV and V) in resting tremor in PD,23,34 we examined associations between left and right 

lobule V volume and total left and right tremor MDS-UPDRS3 subscale scores. In addition, 

associations with rigidity and bradykinesia subscale scores were assessed. Methodological 

details can be found in the supplementary material. Results showed a significant negative 

correlation between right limb tremor and right cerebellar lobule V volume in the full 

sample (P = 0.02). In HY1 (n = 148) there was a significant positive correlation between left 

limb rigidity (P = 0.02) and right limb rigidity (P = 0.03) and right lobule V volume.

In the total PD sample, 1,252 individuals had MoCA and MDS-UPDRS3 scores available 

for analysis. There was a significant positive association between total cerebellar volume 

and MoCA score, independent of time since diagnosis in people with PD (PFDR = 0.002). 
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Compared to cognitively normal people with PD (n=846), cognitively impaired people with 

PD (n=473) showed significantly lower total cerebellar volume (d= −0.17, 95% [−0.02, 

−0.30]; P = 0.01). Post hoc analyses showed that this finding remained significant after 

adjusting for motor symptom severity and time since diagnosis.

HY Stage analyses

The matching procedure selected 689 controls to match the 345 HY1 participants, 1,018 

controls to match the 1,018 HY2 participants, 557 controls to match the 281 HY3 

participants and 164 controls to match the 82 HY4–5 participants. The included controls 

partially overlapped across stage analyses. Two one-way ANOVAs across the 4 HY stage 

groups revealed significantly longer time since diagnosis and lower MoCA scores with 

increasing HY stages (Table 2).

HY1 vs controls—Compared to controls, HY1 participants did not show significant 

differences in total cerebellar volume (PFDR > 0.05). ROI analyses, however, revealed HY1 

participants showed a higher volume of left and right lobule V in the anterior lobe (d= 0.23, 

95% [0.10, 0.35] and d= 0.28, 95% [0.13, 0.42] respectively; all PFDR < 0.05) (Figure 2; 

Table S5).

HY2 vs controls—HY2 participants did not show significant differences in total cerebellar 

volume or regional cerebellar volume, compared to controls (P > 0.05 FDR) (Table S6).

HY3 vs controls—Compared to controls, HY3 participants showed significantly lower 

total cerebellar volume (d= −0.15, 95% [−0.02, −0.31]). ROI analyses revealed lower gray 

matter volume of superior posterior lobe regions left and right lobule VIIB (d= −0.31, 95% 

[−0.12, −0.50] and d= −0.35, 95% [−0.15, −0.53]) and right Crus II (d= −0.25, 95% [−0.09, 

−0.42]); all PFDR <0.05 (Table S7).

HY4–5 vs controls—HY4–5 participants showed significantly reduced total cerebellar 

volume compared to controls (d= −0.42, 95% [−0.09, −0.76]). As in HY3, HY4–5 

participants also showed a significantly lower volume of left and right lobule VIIB compared 

to controls, but of a larger magnitude (left d= −0.76, 95% [−0.44, −1.1] and right d= −0.76, 

95% [−0.42, −1.1]); all PFDR < 0.05. In addition, there was a significantly lower volume of 

the inferior posterior lobule left VIIIB (d= −0.45, 95% [−0.13, −0.78]) (Figure 3; table S8).

Post hoc analyses

HY Side-by-side comparison—Additional analyses comparing HY stages side-by-side 

showed significantly larger bilateral left and right lobule V in the HY1 group vs. HY4–

5 group (PFDR<0.05; see supplementary Figure S1). The left V lobule in HY1 was 

also significantly larger than in HY2 and HY3 groups (PFDR<0.05). Lobule VIIB was 

significantly smaller in the HY4–5 group bilaterally compared to HY1 and HY2 groups 

(all PFDR<0.05). The right VIIB lobule was also significantly smaller in the HY3 group 

compared to the HY1 group (PFDR<0.05).
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Discussion

In the largest, most comprehensive assessment of regional cerebellar volume in PD to date, 

we show evidence of regionally specific alterations in anterior and posterior cerebellar 

lobe volume in PD associated with different clinical stages of the disease. Whereas less 

severe disease stages (HY1) were associated with larger anterior ‘motor’ lobe regions, 

more severe disease stages (HY3, HY4–5) were associated with lower volumes principally 

weighted to posterior ‘non-motor’ lobes of the cerebellum. Lobule VIIB showed a non-linear 

pattern of lower volume with each HY-increment bilaterally, with the most significant 

group differences in HY4–5 compared to controls. Total cerebellar volume was significantly 

lower in PD participants with cognitive impairment compared to cognitively normal PD, 

independent of motor symptom severity.

