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The global prevalence of chronic obstructive pulmonary disease (COPD) has increased over the last decade and has emerged as the
third leading cause of death worldwide. It is characterized by emphysema with prolonged airflow limitation. COPD patients are
more susceptible to COVID-19 and increase the disease severity about four times. The most used drugs to treat it show numerous
side effects, including immune suppression and infection. This review discusses a narrative opinion and critical review of COPD.We
present different aspects of the disease, from cellular and inflammatory responses to cigarette smoking in COPD and signaling
pathways. In addition, we highlighted various risk factors for developing COPD apart from smoking, like occupational exposure,
pollutants, genetic factors, gender, etc. After the recent elucidation of the underlying inflammatory signaling pathways in COPD, new
molecular targeted drug candidates for COPD are signal-transmitting substances. We further summarize recent developments in
biomarker discovery for COPD and its implications for disease diagnosis. In addition, we discuss novel drug targets for COPD that
could be explored for drug development and subsequent clinical management of cardiovascular disease and COVID-19, commonly
associated with COPD. Our extensive analysis of COPD cause, etiology, diagnosis, and therapeutic will provide a better understand-
ing of the disease and the development of effective therapeutic options. In-depth knowledge of the underlying mechanism will offer
deeper insights into identifying novel molecular targets for developing potent therapeutics and biomarkers of disease diagnosis.

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a com-
mon breathing difficulty caused by the blockage of airflow
and other associated breathing problems. It includes chronic
bronchitis and emphysema. Airflow limitations are primarily
due to remodeling and inflammation of the airways, which is
often associated with the destruction of the parenchyma and
the development of emphysema. The statistics in 2020
reported COPD as the third leading cause of death world-
wide [1].

The interaction between different factors, including envi-
ronmental and genetic factors, contributes to COPD risk.
The most important and most common risk factor for

COPD is cigarette smoking. In contrast, other risk factors
include occupational/workplace exposure, air pollution, coal
dust, asthma, airway hyper-responsiveness, and genetic pre-
dispositions [2–4]. Various pulmonary symptoms contribute
to a progressive limitation in the airflow of COPD patients,
including emphysema and small airway disease (SAD). SAD,
called obstructive bronchitis, involves airway inflammation
with increased mucus production, peribronchial fibrosis, and
remodeling of airway walls [5]. Spirometry is used for the
assessment of the degree of airflow limitation. According to
global initiative for chronic obstructive lung disease (GOLD)
criteria, the severity of COPD is classified spirometrically
using the FEV1/FVC ratio [6, 7]. Other grading systems
include BODE, where B is the body mass index, O is the
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airflow obstruction, D is the dyspnoea, and E is the exercise
tolerance [8].

Many diseases co-occur with COPD and increase the sever-
ity and mortality of the patients, including cardiovascular dis-
eases, malnutrition, osteoporosis, skeletal muscle dysfunction,
anaemia, anxiety, depression, and increased gastroesophageal
refluxes. The limitation of airflow in patients with COPD
increases the likelihood of the patients developing pulmonary
cancer over some time.Additionally, patients withCOPDbelong
to the old age group, and the high prevalence of comorbidities
requires more extensive medical care. Moreover, the risk of hos-
pitalization and death increases, mainly due to severe airway
obstruction [9]. Systemic inflammation in patients with
COPD, together with activated inflammatory cells, raises the
cytokine levels in the systemic circulation and increases oxidative
stress. So, in the light of these researches, it was proposed recently
to include the term “chronic systemic inflammatory syndrome”
for diagnosing COPD [10].

Biomarkers are characteristics measured as indicators of
normal biological processes, pathogenic processes, or
responses to an exposure or intervention [11]. Biomarkers
can be further categorized into various subtypes based on
their relative utilization. It helps define the progression of
the disease during pathogenesis. Biomarkers, combined with
clinical symptoms, play an essential role in identifying the
etiological origin and severity of the disease. Levels of bio-
markers can be correlated toward response to therapy inter-
vention, helping us assess the clinical evolution of the
disease, and giving us insights into the potential complica-
tions that may arise. COPD pathogenesis majorly consists of
overexpression of systemic inflammation markers and sig-
naling pathways. Thus, determining these markers is one of
the imperative and crucial directions in improving the diag-
nosis and management of COPD [12].

A multidisciplinary approach is required to optimize the
therapeutic management of patients suffering from COPD
[13]. Cessation of smoking, oxygen therapy, pharmacological
therapy with glucocorticoids and bronchodilators, surgery,
and pulmonary rehabilitation are the cornerstone of COPD
management, making COPD a treatable and preventable
disease [14]. Two types of therapies are used, including the
therapy primarily centered in the lung, whereas the latter
center shifts to a systemic inflammatory state.

In this review, we discussed the mediators of cellular sig-
naling mechanisms in COPD, the risk factors involved in the
progression of the disease, and different types of diagnostic
biomarkers used to detect and confirm COPD. Here, we sum-
marized the comorbid diseases with COPD and elaborated on
the therapeutic perspectives of approved drugs and ongoing
clinical trials. This study provides an extensive literature
review followed by an in-depth and critical analysis of the
state of the art and identifies challenges for future research.

2. Mediators of Cellular Signaling in COPD

COPD is a group of diseases that causes breathing-related
issues and causes blockage of airflow. There are various cel-
lular and inflammatory interactions caused by smoking

cigarettes in COPD. Activation of various immunological
cells, such as B-cells, T-cells, dendritic cells, macrophages,
and neutrophils, and activation of epithelial cells, airway
smooth muscle cells, and fibroblast cells results in the release
of proteases, chemokines, and cytokines and hence causing
COPD [15].

2.1. Role of NF-κB Pathway in COPD. Various canonical and
noncanonical pathways play an essential role in the develop-
ment and pathogenesis of COPD by overexpressing pro-
inflammatory factors, causing chronic inflammation in the
lungs. Furthermore, NF-κB-regulated genes such as adhesion
molecules, cytokines, matrix metalloproteinases (MMPs),
antiapoptotic factors, and angiogenic factors are associated
with the progression of the disease. Thus, the first line of
therapy in lung cancer and COPD is the downregulation of
NF-κB activation [16].

