Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Sep;100(1):178–183. doi: 10.1104/pp.100.1.178

Purification and Properties of Fructokinase from Developing Tubers of Potato (Solanum tuberosum L.)

Andrew Gardner 1, Howard V Davies 1, Lindsay R Burch 1
PMCID: PMC1075534  PMID: 16652943

Abstract

Fructokinase has been purified from developing potato (Solanum tuberosum L.) tubers by a combination of hydrophobic interaction, affinity chromatography, and gel filtration. The protein has a native molecular mass of approximately 70 kD but is apparently a dimer. Ion-exchange chromatography and two-dimensional western blots resolved three major fructokinases, designated FK-I, FK-II, and FK-III in order of their elution from a Mono-Q column. Fructokinase activity proved labile when proteins were purified in the absence of fructose. Kinetically, FKs I, II, and III all have broad pH optima with peaks at about pH 8.5. The enzymes have a high specificity for fructose (Km values ranging from 0.041 to 0.128 mm), and can utilize a range of nucleoside triphosphates. Unlike FKs I and II, FK-III is not inhibited by fructose concentrations in excess of 1 mm. MgADP inhibited activity of the three FKs (between 68 and 75% inhibition at 1.0 mm), whereas fructose 6-P caused inhibition at concentrations of 10 mm. There were no regulatory effects observed with a range of other metabolites. K+ (10 mm) activated FK-I by 4-fold and FKs II and III by only about 50%.

Full text

PDF
178

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Copeland L., Harrison D. D., Turner J. F. Fructokinase (Fraction III) of Pea Seeds. Plant Physiol. 1978 Aug;62(2):291–294. doi: 10.1104/pp.62.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Copeland L., Morell M. Hexose kinases from the plant cytosolic fraction of soybean nodules. Plant Physiol. 1985 Sep;79(1):114–117. doi: 10.1104/pp.79.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Copeland L., Stone S. R., Turner J. F. Kinetic studies of fructokinase I of pea seeds. Arch Biochem Biophys. 1984 Sep;233(2):748–760. doi: 10.1016/0003-9861(84)90503-4. [DOI] [PubMed] [Google Scholar]
  4. Cox E. L., Dickinson D. B. Hexokinase from maize endosperm and scutellum. Plant Physiol. 1973 May;51(5):960–966. doi: 10.1104/pp.51.5.960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doehlert D. C. Fructokinases from developing maize kernels differ in their specificity for nucleoside triphosphates. Plant Physiol. 1990 May;93(1):353–355. doi: 10.1104/pp.93.1.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doehlert D. C. Separation and characterization of four hexose kinases from developing maize kernels. Plant Physiol. 1989 Apr;89(4):1042–1048. doi: 10.1104/pp.89.4.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grossbard L., Schimke R. T. Multiple hexokinases of rat tissues. Purification and comparison of soluble forms. J Biol Chem. 1966 Aug 10;241(15):3546–3560. [PubMed] [Google Scholar]
  8. Higgins T. J., Easterby J. S. Wheatgerm hexokinase (LII): fluorimetric measurement of the binding of substrates and products. Eur J Biochem. 1976 Jun 1;65(2):513–516. doi: 10.1111/j.1432-1033.1976.tb10367.x. [DOI] [PubMed] [Google Scholar]
  9. Higgins T. J., Easterby J. S. Wheatgerm hexokinase: physical and active-site properties. Eur J Biochem. 1974 Jun 1;45(1):147–160. doi: 10.1111/j.1432-1033.1974.tb03539.x. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Meunier J. C., Buc J., Ricard J. Purification and characterization of wheat germ hexokinases. FEBS Lett. 1971 Apr 12;14(1):25–28. doi: 10.1016/0014-5793(71)80266-1. [DOI] [PubMed] [Google Scholar]
  12. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  13. Purich D. L., Fromm H. J., Rudolph F. B. The hexokinases: kinetic, physical, and regulatory properties. Adv Enzymol Relat Areas Mol Biol. 1973;39:249–326. doi: 10.1002/9780470122846.ch4. [DOI] [PubMed] [Google Scholar]
  14. Stocchi V., Magnani M., Canestrari F., Dachà M., Fornaini G. Rabbit red blood cell hexokinase. Evidence for two distinct forms, and their purification and characterization from reticulocytes. J Biol Chem. 1981 Aug 10;256(15):7856–7862. [PubMed] [Google Scholar]
  15. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Turner J. F., Copeland L. Hexokinase II of Pea Seeds. Plant Physiol. 1981 Nov;68(5):1123–1127. doi: 10.1104/pp.68.5.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Turner J. F., Harrison D. D., Copeland L. Fructokinase (Fraction IV) of Pea Seeds. Plant Physiol. 1977 Nov;60(5):666–669. doi: 10.1104/pp.60.5.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Xu D. P., Sung S. J., Loboda T., Kormanik P. P., Black C. C. Characterization of Sucrolysis via the Uridine Diphosphate and Pyrophosphate-Dependent Sucrose Synthase Pathway. Plant Physiol. 1989 Jun;90(2):635–642. doi: 10.1104/pp.90.2.635. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES