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Abstract

During ecological decisions, such as when foraging for food or selecting a weekend activity,

we often have to balance the costs and benefits of exploiting known options versus exploring

novel ones. Here, we ask how individuals address such cost-benefit tradeoffs during tasks

in which we can either explore by ourselves or seek external advice from an oracle (e.g., a

domain expert or recommendation system). To answer this question, we designed two stud-

ies in which participants chose between inquiring (at a cost) for expert advice from an oracle,

or to search for options without guidance, under manipulations affecting the optimal choice.

We found that participants showed a greater propensity to seek expert advice when it was

instrumental to increase payoff (study A), and when it reduced choice uncertainty, above

and beyond payoff maximization (study B). This latter result was especially apparent in par-

ticipants with greater trait-level intolerance of uncertainty. Taken together, these results sug-

gest that we seek expert advice for both economic goals (i.e., payoff maximization) and

epistemic goals (i.e., uncertainty minimization) and that our decisions to ask or not ask for

advice are sensitive to cost-benefit tradeoffs.

Introduction

During decision-making, people and other living creatures have to constantly balance explora-
tion and exploitation. The former refers to the selection of actions aiming to acquire task-rele-

vant information, while the latter aims to secure a known reward. The diverse ways in which

organisms address exploration-exploitation dilemmas have received significant attention in a

variety of fields, from ethology to psychology, cognitive science and neuroscience [1–6]. The

appearance of the exploration-exploitation dilemma across a wide array of biological and psy-

chological domains hints at a common, fundamental challenge posed by the need to search,

sometimes in vast multi-dimensional spaces, whether the target is a nutrient source, visual cue,

memory, or behavioral policy [7]. Resolution of the dilemma typically comes in the form of

heuristics and decision rules guiding a switch between modes, which are often adaptively influ-

enced by the statistical properties of the environment and the cost dynamics of the task at

hand. In ethology, where animal foraging behavior has been extensively studied, quantitative

models such as the Marginal Value Theorem have been proposed. Results suggest that
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exploration (via patch switches) is prompted when a reward rate drops below a specific global

threshold [8].

The multi-armed bandit paradigm, in which actions are met with an initially uncertain

(and often stochastic) reward value, is another insightful mathematical framework to study the

range of behavioral choices and strategies adopted when confronting exploration-exploitation

trade-offs. For instance, recent work has explored the effect of spatial structure on large bandit

tasks [9]. By learning a model of the environment, agents (using a function-learning model

based on Gaussian Processes) and human participants could predict likely rewards at not yet

visited locations to guide foraging decisions. Results showed that human participant strategies

were consistent with an optimistic function learning approach, while also displaying a robust

tendency to under-generalize the extent of spatial correlation. In a similar spatially structured

bandit task, [10] find a relationship between cognitive load and the explore-exploit trade-off,

with participants tending towards less exploratory behavior when memory demands are

higher (manipulated by the presence of a memory aid tracking prior choice results). All the

aforementioned studies of exploration-exploitation address situations in which exploration

requires some form of search in the environment; for example, navigating a map to discover

possible reward locations.

There is another, related kind of exploration-exploitation dilemma that has received less

attention but that contemporary realities bring to the fore with a certain urgency: the case in

which external advice is available to guide the search. For example, bank consultants offer

advice about investment strategies, teachers offer advice to students [11], and industry expert

consultants advise businesses. The advent of the web, however, has made such expert-advice-

seeking experiences a part of daily life for billions of users seeking a diverse array of informa-

tion types to aid decision-making. Web applications provide a variety of types of information

signals, from simple user ratings to the responses of sophisticated algorithmic tools known as

recommender systems, which (sometimes opaquely) make suggestions about entertainment to

consume, restaurants to visit, and places to stay [12].

In this paper we use the term oracle, a term borrowed from the computer science literature,

to refer to external advice of this sort, which is made available during information seeking.

Because making use of such oracles often implies a cost (in terms of time, money, or both),

deciding whether and how much to use such a resource as inputs to important important

choices highlights an understudied variant of the exploration-exploitation trade-off. In cogni-

tive science, there is a paucity of studies that address this trade-off explicitly, when oracle

advice is available. One study explored the conditions under which participants are willing to

pay to obtain expert advice, before making easy or difficult perceptual decisions [13]. Results

show that participants are sensitive to both the utility and the reliability of information sources,

and that they effectively select expert advice to address the most uncertain choices. However,

this study only addresses simple (binary) perceptual decisions and it is unknown whether this

finding generalizes to economic or preference-based decisions made in the real world where

the (economic) costs of seeking expert advice as well as making the wrong decision can be

compared more easily. Another study took a different approach and asked whether collabora-

tive filtering methods widely used to build recommendation systems [12] or generalization

models from cognitive science most resemble human recommendation behavior—specifically,

the way humans select novel songs to complete a playlist [14]. In this work, a Bayesian general-

ization method from cognitive science [15] shows the strongest fit to human recommendation

behavior and finds that human participants favour recommendations coming from the same

Bayesian generalization model over other popular methods. While this study does not directly

address exploration-exploitation, it at least shows that people are sensitive to the quality of the

recommendation when making decisions about real-world tasks.
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Two other studies have explored different facets of information sharing in the multi-armed

bandit paradigm. In the first, a lab-based study probed the role of ambiguity aversion in bandit

tasks by eliciting participants’ willingness to pay for authoritative information about an

unknown bandit arm (in this case a true mean) [16]. In each of two treatments, a value is elic-

ited about an unknown bandit arm: in a) the willingness to pay for true mean, and in b) the

assessed value of the Gittins index, and these values are then compared. The Gittins index is

defined as the sum of the expected value of an arm under current beliefs and its information

value, via exploiting learnings from subsequent arm pulls, with an optimal MAB strategy

involving choosing the arm with the present highest Gittins index [17].