2.2. Role of Adaptive Immune Response and Immune
Sculpting. The main features of chronic inflammation in
COPD patients are the accumulation of CD4+-T, CD8+-T
cells, B-cells, dendritic cells, macrophages, neutrophils, and
eosinophils in the small airways [5]. Infiltration of these
inflammatory immune cells is associated with the severity
of COPD disease. The central role of these inflammatory
immune cells in COPD patients is the release of granzymes,
proteinases, perforins, and oxidants, which destroy the walls
and cause the hypersecretion of mucus [17].

2.3. Role of Adhesion Molecules. Integrins (heterodimeric
transmembrane receptors) are involved in various cellular
functions and lung inflammation. The expression of integrin
avb6 (localized in epithelial cells) increases during injury and
inflammation of the lungs [16]. Moreover, in COPD patients,
there is an upregulation of TGF-β1 protein and mRNA in
both the airways and alveolar epithelium cells. TGF-β1
mRNA levels correlate positively with the history of smoking
and the degree of obstruction in the small airways, suggesting
the proremodeling, profibrogenic, and cell-specific roles of
TGF-β in the patients of COPD [16].

2.4. Role of Hypoxia or Angiogenesis. Hypoxia induces lung
inflammation either by influencing the expression of pro-
inflammatory genes or by activating transcription factors. In
patients with COPD, damaged alveolar capillaries and pro-
gressive airflow limitations lead to reduced oxygen transport
and cause alveolar hypoxia. Furthermore, hypoxia-inducible
factor activation induces vascular endothelial growth factor
(VEGF) transcription and increases angiogenesis. Thus, clin-
ically, oxygen therapy can be significant in providing tempo-
rary relief in hypoxemic COPD patients. Interestingly,
chronic oxygen therapymay result in oxidative cellular injury,
resulting in aggravation of pulmonary inflammation and cell
mortality. VEGF expression is also increased in chronic bron-
chitis patients [18], suggesting that VEGF has a paradoxical
role in the airspaces and bronchi of COPD patients.

2.5. Role of Matrix Metalloproteinases (MMPs). Emphysema
is caused by the shift between the balance of proteinases and
antiproteinases (shifts toward proteinases), including MMPs
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and elastase in the lungs’ activated epithelial cells and inflam-
matory cells. Due to the defective tissue repair and degrada-
tion of ER membrane protein complex (EMC) by MMPs, the
lungs’ structural cells undergo apoptosis and lose their
attachment. Additionally, the chemotactic activity of EMC
fragments attracts inflammatory cells into the lungs, which
results in further progression of emphysema in the mice
model [19].

3. Risk Factors of COPD

The interaction between different factors, including environ-
mental and genetic factors, contributes to COPD risk.
Comorbid diseases can also affect the interaction between
different factors. Risk factors for COPD are summarized in
Figure 1.

3.1. Smoking Tobacco. Smoking tobacco is the leading caus-
ative factor of COPD worldwide. According to the estimate
of WHO, 73% of COPD mortalities are present in high-
income countries, whereas only 40% of COPD mortalities
are present in low or middle-income nations [20]. Genes
or genetics have a significant role in this relationship, as all
smokers do not develop COPD. However, ∼50% of smokers
develop COPD in their later life [21]. Smoking during the
gestational period can negatively affect fetal lung growth and,
therefore, results in the development of various lung dis-
eases [22].

Cessation of tobacco smoking is the most effective inter-
vention in preventing COPD progression, thus reducing
morbidity and increasing the survivability of the patients
[23]. Apart from tobacco, marijuana smoking has also
been linked to various respiratory symptoms, but its direct
relation to COPD development is unknown [24].

3.2. Occupational Exposure. Factory workers are exposed to
various workplace factors, including dust, mist, fumes,
vapors, and various chemicals, which is also a factor in caus-
ing COPD in factory workers or associated people [25]. In an
estimate, it was shown that in the USA, 19.2% of COPD cases
were attributed to exposure to workplace factors, out of
which 31.1% cases were the proportion of being never smo-
kers in their life and still develop COPD [26]. Another report
showed that people diagnosed with chronic bronchitis or
COPD were twice as likely to have previous workplace expo-
sure to fumes, gases, vapors, and dust [27].

Due to less stringent laws in low and middle-income
countries, work exposure to fumes and dust is remarkably
greater than in high-income countries, where laws are com-
paratively more stringent. Hence, workplace exposure is
assumed to be an important risk factor for COPD.

3.3. Air Pollution. In poorly ventilated homes, cooking or
heating exposes biomass fuels such as wood, animal dung,
coal, straw, and crop residues. These are considered essential
risk factors in COPD development, primarily in rural house-
holds. One of the reports from China suggests that the preva-
lence of COPD is twice or thrice times higher in never-smoker
women in rural areas, where women have greater exposure to
biomass smoke than urban women without such exposures
[28]. According to the estimate of WHO, in low and middle-
income countries, 35% of people develop COPD after expo-
sure to biomass fuels and indoor smoke [20]. Furthermore,
WHO also suggested that 36% of mortality from lower respi-
ratory diseases is directly related to exposure to indoor
smoke [20].

Apart from direct smoke exposure, second-hand smoke
inhalation is another form of biomass smoke linked to
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FIGURE 1: Risk factors of COPD.

Oxidative Medicine and Cellular Longevity 3



various respiratory diseases. However, its direct relation to
COPD is not known [29].

The risk attributes for COPD development from outdoor
air pollutants are remarkably lesser than indoor air pollu-
tants. According to an estimate by WHO, in higher income
countries, only 1% of COPD cases are developed by urban air
pollution, and only 2% in low and middle-income countries
[20]. Outdoor air pollution, or simple air pollution, is linked
to acute cardiopulmonary events and various respiratory
infections essential in developing and progressing COPD.

3.4. Genetic Factors. The functioning of the lungs in offspring
is complexly related to the parental lung functions [30]. Out
of all offspring whose both parents lie in the lowest quintile
group of lung functioning, 37% of the offspring lie in the
lowest quintile group of lung function compared to their
peers [30]. On the other hand, out of all offspring whose
parents lie in the highest quintile group of lung functioning,
41% of the offspring lie in the highest quintile group of lung
functioning compared to their peers [30].

