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abstractOBJECTIVES: Increased intestinal permeability seems to be a key factor in the pathogenesis of au-
toimmune diseases, including celiac disease (CeD). However, it is unknown whether increased
permeability precedes CeD onset. This study’s objective was to determine whether intestinal
permeability is altered before celiac disease autoimmunity (CDA) in at-risk children. We also
examined whether environmental factors impacted zonulin, a widely used marker of gut
permeability.

METHODS: We evaluated 102 children in the CDGEMM study from 2014–2022. We included 51
CDA cases and matched controls, who were enrolled for 12 months or more and consumed
gluten. We measured serum zonulin from age 12 months to time of CDA onset, and the corre-
sponding time point in controls, and examined clinical factors of interest. We ran a mixed-
effects longitudinal model with dependent variable zonulin.

RESULTS: Children who developed CDA had a significant increase in zonulin in the 18.3 months
(range 6–78) preceding CDA compared to those without CDA (slope differential 5 b 5
0.1277, 95% CI: 0.001, 0.255). Among metadata considered, zonulin trajectory was only influ-
enced by increasing number of antibiotic courses, which increased the slope of trajectory of
zonulin over time in CDA subjects (P5 .04).

CONCLUSIONS: Zonulin levels significantly rise in the months that precede CDA diagnosis. Expo-
sure to a greater number of antibiotic courses was associated with an increase in zonulin lev-
els in CDA subjects. This suggests zonulin may be used as a biomarker for preclinical CeD
screening in at-risk children, and multiple antibiotic courses may increase their risk of CDA by
increasing zonulin levels.
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permeability is increased in chronic inflammatory
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disease autoimmunity onset and is influenced by
antibiotic exposure in at-risk children.
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Intestinal permeability has been implicated in various
gastrointestinal diseases, including celiac disease (CeD).
CeD is a T cell-mediated autoimmune condition that
occurs in individuals with a genetic predisposition and ex-
posure to dietary gluten.1 However, most individuals with
a genetic predisposition do not develop CeD; thus, the
earliest steps leading to loss of tolerance to gluten are
unclear.

CeD is unique because the inciting factor, gliadin, is
known. Gliadin interacts with the intestinal epithelium lead-
ing to release of zonulin, an endogenous regulator of intes-
tinal epithelial tight junctions, causing a breach in the
epithelial barrier.2,3 An increase in zonulin is associated
with increased intestinal permeability. Increased intestinal
permeability may be a key feature of CeD pathogenesis by
allowing undigested gliadin peptides to pass from the intes-
tinal lumen into the lamina propria, reducing tolerance to
gluten through immune system interactions. Although in-
creased intestinal permeability has been associated with
autoimmune diseases, including multiple sclerosis, Crohn’s
disease, type I diabetes mellitus (T1D), and CeD; most stud-
ies are cross-sectional.4–10 Therefore, these studies could
not distinguish whether increased permeability developed
before disease or in response to the condition. One study in
subjects at-risk of developing Crohn’s disease found intesti-
nal permeability increased up to 3 years before Crohn’s dis-
ease.11 Here we aimed to determine whether an increase in
intestinal permeability, as measured by serum zonulin,
precedes the onset of celiac disease autoimmunity (CDA),
defined as elevated celiac autoantibodies on at least 2 oc-
currences, in at-risk children and whether environmental
factors influence zonulin. We hypothesized subjects at risk
for developing CeD have increased zonulin levels before
the onset of CDA, which would be mediated by infections.

METHODS

To examine the earliest steps leading to loss of gluten
tolerance and CDA onset, we developed a longitudinal,
prospective, birth cohort study called the Celiac Disease
Genomic Environmental Microbiome and Metabolomic
(CD-GEMM) study.12 This study follows over 500 subjects
with a first-degree relative with CeD from birth through
10 years of age and obtains blood, stool, and in-depth
clinical information to monitor for CeD, taking a multio-
mic approach to predicting and preventing the disease.12,13

In this nested case-control study, we evaluated 102 pediat-
ric subjects that were part of the larger CD-GEMM study
and were enrolled between 2014 and 2022 in the United
States and Italy.