Results show a lower than optimal Gittins index indicating higher willingness to pay for

perfect information consistent with a suboptimal aversion to ambiguity. In the second study, a

multi-agent algorithm is proposed to address a paradigm where teams of individuals can selec-

tively share the results of individual arm pulls [18]. To solve this problem, agents must estimate

the value of information received from the perspective of other team members. Though this

work presents only an algorithmic analysis, findings show that a decentralized strategy can be

developed which converges on the performance of a centralized strategy (endowed with per-

fect information). This finding demonstrates that selective information sharing can be an

effective alternative to authoritative external information sources in the solution to explore-

exploit tasks.

Finally, various reinforcement learning (RL) methods have shown that enhancing standard

trial-and-error approaches to exploration with the ability to ask for external help or to consult

external sources of knowledge is effective at addressing challenging navigation and problem

solving tasks [19–22].

Taken together, these cognitive science studies suggest that people might be sensitive to a

cost-benefit balance when asking expert advice, while the RL studies demonstrate that this

advice is indeed effective in improving decision-making. Yet, this literature leaves two main

questions unaddressed. First, we still lack a direct validation of the idea that people effectively

balance the costs and benefits of relying on expert advice during economic or preference-

based decisions, when its utility is uncertain and needs to be inferred. Second, it is currently

unknown whether the benefits of consulting an oracle (in the sense defined above) should be

linked exclusively to the economic side of the decision (i.e., as a way to maximize the decision

payoff) or also to additional cognitive factors, such as the minimization of choice uncertainty,

which have been consistently reported to influence choice behavior and information-seeking

[23–25]. Answering this second question would help assess whether, when foraging for infor-

mation with an oracle, people strive to maximize their utility, as postulated by traditional eco-

nomic theories [26] or also strive to minimize their uncertainty (over and above maximizing

economic payoff), as assumed by theories of bounded rational decision-making [27–30]. One

aspect makes the study of oracle advice in the context of information foraging particularly

intriguing. Oracle advice is rarely perfectly reliable. In conditions of suboptimal (error-prone)

oracle information, what are optimal strategies, and how do they compare with human deci-

sion-making?

In the present work, we report results from two studies designed to address the above ques-

tions. Our studies aim to assess how participants face exploration-exploitation dilemmas,

when advice from a costly, and possibly unreliable, oracle is available.

In Study A, we asked whether participants correctly recognize the conditions for which the

benefits of consulting the oracle surpass its cost—that is, when making use of advice is the opti-

mal information-seeking strategy. To this end, we systematically manipulated various contex-

tual factors (i.e., reward distribution and expert reliability) that influence the value of expert
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advice, and measured whether participants adapt their choices to maximize payoff under these

different contexts.

In Study B, we explored whether expert advice might have additional benefits beyond

expected value. Specifically, we sought to measure individuals’ revealed preferences for uncer-

tainty reduction (even in the absence of greater expected value), and analyzed links with attri-

butes like intolerance of uncertainty (IUS) [31]. We designed a condition in which expert

advice had no impact on average payoff, but reduced uncertainty by guiding participants to

higher value locations.

From an information foraging perspective, studies A and B reflect the difference between

one environment in which food sources are disposed randomly and another (more ecolog-

ically valid) environment in which they follow a structure, e.g., some areas are richer in nutri-

ents than others, which foragers can learn through exploration [32–37]. Here, we add to this

large body of literature the availability of an external information source—the oracle—that can

be used in combination with or instead of standard exploration.

To preview our main results, Study A demonstrated that participants correctly recognize

conditions for which seeking advice is optimal, despite showing a general trend towards

under-use across conditions. In Study B, we found that many participants preferred to reduce

uncertainty (payoff variance) using the expert, and that this trend was particularly strong for

participants with higher IUS.

Methods

Experimental design

We report results from two studies (Study A and B), both using a within subjects, 2x2x2x2

design. The task in both studies involved completion of an online experiment administered on

a laptop or desktop computer. Participants completed a series of 80 trials organized into 5

blocks, such that each block contained a balanced set of trials randomized according to each of

the 4 conditions (see Fig 1). In each trial, participants moved an agent around a grid-like land-

scape, collecting up to 5 gems, each carrying (possibly unknown) reward value.

Fig 1. Experiment design. We performed two studies (Study A and B), both using a within subjects, 2x2x2x2 design.

We manipulated strategy choice, map size, strategy gap size and oracle accuracy. The gem layout (randomized for

Study A, and spatial for study B) affected only the strategy choice factor—that is, the effect of the two primary

strategies: call oracle first, or never call—shown in red and blue text above. See the main text for details.

https://doi.org/10.1371/journal.pone.0295005.g001
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Task & procedure

For both studies presented in this work, the task and procedure were the same except for the

distribution of gem values (see descriptions of Study A and Study B below for details). The task

design is detailed below.