Serine protease α1-antitrypsin deficiency is one of the
best-known genetic factors linked to COPD. Serine protease
α1-antitrypsin deficiency arises in 1%–3% of patients with
COPD [31]. A low concentration of α1-antitrypsin, particu-
larly in amalgam with tobacco smoking and other exposures,
increases the probability of pan lobular emphysema [31].

Various studies show that several genes are involved in
COPD, such as microsomal epoxide hydrolase 1 [32], tumor
necrosis factor (TNF)-α [33], and transforming growth fac-
tor-β1 [34]. However, research is still under trial to examine
the specific polymorphisms in the abovementioned genes for
COPD development. A study by Zhou et al. [35] on the
Chinese population shows that the genetic polymorphism
in MIR5708 and MIR1208 is related to the susceptibility
to COPD.

3.5. Infection. According to a review of The Lancet, most of
the exacerbations of COPD are either due to viral infections or
bacterial infections [36]. Various infections play an essential role
in the development and progression of the disease. Early-life
exposure to infections could make the individual susceptible to
bronchiectasis and change the airways’ responsiveness.

3.6. Aging. The age-related decline in pulmonary function is
considered normal. With the increase in age, the prevalence,
mortality, and morbidity of COPD also increase. The peak
level of pulmonary function reaches young adulthood, which
declines in the third or fourth decades of life [36]. However,
some researchers have reported that in old age, people with a
high level of pulmonary function live comparatively longer
than those with lower pulmonary functions [37].

Aging is a natural process, where, at the cellular level, it
includes various molecular and systemic mechanisms. In
several studies, the role of specific senescence pathways,
such as sirtuin family proteins and p-16, has become evident
and is implicated in COPD and aging [38]. Various common
DNA-level abnormalities, leucocyte response abnormalities,
and inflammatory markers were increased both in COPD
and aging [38].

In recent years, the prevalence of COPD has increased
due to the demographic changes in the world’s population,
which are attributed to a good nutritional life, and, hence, the
reduction and elimination of various infectious diseases in
childhood. Therefore, falling in mortality rates are falling due
to diseases that kill or eliminate younger people earlier, such
as acute infections and cardiac diseases. This leads to a longer
life expectancy in most of the world’s population and
increases the risk for several chronic medical conditions,
including COPD [39].

3.7. Socioeconomic Status. Populations with lower socioeco-
nomic status or the population who live in poverty have a higher
risk of developing COPD and its related complications com-
pared to their wealthier counterparts [40]. Poverty is considered
a surrogate for poor access to health care, poor nutritional status,
overcrowding (large family size), more exposure to occupational
pollutants (such as, fumes, dust, mists, and chemicals), high rates
of tobacco smoking (in low and middle-income countries), and
early respiratory infections, and hence, increases the risk of
COPD subsequently [40].

In the study by Eisner et al. [41], a consistent and signifi-
cant inverse relation was observed between the outcomes of
socioeconomic status and COPD, which may be used to
validate the time and costs needed for the development,
research, and implementation of the strategies to improve
the health of COPD patients.

3.8. Gender. The role of gender in both the progression and
development of COPD is highly controversial and is a topic
of a great deal in the scientific community [42]. Earlier in
men (due to occupational exposure and related patterns of
tobacco smoking), COPD is considered far more frequent
than in women of the same age [43]. However, lately, the
prevalence of COPD has become equally likely in men and
women of higher income countries where the habit of smok-
ing tobacco is similar between the two sexes. Some studies
showed that women are more likely to develop COPD than
men. By giving equal exposure to smoking and the same
environmental factors, researchers support the hypothesis
that women are more susceptible to developing COPD
than men [44].

4. Diagnostic Biomarkers for COPD

COPD is a diverse disease affecting multiple organs, estab-
lishing a systemic infection. Recently, studies have shifted
their focus to biomarkers to illustrate the pathogenesis and
progression of the disease. A detailed and systematic study
on biomarkers can pave a new road to designing novel ther-
apeutic targets for COPD [45]. Biomarkers can be defined
fundamentally and straightforwardly as “A defining charac-
teristic that is measured as an indicator of normal biological
processes, pathogenic processes, or responses to an exposure
or intervention” [11].

Biomarkers can be further categorized into various sub-
types based on their relative utilization. Biomarkers help
define the progression of the disease during pathogenesis.
Biomarkers, combined with clinical symptoms, play a role
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in identifying the etiological origin and severity of the dis-
ease. Levels of biomarkers can be correlated toward response
to therapy intervention, helping us assess the clinical evolu-
tion of the disease and giving us insights into the potential
complications that may arise. Thus, studying these biomar-
kers will enable us to manage the disease better with better
risk stratification. They may also guide us in assessing the
effectiveness of clinical trials.

This review will discuss the different types of diagnostic
biomarkers used to detect and confirm COPD. These bio-
markers help identify the diseased population and aid us in
redefining the disease classification. COPD pathogenesis
majorly consists of overexpression of systemic inflammation
markers and signaling pathways. Thus, determining these
markers is one of the imperative and crucial directions in
improving the diagnosis and management of COPD [12].
The following are the significant diagnostic biomarkers for
the detection and management of COPD (Figure 2).

4.1. C-Reactive Protein. The overexpression of C-reactive
protein (CRP) is known at the site of inflammation and
infection, as it is an acute inflammatory protein. CRP is
the predominant mediator of the acute phase response in
an inflammatory event, primarily synthesized by IL-6-
dependent hepatic biosynthesis [46]. The serum CRP levels
in COPD patients were significantly higher than those of
healthy subjects [47]. In COPD patients, the levels of CRP
were directly associated with age and inversely related to

hemoglobin levels. Studies have found that lung function
indices such as dyspnea score, oxygen saturation, and
6-min walking distance (6MWD), potential COPD severity
predictors, substantially correlate with CRP levels. Factors
such as duration of the disease and BMI in COPD patients
show no correlation with CRP levels [48].

Increased serum CRP baseline is more pronounced in
COPD mortality than COPD hospitalization cases, consis-
tently marking functional and metabolic damage in advanced
COPD [49]. Thus, in the case of COPD exacerbation, CRP is
used as a diagnostic biomarker, and for early mortality cases
of COPD, it is used as a prognostic biomarker [50, 51]. CRP
levels can also be used as an informative biomarker as they
can demonstrate low-grade systemic inflammation [52].
Lately, studies have shown the association of serum CRP
levels with several different outcomes, including COPD
exacerbation [53].