As previously described, blood samples were drawn ev-
ery 6 months for t3 years, and every 12 months thereafter,
and kept frozen until analysis.12,13 During the study, pa-
rents answered monthly diaries about their child, including
timing of gluten introduction and the number of servings

of gluten-containing foods consumed. Every 3 months we
reviewed data from parent-reported questionnaires de-
scribing respiratory and gastrointestinal viral symptoms
(eg, fever, cough, rhinorrhea, vomiting, or diarrhea). Pa-
rents reported antibiotic exposure monthly for the first
year after birth, then every 3 months until 18 months, and
then every 6 months thereafter.

Blood samples were tested for celiac autoantibodies and
human leukocyte antigen (HLA) genotype, as previously
described.12,13 Subjects were determined to have celiac
disease autoimmunity (CDA) if they had elevated celiac
autoantibodies on at least 2 occurrences.12,13 Subjects
were diagnosed with CeD if they had duodenal villous atro-
phy on biopsy or if they met criteria for elevated celiac an-
tibody serologies, in accordance with the North American
or the revised European Society for Pediatric Gastroenter-
ology, Hepatology, and Nutrition criteria.14,15

Since the march from genetic predisposition to CeD in-
cludes breaking tolerance to gluten marked by CDA before
overt CeD, in this study, CeD and CDA were collectively re-
ferred to as CDA.16 We included all subjects with CDA and
1 matched control per case. They were matched according
to mode of delivery, sex, country, and HLA genetic risk.
Those negative for HLA DQ2, DQ8, or DQ7 were consid-
ered low risk, those homozygous for HLA DQ2 were con-
sidered high risk, and all others were standard risk.17,18

We included only subjects with gluten introduced during
the study period, with celiac serologies beyond 12 months
of age, and with HLA genetic testing. We excluded those
without serum available beyond 12 months of age and
those without gluten introduction. The study was approved
by the MassGeneral Brigham Human Research Committee
Institutional Review Board.

Zonulin Testing

Zonulin was tested on serial serum samples from 12
months of age to time of CDA diagnosis or the corre-
sponding time point in controls (average of 4 timepoints,
range 1–9). Zonulin testing was performed with the Zon-
ulin (Serum) ELISA kit (Immundiagnostik AG), according
to manufacturer instructions. Samples with zonulin lev-
els greater than 4 standard deviations above the mean
were marked discrepancy outliers and were excluded
from the analysis (n 5 2 samples).

Statistical Analysis

We ran a mixed effects longitudinal model with depen-
dent variable zonulin. Subject-level (time-constant) fixed
predictors were CDA diagnosis (yes, no), sex (female,
male), age at CDA diagnosis or last assessment, country
(United States, Italy), family member with CeD (parent,
sibling, both), gene risk (low, standard, high), and gluten
introduction age. Time-varying fixed predictors included
the number of months before CDA diagnosis (linear,
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quadratic), number of antibiotic courses, total respiratory
and gastrointestinal viral infections, and number of gluten-
containing servings consumed per time interval. Vari-
ous relevant linear and quadratic interactions were
also included. The random term was subjects nested in
sex, country, first-degree relative with CeD, gene risk,
and CDA diagnosis group (yes, no). Higher order quad-
ratics, interactions, and covariates were pretested and
removed if they were not significant. Final model resid-
uals from fixed effect predicted values and combined
fixed and random effect predicted values were assessed
for model fit and to check for reasonable conformance
to model assumptions of normality. Analysis was per-
formed using SAS software (Version 9.4; SAS Institute
Inc, Cary, NC, USA).

RESULTS

Descriptive Characteristics

We included 51 subjects in CDGEMM diagnosed with
CDA, as of December 1, 2022, and 51 control subjects
(63.7% female, 36.3% male, 31.4% from the United
States, 68.6% from Italy) (Table 1). Within the overall
CDA group, 28 had CeD and 23 had CDA. The average
month of gluten introduction for controls was 7.9 months
and for CDA subjects was 8.3 months. There were 26
with high-risk genetics, 73 with intermediate-risk genet-
ics, and 3 with low-risk genetics. The average follow-up
time in the study was 23 months (SD 5 15.5 months).