Around each map, the screen layout showed a variety of information (See Fig 2). In the

upper left corner the task instructions were continuously visible, which communicated that

the participant should move around the map collecting gems to maximize total points. The

slots remaining were shown next to this, indicating how many gems had been collected, and

how many slots remained. Trials ended when all 5 slots had been filled, or when a 3-minute

timer (in the upper right corner) expired. At the top of the screen was a visualization of the

true gem value distribution. Each gem value was represented as a bar showing its value, along

with a numerical representation. Participants used this information to decide how to complete

each trial. These bars were shown in red for trials were the oracle was 100% accurate, and in

blue for trials where the oracle was 75% accurate.

Participants navigated the map by using the arrow keys on the keyboard, and could visit

any adjacent node that was connected by a line in the graph. To collect a gem, participants

pressed the space bar. The gem’s value was shown and added to the total score after collecting

each gem.

Additionally, an oracle was available to participants and could be called by clicking the “call

oracle” button, or pressing ‘o’ on the keyboard. Calling the oracle revealed the oracle’s beliefs

about where each gem value was located in the map, which was indicated by a numeric label

showed on top of each gem’s location. Calling the oracle consumed 2 slots, hence the oracle

cost, consistent across all trials and both studies, resulted from limiting the number of gems

collected to 3 (as opposed to 5).

When a trial was finished (either by filling all slots, or the timer expiring), a dialog

box appeared asking the participant to proceed to the next trial.

4 trials, an additional question was shown asking participants if they had the opportunity to

solve the trial again, whether they’d make the same decision to call or not call the oracle.

After all 80 trials were finished, a post-task survey was shown composed of the shortened

Intolerance of Uncertainty (IUS) Scale [31], followed by a unique participant ID, and the par-

ticipants were thanked for their participation and told to close the browser.

Fig 2. Task screen layout. See the main text for explanation.

https://doi.org/10.1371/journal.pone.0295005.g002
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Prior to starting, we randomized each participant into one of two studies.

Study A. In Study A, we aimed to explore whether people recognize the utility of seeking

or not seeking expert advice—referred to in this experiment as the “oracle”—in addition to

what other problem attributes affect this decision. Gems were randomly placed in the map,

and each map varied according to four binary factors. Map size determined whether the map

was small (9x9 grid) or large (13x13 grid). Strategy choice bucketed each map into those for

which the optimal action is to call the oracle immediately (oracle first optimal, “OF”), and

those for which the gem value distribution was such that the oracle benefit did not justify the

cost, and therefore where never calling (“NC”) was optimal. Strategy gap size determined the

size of the gap in expected value (and therefore the difficulty in discriminating the optimal

strategy). Finally, oracle accuracy determined whether the oracle’s gem value rankings were

100% accurate (accurate condition), or 75% accurate (inaccurate condition)—oracle accuracy

was made explicit to participants via the color of the oracle, and on-screen explanations. For

implementation details on the strategy choice and strategy gap size factors, see Map Genera-

tion in the Methods section).

Study B. In Study B, we used the same set of four map factors, however, by introducing

spatial structure to the distribution of rewards in the maps so that gems with similar values

were closer to each other (similar to [9]), we manipulated the strategy choice participants

needed to make. Specifically, the strategy choice condition assigned maps to either never call

optimal (“NC”), consistent with Study A, or a new condition, variance trade-off (“VT”). In VT

trials both strategies resulted in approximately equivalent expected value, but due to the avail-

ability of learnable statistical regularities in the maps, participants were able to make informed

guesses about high-value gem locations, even without the oracle, resulting in higher variance

(and therefore higher potential maximum value). Use of the oracle, on the other hand, reduced

uncertainty by highlighting high value locations, but imposed the cost of the oracle, resulting

in a similar expected value. In this second study, we hoped to understand how participants

weighed this trade-off.

Participants

Study participants were undergraduate students recruited by the authors at a university in

Italy, in June and July 2022. 58 participants completed the online study. Participants had a

mean age of 21.6 ± 2.4. 34 identified themselves as men, 13 as women, and 3 as other or

declined to answer. All data was collected online. At the beginning of the experiment, partici-

pants gave anonymous consent and the authors had no access to information that could iden-

tify individual participants during or after data collection. The Ethical Committee of the

National Research Council approved the study protocol.

Map generation

Maps for the task were generated in a four step procedure: 1) generate and select gem value

distribution, 2) define map connectivity, 3) distribute gems, 4) assign oracle beliefs. We detail

each step below.

Generate and select gem value distribution. Our experimental design required us to

select value distributions according to specific constraints related to optimal policy. Specifi-

cally, we needed to generate maps for which the optimal policy is to immediately call the oracle

(oracle first or OF), and those for which the optimal policy is to not call the oracle and instead

forage for gems without additional information (never call or NC). We designed a procedure

to stochastically generate value distributions, by sampling from a clipped lognormal distribu-

tion in a specified parameter range, which we then stored into a pool of candidates. We then
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evaluated the expected value of each distribution assuming each of the two primary strategies,

and computed the gap between the two, Δ, as: D ¼
EOF � ENC
ENC

. Value distributions with small and

large gaps, balanced by map size, and optimal policy, were randomly selected for use in the

study per our within subjects design. For details on the distribution sampling procedure, and

expected value computations for each policy. See S1 File for additional details on value distri-

bution and map generation.

Determine map connectivity. To ensure map navigation was non-trivial, we chose a

grid-like map structure with some percentage of missing edges. For each pair of adjacent

nodes, we flipped a p-coin to determine whether the nodes were connected. p = 0.9 produced

maps with the desired level of variance and navigability. We additionally ensured that all

nodes were reachable in the resultant graph.

Distribute gems. For each value distribution, and connectivity layout, we then generated

two maps, one for each group of participants (random and spatial). For random maps, we

placed each gem value, in randomized order, onto a free node in the graph. Only the 3x3

square of nodes adjacent to the starting position (middle coordinate) were disallowed for

placement. For the spatially structured group, we used a procedure to generate patches making

it more likely that higher value gems were placed near each other. To vary only the distribution

of values and not other aspects of the map layout, we chose locations to place gems to be iden-

tical as those generated for the random maps, only the distribution of values within this group

differed. We started by placing the highest value gem in a randomly chosen slot. Then, we pro-

ceeded in reverse value order. For each subsequent value, we flipped a p-coin to decide

whether to place the gem in the next most proximal slot, or to randomly place it otherwise.

Again, a value of p = 0.9 resulted in maps with clear spatial patches without being fully

deterministic.

Oracle belief. Finally, to support trials where oracle information was inaccurate, we pre-

assigned oracle beliefs for each map. Beliefs are a mapping of node locations to a value from

the true gem value distribution. In accurate trials, beliefs match true gem values. In inaccurate

trials, participants were told that 75% of oracle information was accurate. To achieve this, we

randomly sampled 25% of belief values and shuffled these. In this way 75% of oracle beliefs

were unaffected, and the remaining beliefs were guaranteed to be remapped to alternate

values.

Data structure

On each trial, we captured all relevant participant behavior including time of oracle request (if

any), and trajectory of movements within the map, including the timestamp and whether any

gem was collected. Definitions of each primary dependent variable (DV) are provided in

Table 1.

Data analysis

Analyses for studies A and B were conducted with separate repeated-measures ANOVA, and

linear regressions to investigate relations between variables.

Table 1. Dependent variable (DV) definitions.

DV Definition

Oracle Requested 1 if oracle was requested on a given trial, 0 otherwise

Number of Moves Count of moves (not including collecting gems) on a given trial

Performance Score on trial divided by optimal score (assuming randomized map)

https://doi.org/10.1371/journal.pone.0295005.t001
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The algorithmic structure of map exploration with oracles

In this section we provide a mathematical analysis of Study A. Note that this analysis only

applies to the case of 100% accurate oracles; however, it provides an upper bound to the value

of any oracle and can be heuristically extended to the analysis of inaccurate oracles, by consid-

ering a potential loss of value that is proportional to their (in)accuracy.

Our aim is to describe and analyze some very natural exploration-exploitation strategies for

our task and to show the existence of simple optimal strategies. Such strategies are also compu-

tationally friendly, in the sense that the value of the optimal outcome can be easily computed,

thereby providing a useful benchmark to evaluate participants’ performance and behaviour.

Although simple and intuitively appealing, these strategies exhibit a rather rich set of interest-

ing properties.

We begin by recalling the task played by Study A’s participants. As a first step, the generic

participant learns:

1. the multiset of (non-negative) values of the gems;

2. the location of the gems on the map, but not their values;

3. the number t of time units available, and the time penalty of an oracle call, denoted by c.

On the basis of this information, the participant can explore the map and, when a gem is

reached, collect its value. The participant’s goal is to maximize the total value of collected

gems. The participant can decide to consult the oracle at any time. When this happens, all gem

values at their respective locations are revealed (recall that we are analyzing the case of perfect

oracles only).

We assume that t and c are non-negative integers, since other choices are uninteresting.

After learning t, c, and the multi-set of gem values, the participant starts exploring the map

with the aim of collecting gems of maximum total value. The behaviour of the participant can

be naturally subdivided into a sequence of rounds. In each round the participant performs an

action that is relevant for the game: a gem can be collected (and its value learned and gained),

or the oracle can be consulted (or “called”). Recall that, in Study A, the oracle—after being

called—reveals the exact location and value of every gem present in the map yet to be collected.

Note that the oracle can be consulted at any time during the game. In particular, it can be

called (i) at the very outset, (ii) never, or (iii) in the course of map exploration after having col-

lected one or more gems.

In particular, the participant can decide to call the oracle after having learned the values of

some gems he or she has collected. We consider two classes of strategies: adaptive strategies,

where the participant can decide if and when to call the oracle based on the values of the gems

already collected, and non-adaptive strategies, where the participant does not use the value of

the collected gems to determine if and when to call the oracle. Adaptive strategies can be more

complex, since computing the next optimal action—as a function of what has been revealed so

far—might require significant cognitive effort. In contrast, the pro’s and con’s of non-adaptive

strategies are easier to assess. The dichotomy therefore captures an interesting computational

aspect with plausible cognitive implications.

The goal of an “optimal” participant is to maximize his/her expected gain—that is, the

total expected value of the collected gems. We speak of expected gain because the outcome

is inherently probabilistic since the gems are distributed across locations uniformly at

random.