4.2. Interleukin-6. Interleukin-6 (IL-6) plays a vital role in sys-
temic inflammation of COPD patients, as it is a crucial pro-
inflammatory cytokine [54]. In the stable and exacerbation
phases of COPD patients, the circulatory level of IL-6 was higher
than healthy controls [55]. Among the severity of COPD, the
circulatory levels of IL-6 were found to be of significant differ-
ence, further defining that the level of IL-6 was higher in mild,
moderate, severe, and very severe COPD patients [56].

The pro-inflammatory cytokine IL-6 can induce acute-
phase proteins like CRP. Thus, the levels of CRP and IL-6
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were correlated in COPD patients [57]. COPD exacerbations
lead to overexpression of IL-6 in serum, which leads to a
surge of plasma fibrinogen. Thus, acute COPD response
can prime for stroke or coronary heart disease as comorbid-
ity [58]. A recent finding has established a relation between
the plasma level of IL-6 in malnutrition pathophysiology and
low-weight COPD patients. The study has also elucidated the
sensitivity of the serum level of IL-6 compared to other
inflammatory factors in predicting COPD disease develop-
ment in smokers [59].

IL-6 is the primary regulator in many inflammatory
pathways contributing to disease progression. Thus, IL-6
can independently be a predictive power in determining
mortality in a basic clinical model [60]. IL-6 serum levels
have also been associated with poor physical function in
COPD patients irrespective of age, gender, race, and body
composition [61]. IL-6-driven inflammation may complicate
COPD by contributing extensively to pulmonary hyperten-
sion, leading to increased morbidity of the disease [62]. We
can summarize the systemic inflammatory process led by
IL-6 in COPD patients coerced toward a progressive and
persistent disease model with associated mortality and
inconsistent physical performance [63].

4.3. Serum Amyloid A. Serum amyloid A (SAA) is a protein of
the acute phase having numerous immunological functions. It
involves various processes such as inflammatory reactions, lipid
metabolism, and granuloma formation. It has an established role
in autoimmune lung disease pathogenesis. SAA is used as a
biomarker in various lung diseases such as COPD, obstructive
sleep apnea (OSA) syndrome, asthma, lung cancer, and cystic
fibrosis [64]. SAAhas been identified as a novel blood biomarker
for acute exacerbation of chronic obstructive pulmonary disease
(AECOPD). Changes in SAA levels have shown higher sensitiv-
ity and specificity in defining AECOPD severity than other
biomarkers like CRP. A significant increase in SAA levels
above baseline predicts severe AECOPD [65]. For early detection
and management of AECOPD, SAA-level determination is
advantageous. It can help categorize the patients with the highest
risk of respiratory failure. Biomarkers like IL-6 remain
uninformative in severe cases of AECOPD [65].

Patients with AECOPD and COPD have inflammatory
reactions and have high blood viscosity, thus showing signifi-
cantly higher levels of SAA compared to the healthy control
group. For the clinical diagnosis and treatment of AECOPD,
SAA can be used as an effective index [66]. In the resolution
phase of infection, the secretion of SAA becomes self-limiting
and protective with a sharp fall. In the AECOPD, there is a
steady rise in SAA levels elicited by coinfections [67]. Exhila-
rated levels of SAA are also associated with cardiovascular
diseases, where COPD is a comorbidity. Exacerbation epi-
sodes lead to a dramatic increase in mortality related to car-
diovascular events in COPD. SAA levels can very well
anticipate future cardiovascular events; thus, SAA can be
scrutinized as a predictor for frequent exacerbation pheno-
types and a marker for comorbid cardiovascular disease [68].

4.4. Tumor Necrosis Factor. TNF is a potent cytokine that
mediates inflammation and immune response. It recruits

acute phase proteins, transcription factors, cell surface recep-
tors, and cytokines [69]. TNF starts the production of inter-
leukin cascade components when secreted excessively. It can
also instigate the secretion of matrix metalloprotease 9,
which contributes to lung emphysema, one of COPD’s major
symptoms [70]. Recently, a meta-analysis study has shown
compelling results for a direct relationship between COPD
and elevated TNF-α levels. Higher TNF-α level was found in
COPD patients in comparison to healthy controls. It may
also play a role in the progression and diagnosis of COPD,
but its mechanism is still unknown and needs to be further
explored [71].

In the pathophysiology of COPD, TNF-α tends to play a
central role. Different cells, like alveolar macrophages and
T-cells, produce TNF-α in response to various pollutants,
including cigarette smoke [72]. Studies with animal models
have shown the induction of pathological features of COPD,
like emphysema and lung fibrosis, following elevated TNF-α
levels [73]. The role of TNF-α during COPD is limited to
enhancing inflammatory events and developing systemic
inflammation within the respiratory tract, which manifests
in cachexia in severe COPD patients. Thus, TNF-α is directly
associated with the severity of the disease and its progres-
sion [74].

4.5. Fibrinogen. Fibrinogen is a soluble plasma glycoprotein
majorly involved in blood coagulation reactions by convert-
ing thrombin into fibrin. It can increase significantly during
acute phase stimulation in response to increased IL-6 pro-
duction [75]. A deterioration in lung function can be associ-
ated with elevated plasma fibrinogen concentration, which
increases the risk of developing COPD [76]. For exacerbation
of COPD, elevated fibrinogen can act as an independent risk
factor [77].

Fibrinogen is a glycoprotein with biological roles closely
associated with cell adhesion, blood coagulation, phagocyto-
sis, extension, proliferation, etc. [78]. The molecular weight
of fibrinogen is the largest in available coagulogens, having
structure chain-like asymmetric, and can increase the thick-
ening of plasma, contributing to the formation of small pul-
monary arterial thrombi and aggravating lung injury [79].

Food and Drug Administration (FDA), USA, and Euro-
pean Medicines Agency (EMA) have qualified plasma fibrin-
ogen as a severity assessment COPD biomarker and qualified
it as a drug development tool [80]. As issued by the FDA and
EMA, circulating fibrinogen can be suggested as a biomarker
for early warning. It can be a potent predictor of future
susceptibility to develop COPD and its severity [81].