Longitudinal Models

We ran a mixed effects longitudinal model with dependent
variable zonulin and assessed how various factors changed

zonulin over time. The final reduced model showed signifi-
cant effects for months before CDA diagnosis (linear) inter-
acting with CDA diagnosis (P 5 .049), such that subjects
with CDA showed a significantly steeper slope of increas-
ing zonulin in the 6 to 78 months before a CDA onset than
before the last assessment in controls (slope differential 5
b 5 0.1277, 95% confidence interval: 0.001–0.255) (Fig 1).
There was also a significant main effect for country (P 5
.002), with subjects from Italy having a higher model-ad-
justed zonulin mean (30.24, SE 5 0.89) than subjects from
the United States (25.43, SE 5 1.14), across time as a
whole. We did not find a significant effect for timing of
gluten introduction, nor the number of servings of gluten-
containing foods consumed at each time interval evaluated.
The percent variance in zonulin linearly accounted for by
the fixed predictors in the model was 12.4%, whereas
combined fixed and random predictors accounted for 48%.
Residuals from fixed predicted values, as well as from com-
bined fixed and random predicted values, were reasonably
normal, indicating good model fit and conformance to
assumptions.

Given the interest in the relationship between infections
and zonulin, as well as antibiotic courses (as a proxy for in-
fections) and zonulin, 2 subject-level variables were created
as the sum of total infections across the study per subject
and the sum of antibiotic courses across the study per sub-
ject. In 2 separate analyses, these variables were entered as
fixed predictors into the final model above, as well as their
interactions with months before CDA diagnosis or last as-
sessment. Effects for total viral infections were not signifi-
cant. However, a significant interaction effect of antibiotic
courses and months before CDA diagnosis or last assess-
ment (P 5 .04) was found. Antibiotics were found to in-
crease the slope of change across time for zonulin as the
number of antibiotic courses increased (slope increase 5 b
5 0.0243 per antibiotic course, 95% confidence interval:
0.0013–0.0473). Fixed effect predicted variance increased to
14%. Further, a 3-way interaction of CDA diagnosis, antibi-
otic courses, and months before CDA diagnosis or last as-
sessment was further added and found to be marginally
significant (P 5 .09), indicating that the association of anti-
biotics to increasing slope of change occurred almost exclu-
sively for the CDA group (Fig 2). Fixed effect predicted
variance further increased to 16%.

We found a diagnosis of CDA, and a greater number of
antibiotic courses, had independent significant effects on
increasing the slope of the trajectory of zonulin over
time before CDA onset. Similar evaluations of the sum of
the total number of viral infections did not have a signifi-
cant effect on zonulin.

DISCUSSION

Increased intestinal permeability is hypothesized to be a
necessary feature of CeD pathophysiology, as it may be a

TABLE 1 Subject Characteristics

CDA Controls

n 5 51 n 5 51

Sex, n (%)

Male 18 (17.6) 19 (18.6)

Female 33 (32.4) 32 (31.4)

Country, n (%)

United States 16 (15.7) 16 (15.7)

Italy 35 (34.2) 35 (34.2)

HLA genetics, n (%)

High 15 (14.7) 11 (10.8)

Standard 35 (34.3) 37 (36.3)

Low 0 3 (3)

Unknown 1 (1) 0

Age at seroconversion (first
positive celiac antibody)

Avg 34 mo
(range 12�84 mo)

NA

Gluten

Age at introduction Avg 8.34 mo
(range 2�36 mo)

Avg 7.86 mo
(range 5�42 mo)

Servings per month Avg 36.85
(range 0�162)

Avg 37.54
(range 0�108.3)
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key step in breaking mucosal tolerance.19 However, it is
unknown whether increased intestinal permeability pre-
cedes onset of CeD. For the first time, we demonstrated
an increased rate of rise of intestinal permeability in chil-
dren that develop CDA, before disease onset, by utilizing a

unique, prospective, longitudinal birth cohort of children
at-risk of CeD. These changes occurred an average of 18
months before the onset of the autoimmune process.

This suggests intestinal permeability increases in the
months to years before CDA. This is consistent with data

FIGURE 1
Values predicted for serum zonulin across months previous to CDA or last assessment, by the model fixed effects. (Pooled across countries. Predicted val-
ues for months less than�30 not shown because they are based on too few observations in that region - approximately 17% of total).