Let us summarize and give a name to two simple non-adaptive strategies that a participant

can employ:
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• A participant can choose to begin the game by calling the oracle, and then collect gems in

order of decreasing value in the remaining time—since calling the oracle has a time-cost of c,

this strategy lets the participant collect the t − c gems of highest value. We called this strategy

“Oracle First” (“OF”);

• A participant can also disregard, and never call, the oracle. This lets the participant collect a

uniform-at-random subset of t gems. Note that the collected gems are uniform-at-random

because of the absence of spatial conditioning in Study A—thus, whichever gem the partici-

pant chooses to collect next has a value that, from the point of view of the participant, is cho-

sen uniformly at random among the values of the gems that are yet to be collected. This is

the “Never Call” strategy (“NC”).

At first glance, one is tempted to conjecture that, depending on the distribution of gem val-

ues that the participant learns at the beginning of each game, one of the two OF and NC strate-

gies might be optimal, i.e. it maximizes the expected gain. For instance, if all the gems have the

same positive value, and calling the oracle has a positive cost c� 1, then calling the oracle is

necessarily suboptimal; in this case, NC achieves a larger gain than OF and it is, in fact, the

only optimal strategy of the participant.

Conversely, suppose that there exists one gem of very high value and many gems of small

value, and that the participant can either collect 2 gems, or call the oracle and collect 1 gem—

that is, that t = 2 and c = 1. In such a setting, if the gap between the high value and the small

value is large enough, a smart participant would call the oracle right away, and collect the high

value gem (OF). To make things concrete, suppose that there are 9 gems of value 1 each, and 1

gem of value 10, and that t = 2 and c = 1. Here, the optimal strategy for the participant is to call

the oracle right away to capture the one gem of value 10 (for an expected, and actual, gain of

10); the strategy NC collects two gems, whose values are determined uniformly at random, and

results in the smaller expected gain of

9

10
�
8

9
� ð1þ 1Þ þ

1

10
�
9

9
� ð10þ 1Þ þ

9

10
�
1

9
� ð1þ 10Þ ¼ 1:6þ 1:1þ 1:1 ¼ 3:8:

Thus, in this case, OF achieves an expected gain larger than that of NC, and it is the only

optimal strategy.

Perhaps surprisingly, there are games where neither NC nor OF is optimal. As an example,

consider a game with 3 gems of value 1 and 1 gem of value 5; also, suppose that t = 3 time units

are available, and that c = 1. Then,

(i) NC results in an expected gain of 1

4
� ð1þ 1þ 1Þ þ 3

4
� ð5þ 1þ 1Þ ¼ 6, since NC will collect

the gem of value 5 with probability 3/4;

(ii) OF guarantees a gain of 5 + 1 = 6, since it will always collect the gem value 5, and exactly

one gem of value 1.

Conversely, let us now consider the following adaptive strategy: the participant collects a

gem as the first step; as observed, from the point of view of the player the value of this gem is

sampled uniformly at random from the multi-set of available values. If this gem’s value is 5 (an

event which happens with probability 1
4= ), the participant captures two other uniform-at-ran-

dom gems, for a total gain of 5 + 1 + 1 = 7. If, instead, the first gem’s value is 1 (the comple-

mentary event, having probability 3
4= ), the participant calls the oracle in the second action

and, in the third action, captures the gem of value 5, for a total gain of 6 = 5 + 1. The expected
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gain of this strategy is then

1

4
� 7þ

3

4
� 6 ¼ 6:25 > 6:

In the above setting, the multiplicative gap between the gain induced by the overall best

strategy, and the gain of the best of the two NC/OF strategies, is at least
6:25

6
¼ 25

24
� 1:041666 . . .. This simple example shows that a NC/OF-only participant can

achieve no more than 24

25
¼ 96% of the optimal gain.

In the “Adaptivity Gap” section, we study more complicated scenarios and show that NC/

OF strategies can do significantly worse than 96% times the optimum. We conclude the section

by asking a question that might have already tickled the reader’s mind: is there any particular

reason why the NC and OF strategies were given such prominence in this paper besides their

simplicity?

In the next section we show that, in fact, the best of the NC and OF strategy is always opti-

mal in the class of non-adaptive strategies, a fact that justifies their intuitive appeal

mathematically.

Optimal Non-adaptive strategies. As remarked, the OF and NC strategies are examples

of non-adaptive strategies. The third strategy of the previous section, instead, is an example of

an adaptive strategy: it calls the oracle depending on the random value of the first gem col-

lected. More specifically it does so if, and only if, the first gem collected is not the one of high-

est value.

We now show that, given any distribution of gem values, at least one of NC and OF is opti-

mal in terms of expected gain within the set of all possible non-adaptive strategies. Therefore, a

participant that chooses to act non-adaptively can safely concentrate on those two strategies to

find an optimal one—the set of non-adaptive strategies collapses on its two “extremes” at no

cost for the participant.

The above result is formalized and proven in S1 File, Theorem 1, which we quote here for

future reference:

At least one of the NC and OF strategies is optimal in the set of non-adaptive strategies.

A useful corollary of this fact is that it is possible to actually compute the expected gain of

the best non-adaptive strategy, thus providing a useful benchmark to assess participant perfor-

mance in the experiment. The formal derivation of this claim can be found after the proof of

Theorem 1 in S1 File.

Optimal adaptive strategies. We have argued that an optimal non-adaptive strategy can

always be found among the pair of strategies NC and OF—it is thus computationally easy to

obtain an optimal non-adaptive strategy.

