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Abstract
Microplastic (MP) contamination is an acknowledged global problem that poses a severe risk to aquatic ecosystem biota. 
Nevertheless, little is known about their prevalence in animal construction. The main objective of our study was to reduce 
the gap information of seasonal abundance, distribution, composition, and risk assessment of MP contamination. The con-
centrations of MPs in sediment, Chironomus sp. larvae, and their tubes were found to be higher in site 2 (S2) than in site 
1 (S1) during the four seasons of the year. However, MP concentrations ranged from 312 ± 64.7 to 470 ± 70 items/kg dry 
weight, 0.79 ± 0.16 to 1.1 ± 0.3 particles/individual, and 0.5 ± 0.04 to 0.9 ± 0.04 particles/tube in sediment, Chironomus, 
and chironomid tubes, respectively. Blue and red polyester fibers are the most dominant MPs which are distributed in sedi-
ment, Chironomus, and chironomid tubes. The length of the dominant fiber accumulates in Chironomus, and their tubes are 
highly varied compared to that of the substrate. Additionally, we found that the mean number of MPs/individual larvae in 
the fourth instar was significantly higher than that in the second instar. Risk indicators for the environment, polymer risk 
assessment, and pollution load were estimated, where they were higher in S2 than in S1 correlated to MPs abundance and 
polymer type. The seasonal fluctuation in MP concentration, characterization, and risk in the two sites could depend on the 
amount of sewage effluent discharged into the wastewater treatment plants (WWTPs), which was reflected by Chironomus 
sp. larvae. Therefore, further research should be done to adopt the applicability of Chironomus as MP bioindicators in vari-
ous freshwater environments throughout the world.
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Introduction

MP contamination has been recorded all over the world, 
from the poles to the equator, and from the ocean’s surface to 
the deepest abyss (Rochman et al. 2015; Blettler et al. 2018; 
Eerkes-Medrano and Thompson 2018; Peng et al. 2018a, 

b; Li et al. 2018; Mendoza and Balcer 2019; Tursi et al. 
2022), and in the different media (Dobaradaran et al. 2018; 
Akhbarizadeh et al. 2020a, 2020b, 2021a, 2021b; Takdastan 
et al. 2021; De-la-Torre et al. 2022a, 2022b, 2023a, 2023b; 
Hajiouni et al. 2022; Kashfi et al. 2022, 2023; Mohammadi 
et al. 2022a, 2022b, 2023; Pizarro-Ortega et al. 2022; Pour-
fadakari et al. 2022; Cabrejos-Cardeña et al. 2023; Niari 
et al. 2023). MPs are particles of plastic smaller than 5 mm 
(Qu et al. 2023). They are transferred from terrestrial eco-
systems via biotic and abiotic mechanisms, or they reach the 
aquatic environment directly through substances that con-
tain MPs (Ory et al. 2017; Li et al. 2018). After that, MPs 
are further classified as primary MPs (plastic beads used in 
air blasting and cosmetic items) or secondary MPs (plastic 
fragments made from larger plastic particles) (Sharma et al. 
2023). According to Burns et al. (2018) and Khedre et al. 
(2023a, b), MPs may be categorized into several form cat-
egories with names such as fragments, fibers, films, foam, 
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and beads. The physical features of MPs, including density, 
shape, and size, may affect how they move across various 
environments and how they disperse (Hartmann et al. 2019). 
Stormwater runoff, industrial waste, and household rubbish 
are just a few of the pathways via which MPs may enter an 
aquatic ecosystem (Horton and Dixon 2018; Nel and Frone-
man 2018). Based on Li et al. (2018), the mean abundance 
of MPs in freshwater systems varied from almost none to 
several million pieces per cubic meter. Currently, there is 
exponential growth of MP research around the world since 
the first detection made around the coast of New Zealand in 
1977 by Gregory (1977). However, there are very few stud-
ies on the existence of MPs in Africa.

Most of the research has classified each sampling site 
based on the principal human activities that qualitatively 
analyze the source of MPs (Lin et al. 2022). For instance, if 
research believes that a sample location having a high level 
of industrialization is typical of industrial districts, addi-
tional analysis will thus link industrial activities to the high 
MP content in the area surrounding the sampling site. How-
ever, this attribution is highly dubious since it ignores the 
temporal and hydrological aspects involved in MP transport 
via freshwater ecosystems (Klein et al. 2015). Residences 
may be found in highly industrialized areas. Furthermore, 
wastewater treatment plants (WWTPs) are well recognized 
as point sources of MPs because large volumes of MP-
containing effluents are continually discharged (Grbić et al. 
2020), even though the majority of the MPs are removed 
from the influents (Talvitie et al. 2017). Thus, WWTPs are 
frequently associated with significant levels of MP contami-
nation. Recent research, for example, discovered greater MP 
concentrations in WWTP effluents compared to those in a 
reference location (Magnusson and Norén 2014).

Since MPs are readily observed in the internal tissues of 
animals (Prata et al. 2022), here, we use the term “internal 
MPs” to distinguish those MPs in either the digestive sys-
tems or internal organs of organisms from those distributed 
in the environment (environmental MPs). In general, there 
are much fewer studies on internal MPs (Lin et al. 2022) 
since the necessary processing steps become very compli-
cated when comparing MPs sampled from water or sedi-
ment. However, we believe that there are both costs and ben-
efits to investigating internal MPs.

Internal MPs also provide a longitudinal picture of the 
contamination of the environment with MPs. Throughout 
their life cycle, midge larvae are likely to accumulate MPs 
(Ziajahromi et al. 2018). When continuous sampling is not 
feasible, investigations of internal MPs offer a long-term pic-
ture of local MPs’ pollution. Because midge larvae have an 
intrinsic feeding strategy (i.e., they ingest MPs unintention-
ally with food), prior research has indicated that the quantity 
of MPs in sediments is related to the abundance of MPs in 
midge larvae (Nel et al. 2018). As an alternative, several 

studies have collected MPs in the environment utilizing a 
one-time sample technique, which may provide inaccurate 
information on the abundance of MPs because it only pro-
vides a snapshot of their contamination at that moment (Naji 
et al. 2017; Wagner and Lambert 2018). For instance, col-
lecting MPs from the ocean’s surface at a particular moment 
in time was insufficient to assess the level of MP pollution 
since there was no MP buildup (Cheung et al. 2019). Stud-
ies on the temporal and geographical MPs distributions in 
the environment are accessible (Xia et al. 2021; Fan et al. 
2022), but few studies specifically address MPs detected in 
living organisms.