FIGURE 2
Zonulin values predicted by model fixed effects, for (A) controls or (B) CDA subjects versus months previous to CDA or last assessment and number of anti-
biotic courses. (Illustrated for USA). (Predicted values for months less than�30 not shown because of too few observations - approximately 17% of total).
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from our group showing deamidated gliadin peptide im-
munoglobulin G rises 6 to 12 months before antitissue
transglutaminase IgA seroconversion, implying intestinal
permeability increases before this change in deamidated
gliadin peptide immunoglobulin G as well.20 Additionally,
this increase in zonulin was positively associated with a
greater number of antibiotic courses in CDA subjects. We
did not identify a threshold of zonulin that was signifi-
cant in predicting CDA, rather we found a greater rate of
rise of zonulin was predictive of CDA onset. These find-
ings of increased intestinal permeability may result in ex-
panded antigen trafficking of gliadin and other nonself-
antigens, which could contribute to loss of tolerance to
gluten in genetically susceptible individuals.21 In this
study, we provide novel insights on the possible mecha-
nisms involved in breaking mucosal tolerance before au-
toimmune dysfunction.

Examining the physiologic alterations in the predisease
state is crucial to early intervention and disease prevention.
Although studies have measured zonulin during active dis-
ease, few have explored how zonulin changes before disease
onset. In addition, previous work on intestinal permeability
in established diseases focuses on adults, with limited stud-
ies in pediatrics. One study found increased intestinal per-
meability, measured by the urinary fractional excretion of
lactulose-to-mannitol ratio (LMR), is associated with later
onset of Crohn’s disease in first-degree relatives of subjects
with Crohn’s disease.11 Others found an elevated LMR in
subjects with islet autoimmunity before T1D onset.22 Of
note, many studies have used LMR as a marker of intestinal
permeability; however, it is a challenging process, as sub-
jects must drink a predetermined amount of sugar solution,
collect the appropriate urine volume, and handle the urine
specimen in a specific manner.23 Changes at any step may
alter the test results. Here we used serum zonulin as a prac-
tical biomarker of intestinal permeability.3,24–31 Regarding
the challenges in examining alterations before disease on-
set, there are few studies looking at predisease changes to
intestinal permeability and none that we are aware of in
subjects that develop CeD.11,22 Here we were able to use
data from the CD-GEMM study to find that intestinal per-
meability increased in the months to years before CDA.

Intestinal permeability has been shown to be upregulated
because of gut microbiome alterations in various disease
states.27,28,31–33 Studies also show that zonulin levels are ele-
vated in many diseases, such as CeD, T1D, Crohn’s disease, met-
abolic dysfunction-associated liver disease, and obesity.3,34–38

Therefore, it is not surprising that we and others have pre-
viously found gut microbiota alterations in those with CeD
and other autoimmune conditions.39–43 Similarly, in T1D, 1
study found both higher intestinal permeability and imbal-
ances in the host gut microbiome via reduced a diversity,
different b diversity, and decreased abundance of antiin-
flammatory genus Prevotella, in children with either islet

autoimmunity or T1D compared with controls.44 Previous
work shows some of the strongest triggers of zonulin release
are bacteria and gluten.45–47 Because of this, we adjusted for
timing of gluten introduction and the number of servings of
gluten-containing foods consumed per month, and we did
not find a significant effect of gluten consumption on zonulin
over time. Previous in vitro studies showed increased zonu-
lin release from the small intestine in ex vivo mammalian
tissue and intestinal cell monolayers mounted in Ussing
chambers and exposed to enteric bacteria.46 Zonulin levels
vary in the first year of life, likely because of the evolving
composition of the gut microbiota.48 Zonulin pathways have
been shown to be turned on by dysbiosis; therefore, antibi-
otics may result in dysbiosis and contribute to CDA.