The spatial non-uniformity of cerebellar volume differences associated with disease staging 

suggests a targeted involvement of motor cerebellar pathways during the earlier course of 

the disease and non-motor cerebellar pathways in the later stages of the disease. Our finding 

of larger bilateral lobule V in HY1 is partially supported by previous work demonstrating 

higher anterior lobe volume in PD.23 While we found no significant relationship between 

MDS-UPDRS3 total score and lobule volume, we showed in a subset of the PD sample that 

alterations of anterior lobe volume in people with PD map onto specific motor symptoms 

of the disease. Specifically, greater total right limb tremor was associated with smaller 

right anterior lobule V volume, although this finding was not significant in the (much 

smaller) HY1 group. Our observations sit apart from previous structural and functional 

MRI studies that report a positive correlation between cerebellum anterior lobe volume and 

severity of total tremor,23 as well as tremor-related activity and severity of rest tremor 

in PD.35 On the other hand, our findings are in line with a previous study showing 

a negative correlation between the cerebellum lobe VIIB and tremor severity in PD.36 

These contradicting observations are possibly explained by interindividual differences in the 

pathophysiology of tremor that determine the level of cerebellar influence.37 The suggested 

opposite relationship between cerebellar volume and tremor versus rigidity may relate to 

the known inverse relationship between rigidity and tremor symptoms in people with PD.38 

Collectively our findings suggest that anterior lobe morphology is related to two core motor 

symptoms, and supports the clinical relevance of these findings.

Higher anterior (motor) lobe volume in people with PD early in the disease course may be 

reflective of premorbidly larger anterior lobes, that retain their abnormal size in the early 

disease stage. It has been shown that genetic vulnerability to PD is associated with increased 

cortical surface area39,40 and higher ICV,41 and that people with PD on average have 

higher ICV compared to controls.1 These findings are suggestive of a neurodevelopmental 

component (i.e., brain overgrowth) underlying PD which may explain selectively larger 

regions such as the cerebellum and thalamus. It is also possible that enlarged anterior lobes 

in PD is a consequence of hypermetabolic activity in response to dysregulated subcortical 

circuits of the basal ganglia.42,43 The anterior lobe of the cerebellum is preferentially 

connected to motor-related regions of the cerebral cortex, including the premotor and 

motor cortex, through feedforward (corticopontine projections) and feedback (cerebello-

thalamo-cortical) closed loops. Until recently, the motor loops of the cerebellum and basal 

Kerestes et al. Page 8

Mov Disord. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ganglia were thought to be anatomically separate and to perform distinct motor functions.44 

However, anatomical tracing studies in rats and monkeys have shown evidence for two 

disynaptic projections from the cerebellum to the striatum via the thalamus, and from the 

subthalamic nucleus (STN) to the cerebellum via the pontine nucleus, implying two-way 

communication between the cerebellum and basal ganglia.45,46 Temporary hypertrophy 

(e.g., synaptogenesis) of the anterior lobe of the cerebellum could be driven by afferent 

and efferent cerebellar projections; firstly, abnormally high STN activity is thought to play 

a major role in the expression of motor features and leads to abnormal excitement of 

the cerebellar cortex.47 Secondly, PD tremor specifically has been linked to basal ganglia-

mediated hyperactivation of the cerebellothalamic pathway,35,48 and may be contingent upon 

higher thalamic volume in early PD.1 Critically, our findings suggest that higher anterior 

lobe volume in PD is not sustained over time, and diminishes with progression of the 

disease.

In contrast to the anterior lobe, posterior lobe volume was significantly lower in the PD 

group relative to controls and showed incremental decreases with more severe disease 

staging. Lobule VIIB, which showed the largest differences across stages, is a ‘non-motor’ 

region of the cerebellar cortex and is preferentially connected to prefrontal and posterior 

parietal regions of the cerebral cortex.13,49 Functional mapping studies ascribe this region 

to language and attentional processes.9,14 Functionally, this region is also part of the 

frontoparietal resting state network, that is selectively vulnerable to neurodegeneration and 

has been implicated in PD with and without associated cognitive decline.50 Our findings 

align with an ongoing neurodegenerative process in the posterior lobe; each HY increment 

replicates the pattern of lower volume in bilateral VIIB from the previous stage, denoted 

by larger group differences and further substantiated by statistically significant differences 

between disease stages. Notably, our findings were associated with the clinical state (disease 

stage) but not with time since diagnosis (disease duration). It remains unclear whether this 

cerebellar degeneration results from primary disease-related pathology or, if it is a secondary 

consequence of cortical and basal ganglia degeneration and associated progressive loss of 

functional capacity.