In addition to ingesting, animals may integrate MPs into 
the structures they build. For instance, the marine polychaete 
Gunnarea gaimardi (de Quatrefages 1848) fixes MP particles 
in a biological structure by incorporating them into its habitat 
(Nel and Froneman 2018). Additionally, MPs may be included 
in the larval cases (biological structures) produced by a vari-
ety of epibenthic insects, including freshwater caddis fly 
(Trichoptera) species (Ehlers et al. 2019). As a result, larval 
cases made by aquatic insects may be used as bioindicators for 
MP evaluations of freshwater systems. Chironomid tubes are 
comparable biological formations found in watery settings. 
Therefore, to determine whether freshwater MPs might be 
absorbed into chironomid tubes, we examined whether MPs 
were present in those tubes and what qualities (shape, polymer 
type, color, and size) they possessed. So, this study provides 
a quantitative comparison of the spatiotemporal parameters 
affecting the variation in MPs dominance in WWTPs envi-
ronment. Moreover, it quantifies the combined effects of sea-
sonality and anthropogenic activities on internal MP concen-
trations and estimates the contributions of factors affecting 
internal MP pollution in two wastewater sites in Egypt, as well 
as studying the importance of chironomid tubes as indicators 
for MP freshwater pollution.

In Egypt, no data is available on the seasonal occurrence, 
characterization, and risk of MP pollution in sediment, 
water, or freshwater insects. Additionally, this highlights the 
use of chironomid tubes to reflect MP buildup in the aquatic 
environment. Two wastewater sites in the Sohag Governo-
rate were chosen to perform this investigation. Every day, 
a considerable volume of wastewater is dumped there. Fur-
thermore, wastewater sediment can be used as soil fertilizer, 
leading MPs to be transported to agricultural land surfaces, 
which is of major concern. As a result, the current study 
aims to (i) quantify the concentration of MPs in the current 
wastewater basin’s sediment, Chironomus sp. larvae, and 
their tubes throughout the four seasons of the year to deter-
mine possible MPs risks in the two wastewater sites; (ii) 
answer the following questions: (a) whether the MPs loads 
in Chironomus sp. larvae and their tubes differ according to 
the different aquatic system differences in plastic pollution 
level; (b) whether the MPs loads in Chironomus sp. larvae 
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differ according to the developmental stage and size; and 
(c) finally, whether Chironomus sp. larvae and their tubes 
can be used as qualitative and quantitative bioindicators for 
MPs in aquatic ecosystems; (iii) to identify shapes, colors, 
size, and polymeric characteristics of MPs extracted from 
water, sediment, and aquatic insects; and (IV) to assess the 
potential risks of MPs through multiple indices. In addition, 
offering the required knowledge of MP contamination in 
Sohag governorate to the policymaker and stockholders will 
encourage them to take the necessary actions for improving 
plastic waste management.

Materials and methods

Study area

The sampling area is in Sohag City, which is in Upper Egypt, 
in the midst of the Nile Valley (approximately 125 km long). 
Sohag stretches from the southernmost point of Assiut Gov-
ernorate, located at latitude 26° 57′ N, to the northernmost 
point of Qena Governorate, located at latitude 26° 07′ N. 
Between longitudes 31° 20′ and 32° 14′ E, it is enclosed 
(Fig. 1A). The research location is in a dry region of North 
Africa, which is known for its scorching summers, moder-
ate winters, and scant rainfall. Except for the regions where 
there are communities, the whole valley is mostly utilized 

for agricultural purposes. Newly cultivated margins deline-
ate the valley’s eastern and western flanks. Land reclamation 
initiatives, new urban communities, industrial zones, and 
wastewater disposal sites in desert zones are some of the 
kinds of development in the area. There are sizable plants for 
the textile, soft drink, and sugar sectors nearby. The indus-
tries of macaroni, sweets, onion drying, and oil dehydration 
are all represented by other small private firms in the study 
region. In Sohag Governorate, two sites have been desig-
nated for wastewater disposal. One is in the western plateau 
and named the West wastewater treatment plant (S1) and the 
other is in the east plateau named the East wastewater treat-
ment plant (S2), which were selected for sampling (Fig. 1B) 
in the winter (January), summer (July), spring (April), and 
autumn (October) of 2022.

Description of the collection sites

Approximately 10 km west of Sohag city, Site 1 (S1) is situ-
ated at 26° 33′ 54″ North and 31° 36′ 54″ East. It is situated 
in the desert region between the agricultural floodplain to the 
east and the Eocene limestone plateau to the west. The basin 
is approximately 3.786  km2 in size and has a rectangular 
shape. It has an average depth of 1 m and is a shallow ecol-
ogy. The basin is impacted by several sources of pollution, 
including the ongoing discharge of wastewater from local 
WWTPs, human activities brought on by the expansion of 

A 

B 

Fig. 1  Egypt map showing Sohag Governorate (A). Google Earth photo showing the collecting sites (B)
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adjacent agriculture, the care of animals, and sewage flow 
from nearby settlements. Large amounts of algae are present 
throughout the basin, and the water movement is so sluggish 
that it may be termed stagnant water. At the boundaries, 
various plant patches could be seen. The effluent is turbid 
and filthy gray in color and has a fecal or rotting stench 
throughout the four seasons. The gravel at the bottom of the 
basin is often dark in color.

Site 2 (S2) is a location in the lowland desert south of the 
EL cola wastewater project, which is situated at a latitude of 
26° 33′ 04′′ N and longitude of 31° 50′ 55′′ E, approximately 
14.6 km east of Sohag city. On a surface of approximately 
4.4  km2, this location has a number of irregular basins. In the 
whole area, a basin of approximately 1.27  km2 was selected 
for sampling. Low levels of vegetation are reflected by a few 
isolated plant patches around the basin’s edges. The level of 
the water, which is approximately 1.5 m, appears to remain 
still. Wastewater from neighboring WWTPs has been con-
tinuously discharged into the basin. This location appears to 
have few human activities, most of which are brought on by 
the existence of a few wooden trees. Additionally, the basin 
has been exposed to industrial waste because an industrial 
district (El-Kawser) is close to the current location.

Sample collection

Sediment sampling

Through the four seasons of 2022, samples of sediment were 
taken from the two wastewater sampling sites (S1 and S2). 
Fifteen sediment samples, each weighing approximately 2 
kg, were taken from the top sediment (0–5 cm depth) of 
each site at five randomly chosen points (three samples were 
taken from each point) using a stainless-steel spoon. The 
samples were subsequently held in glass containers in the 
lab at a temperature of − 4 °C to protect them from external 
particle contamination (sample collection was followed by a 
quick closure of the glass containers to prevent contamina-
tion from the air).