5. Comorbidities in COPD

Many diseases co-occur with COPD and hence increase the
severity and mortality of the patients. The comorbid diseases
could also affect the interaction between different environ-
mental factors and their impact on the severity of the disease.
Comorbid diseases of COPD are summarized in Figure 3.

5.1. COVID-19. Patients with preexisting COPD are suscepti-
ble to worsening the prognosis and progression of COVID-19

6 Oxidative Medicine and Cellular Longevity



[82]. Meta-analysis studies on COVID-19 from December
2019 to March 2020 demonstrate that the severity of
COVID-19 increases fourfold in patients with preexisting
COPD [83, 84]. The analysis in China for comorbidities in
1,590 COVID-19-positive patients found that the odds ratio
of COPD is about 2.681 (95% CI 1.424–5.048; p¼ 0:002) for
ICU patients, ventilators, or death, even after adjusting the
smoking and age [84–87]. Furthermore, out of all severe cases,
62.5% of cases had a history of COPD, whereas, in comparison,
only 15.3% of cases had a history of COPD in nonsevere cases.
Additionally, out of the total fatalities, 25% of cases are COPD
patients, whereas, in comparison, only 2.8% of COPD patients
have survived.

Cellular serine protease (TMPRSS2) primes the envelope
spike protein of SARS-CoV-2 and hence helps to facilitate
the fusion of the SARS-CoV-2 virus with angiotensin-con-
verting enzyme 2 receptor (ACE-2 receptor) in the cells and
subsequently facilitates the cell entry [88, 89]. In COPD
patients, the expression of ACE-2 was significantly elevated
in bronchial epithelial cells compared to the control subjects
[90]. However, it is interesting to note that the expression of
ACE-2 alone has neither shown an increase in the severity of
the disease nor an increase in its susceptibility. Moreover, in
patients with predominantly small airway pathologies, ACE-
2 expression is relatively low in the bronchial epithelium
compared to the nasal epithelium. It has unexplained impli-
cations for the susceptibility of the disease [91].

5.2. Lung Cancer. COPD patients are three to four times
more susceptible to developing pulmonary cancer than
tobacco smokers with normal pulmonary functions [92].

Lung cancer is one of the significant causes of fatality in
COPD patients, especially in patients with more severe dis-
eases [93]. An increase in the prevalence of pulmonary cancer
in patients with COPD is more likely associated with an
increase in oxidative stress and inflammation in COPD
patients [94]. NF-κB activation might provide a link between
lung cancer and inflammation [95]. By regulating the expres-
sion of various detoxifying enzymes, nuclear factor erythroid
2-related factor 2 (Nrf2) plays a vital role in defending against
several carcinogens of tobacco inhalation. As COPD patients
lack Nrf2, it might contribute to increasing the susceptibility
of COPD patients to pulmonary cancers [96].

It is interesting to note that lung cancer is more common
among patients with COPD who are never smokers and have
never been exposed to tobacco inhalation in their entire life
[97]. In females, the risk of getting lung cancer and COPD is
greater, probably due to the hormone-stimulated metabo-
lism of carcinogens in smoking tobacco [98].

5.3. Muscle Dysfunction and Malnutrition in COPD. Weak-
ness in the skeletal muscles is one of the important systemic
effects of COPD, often accompanied by the loss of fat-free
mass (FFM) [99]. In normal males, 40%–50% of total body
mass accounts for skeletal muscle. The turnover of proteins
in skeletal muscle is a dynamic process involving balancing
protein breakdown and protein synthesis. Moreover, in acute
illnesses like sepsis and trauma, the loss of muscle mass due
to the breakdown of muscle proteins is comparatively more
significant. It occurs rapidly, whereas in chronic illnesses like
COPD, the loss of muscle mass due to muscle protein break-
down is comparatively slower. Several studies demonstrate

Systemic inflammation
IL-6, IL-1β, TNF-α 

(1) Acute phase proteins
(2) CRP
(3) Surfactant protein D
(4) Serum amyloid A 

Peripheral lung inflammation
COPD lungs

COVID-19

Obstructive
sleep apnea Normocytic

anemia Osteoporosis Depression

Lung
cancer

Muscle dysfunction
and malnutrition 

Diabetes

Cardiovascular
diseases 

FIGURE 3: Comorbidities with COPD.
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that in patients with COPD, the structure and function of
skeletal muscles are altered. Several studies on humans indi-
cate that the breakdown of skeletal muscle is evident in
patients with COPD and is specific for muscle fiber type
IIA/IIx [100].

Muscle wasting has a magical effect on morbidity in
severe cases of COPD. Hence, it increases the risk of read-
mission to the hospital after an exacerbation and increases
the need for mechanical ventilation support. Additionally,
muscle wasting is considered a significant determinant of
mortality in patients with COPD independently of smoking,
BMI, and lung functions [101].

5.4. Diabetes. Several population studies indicated an
increase in the prevalence of diabetes among patients with
COPD, with a relative risk of 1.5–1.8 [9]. Even in patients
with mild symptoms of COPD, the prevalence of diabetes is
observed [9]. The mechanism behind this association is not
precise. Furthermore, the relation between high doses of
inhaled corticosteroids and the increased risk of diabetes is
also doubtful. Patients with mild disease also have a high risk
of diabetes. It is interesting to note here that asthma patients
do not have the prevalence of diabetes. However, COPD does
have it, suggesting an altogether different mechanism of
inflammation in COPD compared to asthma.

Pro-inflammatory cytokines like IL-6 and TNF-α,
induce insulin resistance by inhibiting the signals of insulin
receptors, thereby increasing the risk of type-2 diabetes
[102]. An increase in the concentration of plasma CRP,
IL-6, and TNF-α are reported in metabolic syndromes,
including cardiovascular diseases and insulin resistance
[103]. These metabolic syndromes are also prevalent among
patients with COPD, thus leading to the co-occurrence of
cardiovascular diseases and diabetes with airway obstruc-
tion [103].