The association between worse cognitive performance and smaller cerebellar volume 

supports a growing body of empirical evidence for an instrumental role of the cerebellum 

in cognitive (non-motor) functioning in PD.16,51 Notably, this relation was not specific to 

any lobule, indicating a general relationship with cerebellar degeneration as the disease 

advances. Indeed, each increment of the HY stages was characterized by worse cognitive 

performance, motor performance and longer time since diagnosis. Future studies of 

functional connectivity changes of cerebellar lobules with the cerebral cortex across disease 

stages in PD and their associations with particular domains of cognition may yield insight 

into the functional reorganization of the cerebellum that occurs with disease progression and 

associated cognitive decline.

We found no associations with time since diagnosis, which seems counterintuitive in view 

of the progressive nature of PD. Of note is that the time between disease onset, symptom 

presentation, and clinical diagnosis may differ substantially across individuals with PD, 

depending on sex and type of symptoms.52,53 Time since diagnosis may not, therefore, be 
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a fully representative estimate of disease duration and severity. A recent meta-analysis of 

functional imaging studies in PD similarly found no significant relationship with time since 

diagnosis.51

Some limitations deserve attention. Firstly, using cross-sectional data limits the strength 

of inferences we can make on disease progression, and precludes our ability to track 

diagnostic accuracy over time. Whilst we cannot rule out the possibility that a small 

number of individuals with atypical forms of parkinsonism were included in our patient 

group, our large sample provides high confidence that the findings are representative of 

the PD population. Moreover, we show disease patterns that agree with expected ongoing 

degeneration and that largely replicate our previous findings.1 Secondly, not all clinical 

measures were available for all cohorts, resulting in smaller samples for these analyses. 

Non-uniformity in the definition of OFF state for the MDS-UPDRS3 across sites, confounds 

the interpretability of the results. Similarly, variability in the medication washout period 

between sites and across individuals may have influenced disease severity measures. The 

retrospective study design limits our ability to more deeply investigate relationships between 

specific symptom domains and cerebellar structure, and control for the possible confounding 

of comorbidities (e.g. alcohol abuse, nutritional deficiencies and cerebrovascular disease). 

Thirdly, whether the findings are PD-specific or overlap with related neurodegenerative 

diseases (e.g. multiple system atrophy, progressive supranuclear palsy, and dementia with 

Lewy bodies) remains to be investigated.

In conclusion, we provide evidence of cerebellar structural alterations in PD, characterized 

by a dissociation between anterior and posterior cerebellar lobe involvement that is 

associated with disease staging. Our results suggest that the changes in cerebellar volume 

are temporally ordered, with larger anterior ‘motor’ lobe regions earlier in the course of the 

disease, and smaller posterior ‘non-motor’ lobes in later stages. This study underscores the 

importance of incorporating the cerebellum into neurobiological models of PD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Atlas-based effect size (Cohen’s d) map, MNI-based coronal slices (top: y= −72; bottom: 

y= −54) and forest plots (Cohen’s d +/− 95% confidence interval) of the significant between-

group differences for all people with PD vs. controls. Note: negative effect sizes reflect 

people with PD < controls. Regions significant at PFDR corrected < 0.05 are depicted in red.
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Figure 2. 
Left panel: Atlas-based effect size (Cohen’s d) map and MNI-based coronal slices (top: 

y= −62; bottom: y= −48) of the significant between-group differences for HY1 participants 

vs. controls. Regions significant at PFDR corrected < 0.05 are depicted in blue. Right panel: 
Effect sizes for left (top) and right (bottom) lobule V cerebellar volume associated with each 

disease stage. Negative values reflect lower volume in the PD group compared to controls. 

Bars represent 95% confidence intervals.
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Figure 3. 
Left panel: Atlas-based effect size (Cohen’s d) map and MNI-based coronal slices (top: y= 

−72; bottom: y= −54) of the significant between-group differences for HY4–5 participants 

vs. controls. Right panel: Effect sizes for left (top) and right (bottom) lobule VIIB 

cerebellar volume associated with each disease stage. Negative values reflect lower volume 

in participants compared to controls. Bars represent 95% confidence intervals.
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