Chironomus sp. larvae and their tubes sampling

Chironomid larvae are the dominant genus present in the 
top layer of sediment in degraded habitats due to their ten-
dency for hypoxic aquatic environments (Bere et al. 2016; 
Nhiwatiwa et al. 2017; Berezina et al. 2022). They deposit 
feeders and feed on detritus, and their associated bacteria 
and fungi settle in the sediment (Bertin et al. 2014). They 
commonly build tubes for protection (Scherer et al. 2017).

Chironomus sp. larvae were collected from the two 
investigated sites using a pond net (200-µm mesh size; 
0.30-m aperture) at identical sediment collection points by 

immersing the hand net against the current while sweeping 
and kicking in the sediment. Chironomus sp. larvae were 
detected on an identification tray, and the samples were 
promptly preserved in 70% alcohol in 100-mL screw-capped 
glass vials to prevent the ejection of gut contents, which 
might influence the MP estimate, as described by Nel et al. 
(2018). The chironomid tubes were taken from sediment 
samples and stored in a deep freezer to extract MPs.

Laboratory analysis

Extraction of MPs from wastewater sediment

Bagheri et al. (2020) approach was modified somewhat to 
extract the MPs from sediment. The sediment samples were 
placed in spick-and-span glass jars, and they were then dried 
for 48 h in an oven set to 60 °C. In an uncontaminated 1-L 
beaker, 100 g of each dry sediment sample was placed. MPs 
were isolated from denser natural particles using a density 
separation approach. Before adding a freshly hypersaline 
solution of NaCl/NaI (0.5 g/cm3) to the sediment samples, 
30 mL of 30%  H2O2 was added to each beaker to assist 
breakdown of any organic matter that may have been pre-
sent (Zhou et al. 2018) (all the materials were purchased 
from Sigma-Aldrich (Ontario, Canada)). Then, the beakers 
were shaken at 200 rpm for 2 days on an open-air, dual-
action shaker table (OS-2000, JEIOTECH, Korea) to sepa-
rate any MPs. The floating supernatants were moved to a 
second beaker and allowed to settle for 24 h. After being 
filtered using 0.45-µm filter paper to collect all MP particles, 
they were further preserved for microscopic examination. 
To ensure that all of the MPs had been extracted from the 
sediment sample, all of the aforementioned procedures were 
repeated several times.

Preparation of Chironomus sp. larvae and their tubes

Chironomus sp. was isolated and identified using keys by 
De Moor et al. (2003). Five Chironomus subsamples were 
obtained from each sample site to determine the presence of 
MPs. Each subsample consisted of ten fourth instar similar-
sized Chironomus sp. individuals.

To prepare chironomid tubes for MP extraction, metal 
forceps were used to remove the larvae from their tubes. 
To proceed, the tubes were placed in glass Petri dishes and 
then separated into 5 samples (each sample including 10 
tubes). Each sample’s wet weight was calculated. To avoid 
cross-contamination of the chironomid tubes with MPs, we 
meticulously washed our forceps between samples. Finally, 
we promptly covered all the Petri dishes containing chi-
ronomid tubes with aluminum foil to prevent airborne MP 
contamination.
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MPs extraction from Chironomus sp. larvae and their tubes

Clean glass test tubes were used to hold each subsample 
of Chironomus sp. larvae. Each test tube contained 20 ml 
of  H2O2 (35% V/V) and was shaken at 200 rpm for 12 h to 
allow for reaction (Windsor et al. 2019). The Chironomus 
sp. remnants were then vacuum filtered using 0.45-µm fil-
ter paper before being put in a clean petri dish for further 
investigation. Each filter was examined under a stereomi-
croscope to visually identify and count MP particles. Chi-
ronomid tubes were also processed according to the steps 
described above.

MPs ingestion throughout the development of Chironomus 
sp. larvae

To test how the developmental stage affects MP uptake, two 
different instars of Chironomus sp. larvae were selected (sec-
ond (L2) and fourth (L4)) to analyze the correlation between 
body size (related to the morphological characteristics) in 
each instar and their mean MPs content. One hundred ran-
domly selected larvae from each instar were obtained from 
the field collection in the summer season at S2. They were 
divided into ten replicates, each containing ten individuals. 
The wet weight of each instar individual was determined. 
Additionally, measurements of the body length, head cap-
sule length, and width were detected. The ten replicates of 
each instar were analyzed as described before, and the cor-
responding number, size, and shape of ingested MP particles 
were determined.

MPs identification and characterization

Using a dissecting microscope with a digital camera (Carl 
Zeiss Suzhou Co.), all MPs were counted visually. MP parti-
cle shapes and colors were also identified and photographed. 
All MP measurements (diameter and length) were measured 
using the ImageJ program (version 1.53f, available at https:// 
imagej. net/ ij/). ATR-FTIR spectroscopy (Alpha Bruker Plat-
inum, 1–211-6353) was performed on a zinc slender crystal 
with an incidence angle of 45 ± 15 and a scan period of 560 
s (24 s) with a resolution of 4  cm−1 (range, 4000–400  cm−1) 
to identify the chemical composition of MPs. The experi-
ment used MP particles of various colors and shapes. The 
data were modified using the OPUS program (Bruker Optics 
GmbH). The polymer type was established by comparing 
the obtained spectra to known reference spectra (Primpke 
et al. 2018).

Experiment quality assurance

Samples were always kept sealed in a vial or Petri dish to 
prevent contamination, except when suspicious plastics were 

selected. The experimenters used no plastic items and were 
outfitted in cotton lab coats and gloves. Before usage, all con-
tainers were washed with Milli-Q water. Prior to use, all solu-
tions utilized in the study were passed through three filters. To 
ensure that there was no contamination from the lab environ-
ment, three procedural blanks were performed. Throughout 
the investigation, no MP particles were found in the blanks. 
Three Petri dishes were set up near the workstation for a day 
to collect airborne particles to calculate the amount of con-
tamination that was airborne. The results of this investigation 
were not considerably impacted by procedural contamination 
because we only collected one cotton fiber sample.

MPs risk assessment

Pollution load index (PLI)

The following equations (Wang et al. 2020) were used to 
generate the pollution load index (PLI), which was used to 
quantify the risk of MPs contamination (Kasamesiri et al. 
2023).

where Ci is the MP concentration at sample site j and Co 
is the background MP concentration. The reference values for 
MPs were adopted according to worldwide records for sedi-
ments (1.79 items/kg DW) (Guo et al. 2021). PLIj was divided 
into four degrees of pollution by Guo et al. (2021).

Polymer risk assessment index

Li et al. (2020) calculated the polymer risk index (H) as 
follows:

where Pn is the proportion of each polymer type at each 
sample site and Sn is the polymer hazard score calculated by 
Lithner et al. (2011), with PP = 4, PES = 4, and PE = 11. Lith-
ner et al. (2011) and Guo et al. (2021) divided H into four 
levels: level I, < 10; level II, 10–100; level III, 100–1000; and 
level IV, > 1000.

Potential ecological risk index (RI)

RI Has been used to assess the ecological and toxicologi-
cal consequences of MPs (Peng et al. 2018a, b; Ranjani 
et al. 2021).

CFj =
Ci
/

Co

PLIj =
√

CFj

H =

n
∑

n=1

PnSn
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Tj denotes the toxicity coefficient of MPs. Guo et al. 
(2021) identified five contamination thresholds for RI 
which are as follows: level I is less than 150, level II is 
150–300, level III is 300–600, level IV is 600–1200, and 
level V is more than 1200.

Statistical analysis

The main characteristics of MP concentration in sediment, 
Chironomus sp. larvae, and their tubes collected from various 
seasons and sites were described using descriptive statistics 
(mean and standard deviation SD), which were then submit-
ted to one-way ANOVA (analysis of variance). Differences 
between means were deemed significant when P < 0.05. Using 
a χ2 test, it was possible to compare the relative proportion of 
MP lengths in sediment and Chironomus sp. larvae. The con-
nection between the independent factors and the dependent 
variables was examined using univariate regression and Pear-
son rank correlation analysis. Using IBM SPSS (ver. 22, IBM 
Corp., Armonk, NY, USA), data analysis was carried out.

Results

Seasonal abundance and characterization of MPs 
in sediment

MPs were detected in all sediment samples with a 100% 
detection rate. Figure 2 shows the seasonal distribution of 

Tj =
H
/

Ci

RI = TjxCFj

MPs in the sediment of the two wastewater sites, where the 
abundance of MPs in S1 and S2 during the winter season 
was 345.8 ± 63 and 380 ± 54 items/kg, respectively, with a 
mean value of 363 ± 24 items/kg. The spring season MP 
abundances in S1 and S2 were 251.4 ± 27.2 and 312 ± 64.7 
items/kg, respectively, with a mean value of 281 ± 43 items/
kg. The summer season MP abundance in S1 and S2 was 
385.2 ± 38.2 and 470 ± 70 items/kg, respectively, with a 
mean value of 427 ± 60 items/kg. During the autumn sea-
son, the abundance of MPs in S1 and S2 was 310 ± 84 and 
354.2 ± 62 items/kg, respectively, with a mean value of 
332 ± 31 items/kg. Statistically, the abundance values var-
ied significantly from season to season at the two sampling 
sites (P < 0.05), and the abundance of MPs was significantly 
higher in summer than in the other seasons (P < 0.05). Addi-
tionally, the MP abundance was significantly higher in S2 
than in S1 in all seasons of the year (P < 0.05).

The MP shapes detected in the sediment of the two waste-
water sites were fibers and fragments only (Fig. 3). Annu-
ally, fibers were the shape of the most prevalent particles 
observed in S1 and S2 accounting for 96% and 88%, respec-
tively (Fig. 4A). Statistically, no significant differences in 
the abundance of fibers were recorded between S1 and S2 
throughout the investigated year (P > 0.05). However, frag-
ments were significantly higher in S2 than in S1 (P < 0.05).

Based on the length of sediment MP particles, MPs 
could be classified into five size classes: < 500, 501–1000, 
1001–1500, 1501–2000, and 2001–2500 µm (Fig. 4B). The 
lengths of the fibers ranged from 684 to 2390 µm with an 
average of 1429 ± 495 µm and the fragments ranged from 157 
to 1032 µm with an average of 554 ± 269 µm. Considering 
the width, the fibers ranged from 13 to 18 µm with an aver-
age of 14.6 ± 4 µm, and the fragments ranged from 64 to 632 
µm with an average of 278 ± 181 µm. According to the MP 
size distribution during different seasons, the size in the range 

Fig. 2  Mean seasonal abun-
dance of MPs in the sediment of 
the two sites of wastewater
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Fig. 3  Photographs showing 
different shapes of microplastics 
obtained from sediment (A and 
B), Chironomus sp. (C), and 
chironomid tubes (D). (A) frag-
ments and (B–D) fibers. The 
scale bar = 250 µm

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

WINTER SPRING SUMMER AUTUMN ONE YEAR

sepahssP
Mfo

egatnecreP

A

FIBER FRAGMENT

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

WINTER SPRING SUMMER AUTUMN ONE YEAR

sezissP
Mfo

egatnecreP

B

<500 501-1000 1001-1500 1501-2000 2001-2500

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

WINTER SPRING SUMMER AUTUMN ONE YEAR

srolocsP
Mfo

egatnecreP

C

RED BLUE BLACK GREEN VIOLET ORANGE YELLOW

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

WINTER SPRING SUMMER AUTUMN ONE YEAR

sre
mylopsP

Mfo
egatnecreP

D

PES PE PP

Fig. 4  The percentage of the different microplastic shapes (A), lengths (B) with µm, colors(C), and chemical composition (D) collected from the 
sediment of the two wastewater sites
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of 1001–1500 µm was the most dominant (39%), followed 
by 501–1000 µm (20%). According to the two wastewater 
sites, in S1, the most abundant lengths of MPs ranged from 
1001–1500 µm, < 500 µm, and 1501–2000 µm (40%, 20%, and 
18%, respectively); however, in S2, most MPs ranged from 
1001–1500 µm, 501–1000 µm, and 1501–2000 µm (38%, 
24%, and 17%, respectively) (Fig. 4B). Statistical analysis 
showed that the annual abundance of MP in the range of 
1001–1500µm was significantly higher than that of the other 
MPs size classes (P < 0.05), and a significantly higher abun-
dance of MPs size class < 500 µm was observed in S1 than in 
S2 (P < 0.05). However, MP size in the range of 501–1000 µm 
was significantly higher in S2 than in S1 (P < 0.05).

Figure 4C shows the distribution patterns of MP colors 
in the sediment samples. Fibers and fragments were intro-
duced in a wide spectrum of colors, including red, blue, black, 
green, violet, orange, and yellow. Blue, red, black, and green 
colors observed in sediment samples accounted for 35%, 23%, 
22%, and 13%, respectively, of the total MP particles. The 
distribution of MP colors displayed seasonal variation in the 
two sampling sites. Statistically, the red color proportion was 
significantly higher in S1 than in S2 (P < 0.05). However, the 
percentage of blue color was significantly higher in S2 than 
in S1 (P < 0.05).

The MP particles collected from all sediment sampling sites 
in this study were analyzed by FTIR spectroscopy to identify 
common polymers. The following polymer types were identi-
fied in the sediment: polyester (PES), polyethylene (PE), and 
polypropylene (PP) (Fig. 5). Polymers of MPs in the winter, 
spring, summer, and autumn seasons were mostly PES (93%, 
86%, 91%, and 94%, respectively), followed by PP in win-
ter (7%), PE and PP in spring (14% and 2%, respectively), 
PP and PE in summer (5.5% and 3.5%, respectively), and PE 
in autumn (6%) (Fig. 4D). Significantly, a higher abundance 
of PES was found in sediment when compared with other 
polymers (P < 0.01). PP was significantly more abundant in 
winter and summer (P < 0.05), and PE was more abundant in 
spring (P < 0.05) than in the other seasons. Considering the 
two sites of wastewater, the most abundant polymers of MPs 
were PES (96% and 87%, respectively), followed by PP and PE 
in S1 (3% and 1%, respectively) and PE and PP in S2 (9% and 
4%, respectively) (Fig. 4D). No significant differences in the 
abundance of PES were found among the two sites (P > 0.05) 
throughout the year. However, the abundance of PE and PP 
was more significant in S2 than in S1 (P < 0.05).

MPs load indices

The PLI values of MP pollution during various seasons are 
displayed in Table 1. As can be observed in Table 1, calcu-
lated PLI values of the two wastewater sites over various 
seasons were intermediate, indicating a moderate pollution 
discharge level (hazard category II). The greatest and lowest 

PLI values were also recorded in the summer and spring, 
respectively. Additionally, in every season, PLI values were 
greater in S2 than in S1. Table 1 lists the H values for MP 
contamination at the two wastewater sites over various sea-
sons. In Fig. 4D, the percentages of identified polymers used 
to calculate H are shown. Approximately equal percentages 
of each polymer were found in each of the four seasons. 
As a result, the obtained H values were nearly comparable 
between seasons. A medium danger to the environment is 
indicated by the H values of the polymers in various seasons, 
which fall under category III. This is due to the toxic proper-
ties of the polymers. In the two wastewater sites, the highest 
H of MPs was identified during the spring. Additionally, the 
MP RI index of sediment from the two locations indicated a 
modest degree of danger (degree II).

Seasonal abundance and characterization of MPs 
in Chironomus sp. larvae and their tubes

Chironomus sp. larvae

A total of 331 MP particles were extracted from 400 larvae 
across the two sites. The number of MP particles in S1 and 
S2 was 146 and 185, respectively. The maximum values of 

Fig. 5  Micro-FTIR spectra of representative microplastic polymers 
extracted from sediment, Chironomus sp. larvae, and their tubes 
(PES, polyester; PE, polyethylene; and PP, polypropylene)
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MPs per individual in S1 and S2 were observed in sum-
mer (0.91 ± 0.3 and 1.1 ± 0.3 particles/ind, respectively), 
followed by winter (0.78 ± 0.2 and 0.98 ± 0.028 particles/
ind, respectively), but the minimum value of MPs in S1 was 
observed in spring (0.59 ± 0.1 particles/ind) and in autumn 
at S2 (0.79 ± 0.16 particles/ind) (Fig. 6A). Statistical anal-
ysis showed significant seasonal differences in MPs load 
per individual at both sites (P < 0.05). Moreover, the MP 
load per individual was significantly higher in S2 than in 
S1 in winter, spring, and autumn (P < 0.05). No significant 
difference was observed between the two sites in summer 
(P > 0.05). Regression analysis revealed a strong correlation 
between the number of MPs in the sediment and the number 
of MPs per individual larva in different seasons at both sites 
(r = 0.96, P < 0.05), as shown in Fig. 7. Higher significant 
seasonal differences in the size of Chironomus sp. larvae 
were found in S1 than in S2 (P < 0.05).

Most of the particles of MPs ingested by chironomid larvae 
were fibers and ranged from 86 to 93% of the total ingested 
MP particles in the two wastewater sites. The remaining pro-
portions were fragments (Fig. 8A). The lengths of these fibers 
ranged from 522 to 1400 µm with an average of 840 ± 285 µm, 
while the fragments were between 86 and 94 µm with an aver-
age value of 90 ± 13 µm. Additionally, the MPs in the length 
range of 501–1000 µm accounted for the highest percentage 
(61%) (Fig. 8B). According to the MPs colors, blue was the 
most observed color (40.5%), followed by red (28%) and black 
(16%) (Fig. 8C). The dominant polymer in the larvae was poly-
ester (89.5%) followed by polyethylene (10.5%) (Fig. 8D). The 
percentage of chironomid larvae contaminated with MPs was 
95% and 100% in S1 and S2 of all samples collected during 
the study period, respectively.

The relationship between MP size distribution 
across sediment and Chironomus sp. larvae

We performed a linear model analysis to examine the rela-
tionship between MP length distribution in sediment and that 
in chironomid larvae samples. Linear model analysis showed 
a linear relationship between MPs’ relative abundance and 

MP length class (Fig. 9). The length distribution of MPs 
detected in chironomid larvae demonstrated that MP con-
centrations decreased with increasing MP length. The per-
centage of MP < 1000 µm was 84% and 87% in the larvae 
obtained from S1 and S2, respectively. In addition to the 
evaluation of complete size distributions, we focused on 
the specific size class of 501–1000 µm, which may con-
stitute a more favorable size for ingestion. As previously 
illustrated (Fig. 4B and Fig. 8B), the relative abundance of 
MPs particles sized 501–1000 µm was significantly higher 

Table 1  Seasonal variations of microplastics impact indices in the sediments of the two wastewater sites

CFj contamination factor, PLIj pollution load index, H polymer risk assessment index, Tj toxicity coefficient of MPs, and RI potential ecological 
risk index

Seasons Site 1 (S1) Site 2 (S2)

