Skip to main content
. 2023 Dec 2;10(1):e23127. doi: 10.1016/j.heliyon.2023.e23127

Table 4.

Detection-based methods for forest fire monitoring and surveillance.

Authors Year Method Architecture Accuracy Application Augmentation Type of Data
Hung et al. [68] 2019 DN-CNN Faster R-CNN, Hidden Markov Model (HMM) Detection rate - 96% Detection Yes Image & Video
Jiao et al. [67] 2019 CNN YOLOv3 the detection rate can reach 83%. Detection No UAV Image
Li et al. [76] 2021 h-EfficientDet EfficientDet and h-EfficientDet Accuracy - 98.35% Detection No Image
Peng and Wang [88] 2022 CNN SqueezeNet1.1, AlexNet, MobileNetV3 Large and Small MobileNetV1 0.25 & 1.0, MobileNetV2 0.25 & 1.0, ResNet18, & VGG-16 Accuracy - 99.28%. Detection No Image
Li et al. [85] 2022 CNN YOLOv3, YOLO-LITE, Tinier-YOLO mAP - 96.05% Detection No Image
Mohnish et al. [40] 2022 CNN CNN Accuracy - 92.20% Detection Yes Image
Tahir et al. [86] 2022 CNN YOLOv5 F1-score - 94.44%. Detection Yes UAV Image
Wang et al. [84] 2022 CNN YOLO Accuracy - 83.9% Detection No Image
Almasoud [91] 2023 IWFFDA-DL, ACNN-BLSTM ACNN-BLSTM optimized BFO & YOLO v3 Accuracy - 99.56%. Detection No Image
Ciprián-Sánchez et al. [72] 2021 CNN Fire-GAN, VGG-19 Information entropy EN - 10 Classification Yes Image
Xie and Huang [93] 2023 Transfer Learning and Improved Faster RCNN ResNet50 network and Faster RCNN with feature fusion and attention Accuracy - 93.7% Detection No UAV image