It turns out that it is also possible to compute the value of the best adaptive strategy. This

can be done by resorting to the a well-known algorithm design technique: dynamic program-

ming. The formal derivation can be found in S1 File.

The adaptivity gap. We have already argued that there exist settings where non-adaptivity

makes the participant achieve no more than 96% of the optimal gain achievable by adaptive

strategies. It is possible to come up with multi-sets of values for the gems such that non-adap-

tive strategies of oracle invocations can obtain no more than 91.73% of the optimal gain

(attainable by adaptive strategies). The mathematical derivation can be found in S1 File.

Gem distribution generation procedure. In order to study participants’ responses to

value distributions with different optimal strategy, and for which this strategy was easier or

harder to detect (due to a larger or smaller gap between expected performance using each
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strategy), we designed a process to procedurally generate gem value distributions, and then

evaluate the strategy attributes of each. Drawing value samples from the lognormal distribu-

tion produced the widest variety of non-trivial gem value sets, as well as sufficient diversity of

optimal strategy to select the needed map configurations for our study.

LogNormalPDF
m;s2ðxÞ ¼

1

xs
ffiffiffiffiffiffi
2p
p exp �

ðlnðxÞ � mÞ2

2s2

� �

The initial pool was generated using parameter values of μ = 2, σ = 2.5. Samples were

clipped to the range [1, 30] to avoid large value ranges that would be difficult to read from the

bar-chart format used to visualize values in the task.

An initial pool of 1000 value distributions were generated, and each was evaluated to deter-

minate its expected value under each of the two primary behavioral policies: oracle first, and

never call.

As discussed in the Study B results, the expected value for never call in random maps

(which is equivalent to random sampling) is simply the expectation of gem values times the

number of slots, that is: ENC ¼ t �
Pn

i¼1
Xi

n .

The expected value for the oracle first strategy is similarly trivial: EOF is the sum of the val-

ues of the t − c gems of largest value. Here, t − c is the number of slots remaining after the ora-

cle is called (that is, 3 in the reported studies).

Results

Study A results

In Study A, we aimed to explore whether people recognize the utility of calling (or not calling)

the oracle, in addition to what other problem attributes affect this decision.

Sensitivity to the optimal strategy. In general, we found participants were sensitive to

the utility of calling or not calling the oracle, despite not being specifically cued about strategy

optimality. This is evident from the fact that their strategy differs dramatically between

between the NC and OF conditions. Additionally, we found that in the vast majority of trials in

which participants called the oracle, they did it when it was optimal; namely, before any gems

are collected. Calls after 1 or more gems were collected (which should be considered subopti-

mal) were extremely rare.

However, we find an asymmetry in oracle use between the two conditions. In the NC condi-

tion, over 90% of subjects correctly avoid using the oracle (and higher still when the gap size

was large, such that the optimal strategy was easier to determine). Rather, in the OF condition

between 30–55% of participants failed to request the oracle. In this condition, we see signifi-

cant underuse of the oracle in maps where it would have supported improved performance,

even when the gap size was large (see Fig 3). In line with this finding, we see a very strong posi-

tive trend in oracle use against score, highlighting that sufficient oracle use was critical to per-

formance (see Fig 4).

Strategy satisfaction & regret. A question asked intermittently during the experiment

following a trial result provides insights about participants’ satisfaction or regret with their

chosen strategy. Participants were aware they made the right choice when they did (95.2%),

with slightly less confidence (84.6%) on trials where not calling was optimal. When partici-

pants used the incorrect strategy, they detected this most easily on OF trials (where they should

have called the oracle, but didn’t). However, half of these participants (50.0%) still said they’d

keep the same strategy. See Fig 5 for ANOVA results.
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Fig 3. Oracle (under)-use against optimal strategy. Use was very low on NC trials, but only 55.8% of participants correctly used

the oracle on OF trials. An interaction effect is seen showing that larger gaps were associated with increased use of the oracle on

OF trials (Fð1; 27Þ ¼ 35:9; p < :001; Z2
p ¼ :066).

https://doi.org/10.1371/journal.pone.0295005.g003

Fig 4. Scatter plots of oracle requests vs mean score across participants. Mean score is defined as the mean of total

points collected by a participant across all non-practice trials. Total Oracle Requests is the count of trials where the

participant called the Oracle, across all non-practice trials. A significant positive correlation is seen indicating the

relationship between correctly identifying problems where the oracle is useful, and overall performance. Correlation is

significant with Pearson-r = 0.78, p< 0.0001.

https://doi.org/10.1371/journal.pone.0295005.g004
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Study B results

In Study B, we explored how participants responded to trials where the oracle could be used to

reduce uncertainty without a reduction in expected score, and how they weighed this variance

trade-off.

The spatial structure added to all maps in Study B resulted in a noisy gradient of gem value

centered around a randomly chosen location (for details see the Map Generation section in

the Methods). To confirm participants detected this spatial regularity, we can compare scores

with each map’s expected value under a random foraging policy, which is simply the gem

value mean multiplied by the number of slots: ENC ¼ t �
Pn

i¼1
Xi

n . As shown in Fig 6, mean score

(among participants not calling the oracle) was above the random policy expected value in the

vast majority of trials, indicating clearly that spatial structure was exploited.

We then investigated participants’ handling of variance trade-off maps. Consistent with

findings from Study A, participants used the oracle significantly more frequently on VT trials.