CFj PLIj H Tj RI CFj PLIj H Tj RI

Winter 193 14 403 1.16 223 212 15 400 1.05 223
Spring 141 12 463 1.8 259 174 13 519 1.7 290
Summer 215 15 420 1.04 223 263 16.5 449 0.96 251
Autumn 173 13 410 1.29 223 198 14 470.7 1.321 263
1 year 181 13.5 (medium) 416 (level III) 1.28 232 (level II) 212 15 (medium) 460 (level III) 1.21 257 (level II)

Fig. 6  Mean seasonal abundance of MPs per individual of Chirono-
mus sp. (A) and per chironomid tube (B) collected from the two sites 
of wastewater
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Fig. 7  Relationship between the 
mean number of MPs per kg in 
sediment and per individual of 
Chironomus sp. larvae of the 
two wastewater sites
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in chironomid larvae than in their corresponding host sedi-
ments “S1 (X2 = 8.5, P < 0.05)” and “S2 (X2 = 4.7, P < 0.05)”.

Effect of Chironomus sp. larval size 
on the abundance of MPs/individual

To evaluate how larval development affects MP uptake, a 
comparison between second (L2) and fourth (L4) instar lar-
vae in terms of morphological characteristics was performed 
and is presented in Table 2. The data revealed that both body 
weight and length were larger in L4 than in L2 (Fig. 10). 
Moreover, L4 had a head capsule width of 0.55–0.74 mm 
with an average of 0.69 ± 0.15 mm and a corresponding 
mentum width of 0.158–0.176 mm with an average of 
0.16 ± 0.01 mm, which was larger than those in L2. Statisti-
cally, the average body weight, body length, head capsule 
(width and length), and mentum width were significantly 
greater in L4 than in L2 (P < 0.05).

Regarding MP load/larva, the number of MP particles/L4 
was significantly higher (P < 0.05) than that in L2. Regression 
analysis revealed a significant positive effect of head width 
on MP count in Chironomus sp. (r = 0.85, P < 0.05). Further-
more, fibers were the only type of MPs detected in L2 samples, 

ranging from 397 to 581 µm with an average length of 422 ± 84 
µm. However, fibers and fragments accounted for 83% and 
17%, respectively, in L4 samples. The fiber length ranged from 
894 to 1132 µm with an average length of 937 ± 120 µm.

Chironomid tubes

Figure 6B shows the seasonal abundance of MPs in chirono-
mid tubes at S1 and S2. Chironomid tubes were observed 
during the investigated year in both wastewater sites. A total 
of 215 MP particles were extracted from 400 tubes across 
the two sites. The number of MP particles in S1 and S2 was 
130 and 85, respectively. According to the number of MPs 
per chironomid tube, the highest values were observed in 
summer in both S1 and S2 (0.47 ± 0.05 and 0.9 ± 0.04 par-
ticles/tube, respectively). However, the lowest values were 
recorded in spring (0.38 ± 0.01 and 0.5 ± 0.04 particles/tube, 
respectively). It is important to note that the mean number 
of MPs per gram (w.w.) of the chironomid tube (particles/g) 
(data from the two sites) was 6.5 ± 2.3 particles/g. Significant 
seasonal differences in MP load per tube were observed in 
both S1 and S2 (P < 0.05). Moreover, the MP’s load was sig-
nificantly higher in the S2 than that in the S1 in all seasons 
(P < 0.05). A strong correlation was recorded between the 

Fig. 9  The relative abundance 
of MP size distribution across 
Chironomus sp. collected from 
the two wastewater sites
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Table 2  Measurement of the weight (mg), body length (mm), head capsule width (mm), head capsule length (mm), and mentum width (mm) 
and characterization of MPs in the second (L2) and fourth (L4) instar larvae of Chironomus sp. (mean ± SD)

Stage The mean weight 
of individual (mg)

Mean body 
length (mm)

Mean head 
capsule width 
(mm)

Mean head 
capsule length 
(mm)

Mean  
mentum 
width (mm)

Mean MPs 
particles/ 
individual

The mean length of 
MPs (µm)

Second instar (L2) 4.8 ± 1.2 3.2 ± 0.5 0.21 ± 0.0.1 0.213 ± 0.022 0.059 ± 0.004 0.52 ± 0.11 Fibers 422 ± 84
Fourth instar (L4) 8.6 ± 2.4 14.8 ± 6.3 0.69 ± 0.15 0.37 ± 0.041 0.162 ± 0.013 0.91 ± 0.2 Fibers 937 ± 120

Fragments 73 ± 20
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number of MPs in sediment and the average load of MPs in 
chironomid tubes at both sites (r = 0.87, P < 0.05).

Based on the type of MPs, fibers were the highest proportion 
and ranged from 79 to 100% of the total extracted MP parti-
cles, and the remaining proportion was fragments (Fig. 8A). 
The length of extracted fibers ranged from 603 to 1546 µm 
with an average of 962 ± 287 µm, while the fragments were 
between 187 and 1007 µm with an average of 597 ± 386 µm. 
The MPs in the size range of 501–1000 µm and 1001–1500 
µm accounted for the highest proportion (54% and 30.5%, 
respectively) (Fig. 8B). According to the MP colors, blue was 
the most abundant (42%), followed by red (22.5%) and black 
(14.5%) (Fig. 8C). Polyester was the dominant polymer in chi-
ronomid tubes (93%), followed by polyethylene (7%) (Fig. 8D).

Discussion

The main objective of this study is to highlight the seasonal 
abundance and characteristics variation of MPs in waste-
water sediment of Sohag Governorate, Egypt that have not 
been reported yet. In addition, optimizing Chironomus sp. 

larvae and their protective structural buildings “chironomid 
tubes” as an effective indicator might reflect MP contami-
nation. Considering the poorly managed WWTPs in devel-
oping countries (Mema 2010), they represent an important 
source of MP pollution in aquatic ecosystems (Chang 2015). 
WWTPs receive wastewater contaminated with MPs through 
domestic discharges including laundry wastewater and the 
uncontrolled discharge of industrial wastewater, in addition 
to landfill leachates (Wu et al. 2022). It is important to indi-
cate that the study sites S1 and S2 are closely located to 
the main WWTPs in Sohag Governorate and continuously 
receive the discharged wastewater effluents. The results 
showed moderate seasonal abundance of MPs in both sites, 
while high values were recorded in summer (385.2 ± 38.2 
and 470 ± 70 items/kg) in S1 and S2, respectively. Simi-
lar findings were recorded in the surface sediments of 28 
stations in Sishili Bay, China (499.76 ± 370.07 items/kg 
d.w) (Zhang et al. 2019). However, the MP abundance was 
significantly higher in S2 than in S1 in all seasons of the 
year. This variation might be associated with the amount of 
sewage effluent discharged to the basins from the WWTPs. 
Among the dominant shapes of MPs observed in aquatic 

Fig. 10  Whole body shape (A, 
B), head capsule (C, D), and 
mentum (E, F) of second (L2) 
and fourth (L4) instar larva of 
Chironomus sp., respectively
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systems, fibers were the most dominant (Hajji et al. 2023). 
It has been reported that polyester-based cloths release over 
1900 MP fibers in each single wash (Browne et al. 2011). 
This is consistent with our results revealing the high dom-
inance of MP fibers in both WWTP sites accounting for 
96% and 88% in S1 and S2, respectively. Considering most 
domestic wastewater of the majority of Sohag city citizens 
is discharged into WWTPs close to S1, while industrial 
wastewater mixed with domestic effluents is discharged into 
WWTPs near S2. That could explain the higher abundance 
of fibers in S1 than in S2. On the other hand, the strong 
relations between MP fragments and industrial activities 
(Jin et al. 2023) indicate why fragments were significantly 
higher in S2 than in S1. The sedimental MP fibers with 
lengths 1001–1500 µm are the most abundant in both sites 
(40 and 38%), in S1 and S2, respectively, concerning other 
length classes that agreed with the findings of Zhang et al. 
(2019). MP debris in the open environment is continuously 
subject to mechanical, chemical, and biological degradation 
(Andrady and Koongolla 2022) which could confirm the 
high percentage of small MP fibers detected in the current 
study. To obtain attractive plastic products corresponding 
with actual usage needs, plastic products are stained with 
different colors (Zhao et al. 2022). While environmental 
MPs appear in a wide variety of colors, blue-colored micro-
plastics were the dominant color category (Athapaththu et al. 
2020). In other findings, black, blue, and red are the most 
predominant colors (> 80%) (Montoto-Martinez et al. 2020). 
From this point, blue, red, black, and green MPs have 93% of 
the total MP particles collected from both sites. Notably, the 
consistency of MPs’ colors all over the world could reflect 
the popularity of plastic products and their globalization.

By FTIR, three polymers were identified: polyester 
(PES), polyethylene (PE), and polypropylene (PP) for the 
sedimental MPs. PES has a higher abundance in sediment 
when compared with other polymers in both WWTP sites. 
PES is one of the most important synthetic fibers that is 
widely used in a variety of other products including clothing 
and carpets, so it has the potential to release microplastics 
into the environment, especially during the manufacturing 
and cleaning process (Šaravanja et al. 2022). Therefore, 
domestic sewage derived from point sources plays an impor-
tant role in MP pollution. While no significant differences 
in the abundance of PES in both sites, PE and PP were more 
significant in S2 than in S1. The wide uses of PE and PP in 
the industry (Li et al. 2021) confirm their higher abundance 
in S2. In a recent study, Ghani and coauthors found that MP 
fragments collected from the Red Sea belong to four plastic 
polymers, whereas PE and PP are the most common (Ghani 
et al. 2023). That could link the relative abundance of frag-
ments with that of both PE and PP distributed in S2.

The risk assessment of MPs needs robust estimation of 
the characteristics, prevalence, distribution, and polymer 

types (Lindeque et al. 2020). Additionally, the wide variation 
in the abundance units of MPs led to the development of new 
standard parameters like pollution load index PLI, polymer 
risk index H, and potential ecological risk index RI. The pol-
lution load index PLI is frequently used to explore the risk 
of MPs in sediment (Yin 2023). Our results revealed inter-
mediate PLI values of the two wastewater sites over various 
seasons, while the greater values were recorded in the sum-
mer. Moreover, PLI values of S2 are greater than in S1 in 
correction with the higher abundance of MPs in this site. PLI 
indicated the variability of MP’s risk in different locations 
around the world which ranged from low (Neelavannan et al. 
2022) to moderate risk (Kabir et al. 2022). In Egypt, PLI 
indicated moderate MPs pollution whether in the river Nile 
(Shabaka et al. 2022) or in the Red Sea (Ghani et al. 2023). 
Of note, the information submitted from abundance risk PLI 
is unreasonable without assessing the chemical composition 
of the collected MPs (Ding et al. 2022). Polymer risk assess-
ment index H depends on the hazard score of each polymer, 
which greatly varies from one polymer to another (Lithner 
et al. 2011). Generally, the values of the H index refer to 
moderate risk (level III) of MPs distributed in both wastewa-
ter sites attributed to the high abundance of polyester of low 
hazard score (4). However, the relatively high value of the 
H index of S2 compared to S1 or in the spring of both sites 
corresponds to the increased percentage of polyethylene with 
11 scores. However, the adverse effects of MPs on organisms 
and humans necessitate exploring their ability to internalize 
the organisms that inhabit such MPs-polluted environments.

Chironomids are widely distributed in wastewater sedi-
ments of Sohag Governorate (Khdre et al. 2023). Consid-
ering the high sensitivity and dominance of Chironomus 
larvae in polluted environments, they can be used to diag-
nose the ecological conditions variations in aquatic habi-
tats. To such end, we examined the ability of Chironomus 
to reflect the environmental contamination with MPs at dif-
ferent seasons. Notably, our results showed that the mean 
number of MPs/individuals in chironomid larvae was sig-
nificantly higher in S2 than in S1 taking a similar trend to 
sedimental MPs. Moreover, significant seasonal differences 
were observed in the MP loads within chironomid larvae 
at both sites. As a deposit feeder, there is a direct relation-
ship between the accumulated MPs inside Chironomus 
larvae and those located in their environment (Nel et al. 
2018; Khdre et al. 2023a). This relation was confirmed by 
regression analysis at different seasons of both sites. Since 
MPs accumulation has potential adverse effects on wildlife 
and humans (Xia et al. 2020), we observed growth inhibi-
tion of Chironomus larvae in S2 than in S1 proportionally 
with MPs abundance. A high abundance of MPs introduces 
more changes in substrate which in turn limits food uptake 
and therefore inhibits larval growth (Vos et al. 2002). In 
addition, MPs can fill the gut of Chironomus causing a 
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negative energetic balance (Prata et al. 2023). However, 
malnutrition and sorbed contaminants of plastic additives 
are potential scenarios of impacts of MP accumulation 
(Narayanan 2023). As mentioned earlier for other fresh-
water invertebrates exposed to MPs, growth reduction was 
observed for Gammarus pulex (Redondo-Hasselerharm 
et al. 2018). To address whether MPs accumulated through 
development, MPs’ abundance inside two different larval 
instars was determined. The results revealed that the mean 
number of MPs/individual larvae in the fourth instar was 
significantly higher than that in the second instar. Also, 
MPs in the second instar larvae lacked fragments and had 
shorter fibers than those in the fourth instar larvae, which 
may be related to morphological restrictions in the size of 
the head capsule and functional mouthparts. These findings 
confirm the results of Redondo-Hasselerharm et al. (2018) 
who reported the preference in particle size and the quan-
tity of ingested polystyrene particles changed throughout 
the development.