5.5. Osteoporosis. Multiple studies have shown that in
patients with COPD, there is a very high prevalence of low
bone mineral density (BMD) and osteoporosis, even in the
milder stages of COPD disease [104]. In a study, 6,000
COPD patients were recruited for the large TORCH trial
(toward a Revolution in COPD Health); among these, over
half of the COPD patients have osteopenia or osteoporosis,
which is determined by Dexa (dual-energy radiograph
absorptiometry) [105]. In another study, there is a 75%
prevalence of osteoporosis in patients with GOLD stage IV
disease, and it has a strong correlation with the decrease in
the level of FFM [106, 107].

It is interesting to note that the prevalence of osteoporo-
sis is high in males and even higher in the case of females. At
the same time, the incidences of nontraumatic and traumatic
fractures are approximately similar in both sexes. Fractures
due to vertebral compression are relatively widespread
among patients with COPD, and this increase in kyphosis
further reduces the functions of the lung [108].

5.6. Normocytic Anemia. Several studies have shown that the
prevalence of anemia is very high among patients of COPD,
ranging between 15% and 30% of total COPD patients,

especially in patients with more severe disease conditions.
In contrast, erythrocytosis (polycythemia) is comparatively
rare, ranging about 6% [109, 110]. Hemoglobin level is inde-
pendently and strongly associated with the increase in func-
tional dyspnea, and decrease in exercise capacity, and hence,
is an essential contributor to functional capacity and poor
quality of life [111]. For chronic inflammation diseases, the
anemia is usually of characteristic normochromic normocytic
type, which appears to be due to resistance to the erythropoi-
etin, whose concentration is elevated in these patients [112].

In a study, it was shown that the transfusion of blood
improves exercise performance in anaemic COPD patients
[113]. However, iron supplements show detrimental effects
as iron cannot be utilized correctly and may increase sys-
temic oxidative stress.

5.7. Obstructive Sleep Apnea. The condition during sleep
where the upper airways collapse repetitively is known as
obstructive sleep apnea (OSA). According to an estimate,
20% of OSA patients also have underlined COPD conditions.
Of their counterparts, 10% of COPD patients have the sever-
ity of the disease independent of OSA [114]. OSA and COPD
patients share many common comorbidities, including car-
diac failure, endothelial dysfunction, metabolic syndrome,
and diabetes [115]. According to some recent research, it is
evident that patients with OSA have systemic inflammation,
upper airway inflammation, and oxidative stress [116].

5.8. Depression. Due to the physical limitations of COPD
patients, they are more often isolated and unable to engage
themselves in various social activities. So, it is not surprising
to see an increase in the prevalence of depression and anxiety
in patients with COPD, and depression and anxiety appear
to be more prevalent in COPD than in any other chronic
disorder. The symptoms of depression and anxiety are often
confused with the symptoms of COPD; hence, they remain
undiagnosed and untreated in various clinical practices.
Clinically relevant symptoms of depression are estimated
to occur in about 10%–18% of all patients. However, among
the clinically stable outpatients with COPD, about 19%–42%
prevalence is seen for major depression, which requires ther-
apeutical interventions [117, 118]. Depression cannot be
diagnosed with any standardized approach in patients with
COPD due to underlying differences in the variability and
methodology of the screening questionnaires at cut-off
points to determine the depression diagnosis. However, var-
ious simplified tools can help a clinician screen out depres-
sion, and if the case is in doubt, referring to a specialist who
specializes in psychiatric disorders can show beneficial effects
for the patient.

Much-blooming evidence states that systemic inflamma-
tion may result in depression, and IL-6 mainly plays an
essential role in human and animal models of depres-
sion [119].

5.9. Cardiovascular Diseases. The functional and anatomical
relationship between the heart and lungs is very intricate.
Any impairment that impacts one of the two organs will
likely have consequences on the other. These associations
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are essential in COPD patients and can be of two types: (A)
related pathologies that have similar risk factors, such as
COPD and congestive heart failure, or smoking cigarettes
and coronary artery disease (CAD), and (B) those diseases
that result in the dysfunctioning of the heart to underlining
primary lung diseases, such as ventricular dysfunction and
secondary pulmonary hypertension due to increased intra-
thoracic mechanical load. Common cardiovascular diseases
which are found in prevalence in COPD patients are
described below.

5.10. Coronary Artery Disease. CAD and COPD are very
prevalent diseases and share similar risk factors, such as
old age, sedentary lifestyle, and smoking cigarettes. Indepen-
dent of sex, age, and smoking habits, it is evident that
patients with any airflow limitations are more prone to death
from myocardial infarction [120]. Some results were
obtained even when the history of cigarette smoke was
included [121]. Some results were obtained even when the
history of cigarette smoke is included [121]. Due to respira-
tory insufficiency, the chances of mortality due to cardiovas-
cular ailments are higher in patients with mild COPD [105].
Clinically, a strong correlation has been found between FEV1
(impaired lung function) and cardiovascular mortality and
morbidity. Independent of the status of smoking, COPD
patients have a higher prevalence of fatal myocardial infarc-
tion [122].

5.11. Heart Failure. The shreds of evidence for the associa-
tion between left ventricular congestive failure and COPD
are comparatively lesser. Although some theories suggest
that COPD shares a common inflammatory pathway with
left ventricular congestive failure, it is clinically poorly
defined how the prevalence of left ventricular function
decreases in COPD patients. One study estimates that the
prevalence of left ventricular congestive failure is about 20%
in patients with COPD who have never had such a diagnosis
[123]. The signs and symptoms of heart failure in COPD are
very intricate and overlap with one another, making the
diagnosis very complicated. The best way to discriminate
between COPD and heart failure in COPD is the measure-
ment of N-terminal prohormone brain natriuretic peptide
(NT-proBNP) or B-type natriuretic peptide [124]. This mea-
surement of NT-proBNP can be a valuable factor in distin-
guishing between decompensated heart failure and acute
COPD exacerbation [125]. An overexpressed NT-proBNP
plasma level correlates with poor physical activity in patients
with COPD, suggesting that the defective left ventricular
function may contribute to reducing the performance in
the patients [126].

5.12. Pulmonary Arterial Hypertension (PAH). Clinically, pul-
monary arterial hypertension is not common among patients
with COPD with mild to moderate stages. However, it can
develop during exercise. About 50% of patients with COPD
who undergo lung transplantation or lung volume reduction
surgery have severe to moderate PAH [127]. The ratio between
hypoxic vasoconstriction and ventilation-perfusion is higher in
less severe cases of COPD than in advanced stages of COPD,

where the ratio is less. Various studies suggest that the initial
stages of PAH in COPD can be an injury of the endothelium by
smoking cigarettes with a simultaneous downregulating of the
expression of prostacyclin synthase and endothelial nitric oxide
synthase and subsequently the impairment in the function of the
endothelium [128].

5.13. Arterial Stiffness and Endothelial Function. Arterial
stiffness which occurs in vascular disease is a better marker
for cardiovascular events. It can be determined noninvasively
by calculating the aorta’s radial artery tonometry or pulse
wave velocity [129]. In regular smokers and nonsmokers,
arterial stiffness increases in COPD patients, and this phe-
nomenon is neither related to the severity of the disease nor
to the concentration of circulating CRP [130]. Clinically, this
increase in arterial stiffness may result in systemic hyperten-
sion and increase the prevalence of cardiovascular diseases in
patients with COPD [131].

6. Therapy Approaches in COPD

The usage of bronchodilators for themanagement of COPD is
an important advance. It has been long acting, but the under-
lying mechanism for these drugs to deal with the inflamma-
tory process is not known [132]. COPD shows heterogeneous
clinical phenotypes, which leads to incongruent groups with
unstable disease mechanisms or molecular pathways, leading
to inconsistent approaches for the development of new thera-
pies [133]. For COPD therapy, most known drug classes are
being used in the newly approved drugs. These drugs do not
target disease progression processes andmortality but address
symptoms and exacerbations. Hence, a humongous require-
ment exists for developing therapies that target immune dys-
function and underlying inflammation [134]. After the recent
elucidation of the underlying inflammatory signaling path-
ways in COPD, new molecular targeted drug candidates for
COPD are signal-transmitting substances. Newer COPD
treatment strategies are described in Figure 4 and Table 1.

6.1. Antioxidants. In the pathogenesis of COPD, oxidative
stress plays a vital role. Antioxidants inhibit oxidative stress
by scavenging reactive oxygen species (ROS), which reduces
inflammation and cellular damage in the lungs [144]. In this
aspect, Table 2 provides clinical testing of N-acetyl cysteine
and other glutamines have been carried out [154].

6.2. Protease Inhibitors. In COPD pathophysiology, the
lung’s antiprotease ratio is an important aspect. Both in vitro
and in vivo COPD models have shown efficacy for antipro-
tease therapy [155]. Selective inhibitors have been designed
against matrix Metaloprotein 9 (MMP-9). These inhibitors
have shown efficacy in animal models, but their effectiveness
is minimal in clinical trials of COPD [156].

6.3. Chemokine and Cytokine Inhibitors. The levels of cyto-
kines and chemokines like IL-1, IL-6, IL-1β, IL-8, and TNF-α
increased significantly in COPD patients [157]. Inhibitors
have been designed against the IL-8 receptor CXC chemo-
kine receptor 2 (CXCR2). These inhibitors have shown

Oxidative Medicine and Cellular Longevity 9



positive results in animal models and clinical trials by block-
ing neutrophil infiltration [158] (Table 3).

6.4. PDE4 Inhibitors. Phosphodiesterase enzymes (PDE)
metabolize the intracellular secondary messenger cAMP and
cGMP. Inflammatory cells such as T-cells, eosinophils, and neu-
trophils have shown the expression of PDE4 in asthma and
COPD [174]. Thus, inhibiting PDE4 is an effective therapeutic

strategy for inflammatory respiratory diseases. PDE4 inhibitors
target cAMP hydrolysis, increasing levels and activating down-
stream phosphorylation cascades. This reduces inflammation
and relaxes the airway smooth muscles [175].

The only approved PDE4 inhibitor for treating severe
COPD is roflumilast. It has been shown to improve lung
function significantly and reduce the exacerbation rate in
clinical trials with severe COPD [176] (Table 4).

Cytokine and chemokine inhibitors
(1) IL-1
(2) IL-6
(3) IL-8
(4) TNF-α
(5) LTB4 

(1) NF-κB
(2) p38MAPK
(3) PI3K
(4) VIP 

EGFR
inhibitors

PPAR
agonists

TGFR
inhibitors

CCR
inhibitors Adhesion

molecule
inhibitors

Adenosine
A2a

receptor
agonists

Endothelin
inhibitors

Antioxidants

Protease
inhibitors

New
molecular
targets for

COPD
therapies

PDE4
inhibitors

Signaling inhibitors

FIGURE 4: Molecular targets for newer COPD treatment strategies [14].

TABLE 1: Pro-inflammatory signaling pathway inhibitors for COPD.

S. no. Inhibitor/drug Mechanism/effect Clinical progress References

1 RV568 P38MAPK pathway inhibitor
No effect

(NCT01475292)
(NCT01661244)

[135]

2 Nemiralisib (GSK2269557) PI3K inhibitor

28 Days treatment
(NCT02294734)
84 Days treatment
(NCT02522299)

[136]

3 RV1729 PI3K inhibitor
Phase I Trial, limited efficacy

(NCT02140346)
[136, 137]

4 VIP (vasoactive intestinal peptide)
Increases cAMP, adenylate cyclase, and

phospholipase C
3 Months inhaled treatment

(NCT00464932)
[138, 139]

5
Adenosine A2A receptor

(UK-432097)
cAMP enhancer

No effect
(NCT00430300)

[140, 141]

6 AZD1981 Prostaglandin D2 receptor inhibitor No effect (NCT00690482) [142]

7 Bimosiamose Selectins inhibitor
28 Days inhalation treatment

(NCT01108913)
[143]
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TABLE 2: Antioxidants and protease inhibitors for COPD.