However, substantial individual variation is observed, with some participants never using the

oracle (and therefore opting into a gamble with higher risk but higher upside), and some using

it in all trials (see Fig 7). We predicted that participants’ disposition towards uncertainty (as

measured by the intolerance of uncertainty index) would correlate with this decision. Indeed,

we find that high IUS participants were significantly more likely to call the oracle on VT trials

(see Fig 8). This finding is consistent with high-IUS participants being especially motivated by

the uncertainty reduction afforded by use of the oracle.

Fig 5. Strategy satisfaction, as measured by percent of participants responding yes to question: “If you could retry the same problem again, would

you use the same strategy to call the oracle [not call the oracle?]”, post-trial. Here we analyze trials where the oracle was accurate, to simplify analysis

of optimal behavior. We find a main effect showing higher satisfaction when the oracle was used, whether optimally or non-optimally

(Fð1; 2Þ ¼ 21:7; p ¼ :043; Z2
g ¼ :684). Interestingly, three quarters (74.5%) of participants said they’d keep the same strategy even when they used a non-

optimal strategy.

https://doi.org/10.1371/journal.pone.0295005.g005
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Finally, when analyzing oracle use longitudinally through the experiment, we find a nega-

tive trend that is especially steep for low-IUS participants (see Fig 9).

Discussion

In many real life situations, such as when choosing a movie to watch, a restaurant at which to

dine, or a place to visit, we have the choice between exploiting our previous knowledge or

exploring new alternative possibilities, either by searching in the environment or by seeking

external advice. The dynamics of exploration via environmental search has received significant

attention in cognitive science and neuroscience [1–3, 5, 6]. Comparatively, we know much less

about the conditions that move people to ask for expert advice during decision-making when

doing so has a cost.

Here, we designed two studies to investigate whether people correctly balance the costs and

benefits of seeking expert advice during an economic decision (Study A) and whether they

might seek external advice for other reasons, such as to lower choice uncertainty, even when

this has no effect on average payoff (Study B).

In both studies, participants navigated a maze-like environment to collect a limited number

of gems carrying different values. Gem positions were visible in the map, and the overall value

distribution was shown, but the locations of each value were not initially available. For each

trial, participants faced the choice between free foraging to find high value gems, or an “oracle”

that showed the location of the gem values in the map—at the cost of collecting two less gems.

By manipulating various choice parameters, such as the gem distributions, the reliability of the

Fig 6. Comparison of trial score across participants who did not call the oracle (transparent blue points, with mean shown by opaque blue dot)

versus trial’s expected score under a random policy (black dot). Mean performance was above expectation for most trials indicating that spatial

information was exploited when participants chose not to call the oracle. Maps are ranked by expected score (“Gem EV Rank”).

https://doi.org/10.1371/journal.pone.0295005.g006
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oracle and the statistics of gem placement (i.e., random placement versus a spatial structure in

which gems with similar value were closer), we created conditions in which calling the oracle

leads to a higher or lower payoff (Study A) or higher or lower payoff variance (Study B)—and

we studied how this changed participants’ use of the oracle.

Analyses from Study A showed that participants are able to detect NC trials (via their gem

value distribution) in which the cost of the oracle is not justified by the value. Participants are

able, on average, to determine when use of the oracle is valuable as well, as seen from the

strong preference for calling the oracle in OF trials when this is optimal, and that additionally,

participants rarely call the oracle after the first move (when it is never optimal). However, we

found a general trend of oracle under-use across conditions. A possible explanation for this

asymmetry in our results is that it was more difficult to assess the benefit of the oracle in OF

trials. Indeed, while participants could learn about task dynamics and tune their strategy across

the experiment, direct feedback about strategy use was not available (score was provided, but

without information about optimal score).

Fig 7. A positive correlation (r = 0.35, p = 0.06) is observed between participants’ IUS score and use of the oracle

on VT trials.

https://doi.org/10.1371/journal.pone.0295005.g007
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An asymmetry is also seen in particpants’ satisfaction with the decision to call or not call

the oracle. Satisfaction was lower after trials in which the non-optimal strategy was chosen (as

expected), and especially low when the oracle was not called (only 50% of participants said

they would make the same choice again after not calling, compared with 90% for those who

called the oracle). This latter result might be explained by the risk inherent to not calling the

oracle—if a participant is unlucky with their randomly collected gems, they may be especially

likely to regret their decision. In contrast, calling the oracle implies a simple policy (collect the

oracle’s highest-valued gems) that is unlikely to result in surprises (especially in trials where

the oracle is accurate).

In sum, the results of Study A align well with previous findings that participants are sensi-

tive to the costs and benefits of asking for costly expert advice before a decision [13]—although

they show some oracle under-use—and indicate that this sensitivity is apparent during eco-

nomic decisions that imply payoff maximization. Interestingly, participants were able to infer

the utility of the oracle from not only reliability information (which was stated explicitly) but

also from the gem distribution, which provides a much more indirect indication.