Shape, color, chemical composition, and other physi-
cal and chemical characteristics are primary factors 
that affect the hazards of MPs (Yin et al. 2023). Fibers 
were the main MPs type, accounting for 86–93% of the 
total MPs extracted in Chironomus sp. larvae, consist-
ent with their higher abundance in the sediment of the 
two sampling sites. The regression analysis revealed that 
the relative abundance of MPs in Chironomus decreased 
as their size increased. Accordingly, the thinner width 
(13–18 µm) of fibers is a vital parameter stimulating their 
ingestion (Pirc et al. 2016). In this regard, previous stud-
ies reported the dominance of fibers in freshwater inver-
tebrates (Naji et al. 2018; Akindele et al. 2019; Bertoli 
et al. 2022; Khdre et al. 2023b). On the other hand, it is 
necessary to pay attention to the detrimental impacts of 
MP colors on aquatic organisms (Chen et al. 2020). Con-
sidering the nonselective deposit-feeding of Chironomus, 
its larvae highly accumulated, blue-colored MPs (40.5%) 
compared to the other colors according to its abundance 
in the surrounding environment. It has been reported that 
daphnids are probably not able to distinguish algae from 
colored MPs (Chen et al. 2020). Nonetheless, blue-green 
algae are food resources for collector-gatherer groups 
(Parker et al. 2022), which may support high loads of blue 
color within the present larvae besides the dominance 
of blue MPs in their habitats. The length of fibers also 
affects their ingestion. Chironomus prefers low-length 
fibers (501–1000 µm) rather than the dominance fibers 
(1001–1500 µm) in the sediment. The limited dimension 
of the mouth apparatus and the difficulty in ingesting 
larger particles are the main factors that underline the 
small-sized microplastic selectivity of Chironomus (Prata 
et al. 2023). In addition, the ingestion of MPs through 
the alimentary canal is subject to variable conditions of 

physical and chemical digestion that lead to MPs-erosion 
and fragmentation (Sanchez-Hernandez 2021). The domi-
nant polymer types accumulated in the Chironomus sp. 
larvae reflected the abundance of polymer types in the 
sediment (Munari et al. 2017). Therefore, Chironomus 
larvae accumulate polyester corresponding to its abun-
dance in the host sediment. This suggests that Chirono-
mus could be best employed as an MP qualitative bioindi-
cator in freshwater. Considering the vital ecological role 
and important position in nutrient cycling that Chirono-
mus has, any change in its distribution or physiological 
homeostasis will directly affect the higher organisms of 
the trophic web.

Some aquatic organisms create shelters to live inside 
using the available material in their environment. Since 
MPs are distributed in the surrounding environment, they 
could be used as building material (Nel and Froneman 
2018). Polyvinyl chloride and polyester particles were 
incorporated into cases of the caddisfly (Ehlers et al. 
2019). The accumulation of MPs in the tubes of Chi-
ronomus was not well highlighted. Herein, the seasonal 
variations of MP abundance in Chironomus tubes in both 
WWTP sites were detected. The results showed that MP 
abundance in C. tubes was significantly higher in S2 
than in S1 and varied with the different seasons follow-
ing the abundance pattern of MPs in sediment. Blue and 
red polyester fibers were the most abundant shape in the 
collected tubes, while a few percentages of the fragments 
were recorded following a similar pattern of sedimental 
MPs. Nonetheless, MP particles (54%) had a size range 
of 501–1000 µm, which were significantly higher than 
those observed in the sediment. This indicates the size 
preference of Chironomus larvae for constructing their 
tubes. Concerning the direct negative effects of MPs on 
organisms, MPs may lead to a reduction in shelter stabil-
ity with an increasing number of MP particles (Ribeiro-
Brasil et al. 2022). Hence, the shelter is easily transported 
far away by the water current, where MPs cause lightness 
compared with sand grains (Ehlers et al. 2020). Accord-
ingly, Chironomus’ tubes could provide a picture round 
seasonal changes of MPs abundance located in their sub-
strate as well as can be employed as a bioindicator for 
MPs distributed in freshwater.

Limitations

The bioaccumulation of MPs and associated contaminants 
(such as heavy metals and persistent organic matter) within 
various higher trophic levels in various aquatic systems 
should be carried out to comprehend the implications and 
risks of MPs as well as the toxicity caused by the adsorption 
presence of these contaminants in freshwater biota.
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Conclusion

Even though MP contamination is a worldwide problem, 
research on the spatiotemporal distribution of freshwater MPs is 
still in its infancy. This is the first study to consider both human 
activities and seasonality in connection to internal MP con-
tents in two wastewater sites in Egypt’s Sohag Governorate. Our 
findings support a prior study that revealed that Chironomus 
sp. might be beneficial as a freshwater MP bioindicator. Fur-
thermore, the current study is the first to document the use of 
chironomid tubes as indicators for freshwater MPs. It can serve 
as a warning sign for MP buildup in all compartments of the 
aquatic environment. Furthermore, our findings were intended 
to provide information regarding the seasonal variation in 
MPs in wastewater, hence increasing the understanding of the 
seasonal effect on MPs pollution and risk levels in freshwater 
ecosystems. Consequently, our findings will help policymakers 
and the government, in partnership with international organiza-
tions, implement suitable management strategies to minimize 
the waste of plastic. Our results found that blue polyester fib-
ers are much more prevalent than other polymers, colors, and 
shapes of MPs, and S2 was more highly contaminated with 
MPs than S1 during the four seasons of the year. Addition-
ally, the abundance of MPs/individual was higher significantly 
in the fourth instar larvae (P < 0.05) than in the second instar. 
Further studies on the applicability of chironomid tubes as MP 
bioindicators in various freshwater environments throughout 
the world should be taken.
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