S. no. Inhibitor/drug Mechanism/effect Clinical progress References

1
N-acetyl cysteine
(NAC)/glutamines

Oxidative stress suppressor
Clinical trials are going on. Effective in
high-risk patients (NCT01136239)

(NCT00184977)
[145, 146]

2 SOD/GPx ROS reducer
Established in animal models. Clinical

trials underway
[147]

3 Sulforaphane ROS and RNS reducer
4 Weeks clinical study, no effect

(NCT01335971)
[148]

4 Resveratrol Activator of SIRT1
12 Weeks of clinical study done

(NCT03819517)
[149]

5 SRT1720 Activator of SIRT1 Established in animal model [150]

6 AZD1236 Anti MMP-9 and MMP-12
6 Weeks clinical study. Results not

statistically significant
[151]

7 Sivelestat (ONO-5046)
Protection from NE-mediated lung

damage
Clinically approved in Japan for ALI and

ARDS
[152]

8 AZD9668
Protection from NE-mediated lung

damage
12 Weeks clinical study with budesonide.

No effect
[153]

TABLE 3: Cytokine and chemokine receptor inhibitors for COPD.

S. no. Inhibitor/drug Mechanism/effect Clinical progress References

1 Tocilizumab IL-6 inhibitor Clinical trials need further study [159]

2 Canakinumab IL-1β inhibitor Phase I/II RDBPCES [160]

3 Infliximab TNF-α inhibitor
No effect

(NCT00056264)
[161–163]

4 Etanercept TNF-α inhibitor
90 Days treatment of COPD

(NCT00789997)
[164]

5 AZD4818 CCR1 inhibitor
No effect

(NCT00629239)
[165]

6 AZD2423 CCR1 inhibitor
A study completed statistical analysis not

released
(NCT012115279)

[166]

7
Navarixin
(MK-7123)

CXCR2 inhibitor
6 Months of study. Improvement in FEV1

(NCT01006616) (NCT00441701)
[166, 167]

8 AZD5069 CXCR2 inhibitor
4 Weeks treatment
(NCT01233232)

[166]

9 BIIL 284 LTB4 receptor inhibitor
Clinical study done
(NCT02249247)
(NCT02249338)

[168]

10 Zileuton 5-LO inhibitor
No effect in treatment

(NCT00493974)
[169]

11 Mepolizumab IL-5 inhibitor
26–52 Weeks treatment

(NCT02105948, NCT01463644,
NCT02105961)

[170]

12 Benralizumab IL-5Rα inhibitor
No effect

(NCT01227278)
[171]

13 Lebrikizumab IL-13 inhibitor
Decline in COPD exacerbation and

lung function
(NCT02546700)

[172, 173]
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6.5. Adhesion Molecule Inhibitors. Adhesion molecules are
expressed on a variety of cells. They help intracellular com-
munication via cell–cell adhesion and signal transduction
[183]. An antiselectin antibody, EL246, which targets cell
adhesion, has been developed. Currently, EL246 is being
pursued with acute exacerbation of COPD as a therapeutic
drug [184] (Table 5).

6.6. PPAR Agonist. The role of peroxisome proliferator-
activated receptor (PPAR) signaling in regulating inflamma-
tion has been studied well. Of the various isoforms of PPAR,
PPARg plays a crucial role in regulating the expression of
genes involved in pathogenic conditions [192]. PPARγ ago-
nists exhibit an anti-inflammatory effect as they suppress the
production of pro-inflammatory cytokines [193]. Thiazolidi-
nediones, one of the PPARγ agonists, have reduced lung
inflammation in in vivo studies [194]. In cigarette smoke-
induced emphysema, thiazolidinediones treatment was
shown to reverse the emphysema [195].

7. Conclusions and Prospects

Many comorbidities are present with COPD, which is associ-
ated with inaccuracy in death. So, all causes of death must be
the prime endpoint for any further studies to evaluate the
therapy of COPD. However, the ongoing revolution of
COPD health studies, including all causes of mortality, can
provide conclusive data for long-acting b2-agonists and inhaled
corticosteroids in combination or individually. It is essential to
consider COPD as a multicomponent disease [196] with severe
comorbidities, such as lung cancer, cardiovascular diseases,
and systemic and pulmonary inflammation. Recently, orally
administered broad-spectrum anti-inflammatory therapies

have been in clinical development, but they appear to have
remarkable side effects, so inhaled drugs should be developed
for future perspectives. Another approach should be to develop
a drug that reverses the resistance of corticosteroids, which is
supposed to be a massive barrier to the therapies [197]. In the
future, a clear understanding of the molecular mechanism
behind corticosteroid resistance may lead to new therapeutic
approaches.

Another future area of research should consider COPD
and various comorbidities, including osteoporosis, diabetes,
and cardiac disease, as a disease of accelerated aging. Molec-
ular pathways behind aging are very well understood and
reveal many novel drug targets as interventions, including
peroxisome proliferator-activated-γ coactivator 1α and anti-
aging molecules sirtuin 1 [198]. This review has discussed
different types of diagnostic biomarkers used to detect and
confirm COPD. These biomarkers help identify the diseased
population and aid us in redefining the disease classification.
COPD pathogenesis majorly consists of overexpression of
systemic inflammation markers and signaling pathways.
Thus, determining these markers is one of the imperative
and crucial directions in improving the diagnosis and man-
agement of COPD.
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TABLE 4: cAMP and cGMP phosphodiesterase inhibitor for COPD.

S. no. Inhibitor/drug Mechanism/effect Clinical progress References

1 Roflumilast PDE4 inhibitor US-FDA approved drug [177, 178]

2 GSK-256066 PDE4 inhibitor
4 Weeks inhaled treatment

(NCT00549679)
[179]

3 CHF6001 PDE4 inhibitor Clinical testing going on (NCT01730404) [180]

4 Tadalafil PDE5 inhibitor
Approved for pulmonary arterial
hypertension 12-week treatment

(NCT01197469)
[181]

5 RPL554 PDE3/PDE4 inhibitor
Being investigated as an adjunct

(NCT02542254)
[182]

TABLE 5: Other drugs for COPD.

S. no. Inhibitor/drug Mechanism/effect Clinical progress References

1 Eleuquin (EL246) Cell adhesion inhibitor Under predevelopment by LigoCyte [185]

2 BIBW 2948 EGFR internalization reducer 4 Weeks treatment (NCT00423137) [186]

3 Bosentan Endothelin receptor inhibitor 18 Months treatment (NCT02093195) [187, 188]

4 Solithromycin Macrolide antibiotic
Early termination of the trial

(NCT02628769)
[189]

5 Thiazolidinediones PPARγ agonists
10 Months treatment

(NCT00103922)
[190, 191]
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