Previous studies show that zonulin levels are increased
by environmental factors, such as infections and antibio-
tics.49,50 This is supported by a study showing severe acute
respiratory syndrome coronaviruse 2 was associated with
increased serum zonulin levels in children with the autoim-
mune condition multisystem inflammatory syndrome in
children.51 Additionally, zonulin levels were correlated with
increased density of enteroviruses in small bowel biopsies
of subjects with CeD.52 It is generally accepted that CeD is
triggered by genetic susceptibility, loss of immune tolerance,
and environmental factors. One possible environmental fac-
tor, antibiotic use, has previously been associated with in-
creased risk of CeD.53,54 Both the Military Health System
and researchers in Denmark and Norway showed that anti-
biotics were associated with an increased risk of CeD on-
set.53,54 As an objective proxy of infections, we evaluated
the number of antibiotic courses each subject took during
the study period. We found an association between the
number of antibiotic courses and rise of serum zonulin. Sub-
jects that go on to develop CDA who were exposed to more
than 3 antibiotic courses had a greater rate of rise of zonu-
lin before CDA onset. We did not observe the same increase
in zonulin in controls, although they were taking similar
numbers of antibiotic courses over time. Therefore, other
unknown factors must be a part of the progression in sub-
jects that develop CDA. Since this is an observational study
and all subjects are at-risk of CeD, it is unlikely these find-
ings are related to the study design. Based on our previ-
ously published data, we postulate microbiome alterations
occur in children before CDA, particularly if exposed to mul-
tiple cycles of antibiotics, and will have microbiome-depen-
dent epigenetic changes that upregulate zonulin-dependent
intestinal permeability.39 There was no significant difference
in zonulin levels when evaluating the effect of respiratory
and gastrointestinal viral infections. Our finding that zonulin
levels increase in subjects with CDA with increasing number
of antibiotics is consistent with previous literature. Whether
the number of infections or gut dysbiosis caused by the an-
tibiotic treatment is responsible for zonulin increasing re-
mains to be established.
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Based on the literature and our findings, we hypothesize
that in genetically predisposed individuals, antibiotic expo-
sures, as a proxy of infections or as a direct effect on the gut
ecosystem, lead to intestinal dysbiosis and a resulting rise in
zonulin-dependent intestinal permeability. Deamidated glu-
ten subsequently crosses into the lamina propria followed
by a break in immune tolerance and subsequent onset of
CDA. It is well known that antibiotics are associated with al-
terations in the human microbiome, and in animal studies,
including decreases in beneficial commensal organisms and
increases in pathogenic microorganisms.55,56 Our study
raises additional concern about multiple antibiotic exposures
during early childhood contributing to increased intestinal
permeability with subsequent risk of onset of autoimmunity
in genetically predisposed individuals. If greater antibiotic
use increases the risk of intestinal permeability, and thereby
risk for CeD, this serves as important guidance to families
and physicians on the risk of unnecessary antibiotic use.

Our study has some limitations. Given our study popula-
tion focused on subjects with a first-degree relative with CeD,
we cannot necessarily extrapolate our findings to the general
population. Additionally, the study was not focused on CeD
alone but grouped subjects with CeD and CDA, together re-
ferred to as CDA. Serum zonulin as a marker of intestinal
permeability is limited as it is a family of proteins, and com-
mercially available assays do not currently measure all
known proteins in this family.57 Another limitation is that we
did not look at particular time periods of antibiotic exposure,
which may be equally important. Nonetheless, all CDA cases
were exposed to antibiotics in their first few years of life, the
most vulnerable window when the gut microbiome programs
the host immune system in determining the threshold to gen-
erate inflammation. Future studies may look at the effects of
the specific timing of antibiotic use on zonulin over time.

As the rates of CeD and many other autoimmune diseases
have been rising for unknown reasons, examining the pre-
disease state may identify strategies to reverse this trend.
For the first time, we assessed changes in the predisease
state in children at risk for CeD and find intestinal perme-
ability rises in the months leading to CDA onset. We also
found that a greater number of antibiotic courses taken by

those that develop CDA further increases the rate of rise of
zonulin before disease onset. Clinically, this novel informa-
tion may be used by physicians and families to help deter-
mine if a child with a strong family history of CeD or other
autoimmune diseases should more carefully avoid unneces-
sary antibiotics or if they should consider future therapeu-
tics that alter disease trajectory. In summary, serum zonulin
may be used in the future to predict who may develop CDA
among children genetically at-risk. Given our findings, there
should be continued efforts to reduce unnecessary antibiot-
ics to aid in future disease prevention.
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