In Study B, we found that participants prefer calling the oracle even when there is no payoff

benefit—because the task includes spatial regularities that can be exploited to infer the best

gem locations. Our results make it clear that this is not explained by participants being unable

to understand the spatial structure, since it was effectively exploited in trials where the oracle

was not called. Instead, this result suggests that participants were motivated by a drive to

reduce their outcome-level uncertainty (about the variance of their payoff) and policy-level

Fig 8. Use of the oracle vs IUS types (under or over median IUS score) in the spatial group (Study B). Left: among variance trade-off trials, right:

among never call optimal trials. More requests were seen among high-IUS participants (Fð1; 27Þ ¼ 6:1; p ¼ :019; Z2
p ¼ :115), and in VT trials

(Fð1; 27Þ ¼ 158; p < :001; Z2
p ¼ :714). We additionally find an interaction between IUS-type and trial optimal strategy

(Fð1; 27Þ ¼ 9:2; p ¼ :005; Z2
p ¼ :127), showing that the most oracle requests were seen among high-IUS participants in VT trials (T = 3.05, p = .005,

BF = 8.6).

https://doi.org/10.1371/journal.pone.0295005.g008
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uncertainty (about where to move next), above and beyond payoff maximization. Supporting

this idea, we found a positive relationship between participants’ Intolerance of Uncertainty

(IUS) score, and use of the oracle on variance trade-off trials (see Fig 7). This finding could be

explained by the fact that the spatially structured maps in Study B induce an enduring policy-

level uncertainty—even after a high-value gem is collected, it is not clear which direction to

forage in next. And yet, the spatial regularities, once detected, imply that there is in fact a pat-

tern, which there is often (at least initially) insufficient information to fully deduce. If so, it is

reasonable to expect this ambiguity to affect high IUS participants most significantly, and

encourage use of the oracle as the only recourse to reduce this expected uncertainty.

Taken together, the two studies show that peoples’ preference for expert (oracle) advice is

evident both when it conveys economic value (i.e., increases economic payoff) as well as episte-

mic value (i.e., it reduces payoff variance and choice uncertainty). Both reward maximization

and uncertainty reduction are key determinants of choice in theories of bounded rational deci-

sion-making that take information costs into consideration [27–30, 38] and here we show that

they can be in play (simultaneously) even during exploration-exploitation scenarios that

involve external sources of evidence. Note that the first experiment shows a general under-use

of expert advice across conditions, whereas the second experiment shows a general preference

for expert advice in ambiguous conditions. While these results may be seen to be in tension,

another interpretation is that the under-use in study A highlights a tolerance or even affinity

for the unguided gamble which also minimizes the cognitive load of navigating—in a land-

scape with no structure, while values are uncertain, there is no right or wrong navigation strat-

egy. As previously mentioned, study B poses a different type of ambiguity: the learned

awareness of spatial structure confers an irreducible uncertainty that requires ongoing, and

Fig 9. Oracle use trends through experiment (VT trials only, spatial group). Lines show a rolling average of oracle use across a 5-trial window, for

high-IUS participants (blue line), low-IUS participants (black line), and across all participants (gray line).

https://doi.org/10.1371/journal.pone.0295005.g009
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rather challenging, pattern identification and control. This interpretation is supported by the

general increase in gambles (seen as reduced oracle use) through the experiment on variance

trade-off trials, as participants improve their understanding of the spatial structure.

The results of our studies have both theoretical and practical implications for the study of

information foraging in the real world. From a theoretical perspective, our results show that

people are sensitive to the costs and benefits of obtaining external advice during decision-mak-

ing—and that the benefits of external advice can go beyond economic payoff. From a more

practical perspective, the results of this study speak to the usefulness of requesting (or not

requesting) expert advice during real-world decisions, such as when consulting recommenda-

tion systems or social networks. While our study addresses a simplified choice situation, its

methodology could potentially be reused (and extended) in future investigations of how people

seek expert advice when deciding about movies, restaurants, or travel destinations.

This study has various limitations that would need to be addressed in future studies. First is

a further exploration around a puzzling aspect of our findings. Namely, in both study A and B,

we find slightly increased use of the oracle in small maps, compared with large maps—despite

the expectation that larger maps pose greater outcome- and policy-level uncertainty.

An additional limitation in this work is that for simplicity, we addressed the case of stan-

dard economic decisions in which the ranking of participants’ preferences is clear (i.e., the task

was designed such that all participants would prefer gems with greater value). However, expert

advice, such as recommender systems, are often used in choice situations in which the ranking

of preferences is less clear, for example when finding music or restaurants online. Indeed, one

of the main goals of recommender systems is to infer the preference ranking of individuals

from data [12]. Apart from the difficulty of inferring preferences, what makes these scenarios

more subtle is the possibility that the preferences could be influenced by the advice received or

(retrospectively) by the choice itself, rather than being fixed [39, 40]. Understanding how peo-

ple manage the costs and benefits of seeking expert advice in those more subtle, real-life condi-

tions remains an open challenge.

Conclusion

In this work, we presented two studies exploring information foraging behavior when individ-

uals have access to expert (but costly) advice in the form of an oracle. Our results show that

peoples’ preference for this advice is evident both when it conveys economic value (i.e.,

increases economic payoff) as well as epistemic value (i.e., it reduces payoff variance and

choice uncertainty). We show that both reward maximization and uncertainty reduction can

be in play (simultaneously) even during exploration-exploitation scenarios that involve exter-

nal sources of evidence. The simplified choice situation explored in this work highlights a

more generic methodology which may be used and extended in future investigations of how,

and when, people seek expert advice in real-world contexts.

Supporting information

S1 File. An algorithmic analysis of Study A: Proofs. In this Section we provide rigorous

mathematical proofs for various claims made in the main text.
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