Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Sep;100(1):246–254. doi: 10.1104/pp.100.1.246

Lateral and Rotational Mobilities of Lipids in Specific Cellular Membranes of Eucalyptus gunnii Cultivars Exhibiting Different Freezing Tolerance 1

Nathalie Leborgne 1,2,3, Laurence Dupou-Cézanne 1,2,3, Chantal Teulières 1,2,3, Hervé Canut 1,2,3, Jean-François Tocanne 1,2,3, Alain M Boudet 1,2,3
PMCID: PMC1075545  PMID: 16652954

Abstract

Two cell lines of Eucalyptus gunnii have been shown to keep their differential frost tolerance at the cellular level after long-term culture. They have been used to investigate the fluidity of specific cell membranes in relation with frost tolerance. Protoplasts and isolated vacuoles were obtained from both cell lines. In addition, purified plasma membrane and tonoplast (the vacuolar membrane) were separated from a crude microsomal fraction through free-flow electrophoresis. The lateral and rotational mobilities of lipids in these different membranes were studied by two biophysical techniques: fluorescence recovery after photobleaching (FRAP) and fluorescence polarization. After labeling the vacuoles isolated from the frost-sensitive cells with 1-oleoyl-2-(7-nitro-2,1,3-benz-oxadiazol-4-yl)aminocaproyl phosphatidylcholine, a single mobile component was observed with a diffusion coefficient of 2.4 × 10−9 cm2 s−1 and a mobile fraction close to 100% at a temperature of 23°C. When using isolated vacuoles from the frost tolerant line, a higher lateral diffusion of tonoplast lipids was found with a diffusion coefficient of 3.2 × 10−9 cm2 s−1, still with a mobile fraction close to 100%. No convincing data were obtained when performing fluorescence recovery after photobleaching experiments on protoplasts. Fluorescence polarization experiments confirmed the differential behavior of the two cell lines for tonoplast and also for plasma membrane. In addition, they showed that intrinsically tonoplast exhibited a higher fluidity than plasma membrane. Our results provide the first information on the fluidity of tonoplast and on the compared properties of two important plant membranes—tonoplast and plasma membrane—through the use of two complementary biophysical approaches. In addition, they suggest there is a correlation between membrane fluidity and cold tolerance. The potential interest of plant vacuole as a natural model system in membrane studies is emphasized.

Full text

PDF
246

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boudet A. M., Canut H., Alibert G. Isolation and Characterization of Vacuoles from Melilotus alba Mesophyll. Plant Physiol. 1981 Dec;68(6):1354–1358. doi: 10.1104/pp.68.6.1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Connor J., Gillum K., Schroit A. J. Maintenance of lipid asymmetry in red blood cells and ghosts: effect of divalent cations and serum albumin on the transbilayer distribution of phosphatidylserine. Biochim Biophys Acta. 1990 Jun 11;1025(1):82–86. doi: 10.1016/0005-2736(90)90193-r. [DOI] [PubMed] [Google Scholar]
  3. Dupou L., Lopez A., Tocanne J. F. Comparative study of the lateral motion of extrinsic probes and anthracene-labelled constitutive phospholipids in the plasma membrane of Chinese hamster ovary cells. Eur J Biochem. 1988 Feb 1;171(3):669–674. doi: 10.1111/j.1432-1033.1988.tb13838.x. [DOI] [PubMed] [Google Scholar]
  4. Furtula V., Khan I. A., Nothnagel E. A. Selective osmotic effect on diffusion of plasma membrane lipids in maize protoplasts. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6532–6536. doi: 10.1073/pnas.87.17.6532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ishii S. Factors Influencing Protoplast Viability of Suspension-Cultured Rice Cells during Isolation Process. Plant Physiol. 1988 Sep;88(1):26–29. doi: 10.1104/pp.88.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Koppel D. E., Axelrod D., Schlessinger J., Elson E. L., Webb W. W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J. 1976 Nov;16(11):1315–1329. doi: 10.1016/S0006-3495(76)85776-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lopez A., Dupou L., Altibelli A., Trotard J., Tocanne J. F. Fluorescence recovery after photobleaching (FRAP) experiments under conditions of uniform disk illumination. Critical comparison of analytical solutions, and a new mathematical method for calculation of diffusion coefficient D. Biophys J. 1988 Jun;53(6):963–970. doi: 10.1016/S0006-3495(88)83177-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Metcalf T. N., Wang J. L., Schindler M. Lateral diffusion of phospholipids in the plasma membrane of soybean protoplasts: Evidence for membrane lipid domains. Proc Natl Acad Sci U S A. 1986 Jan;83(1):95–99. doi: 10.1073/pnas.83.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nothnagel E. A. Synthesis and characterization of fluorescent Lucifer yellow-lipid conjugates. Biochim Biophys Acta. 1989 Apr 14;980(2):209–219. doi: 10.1016/0005-2736(89)90401-x. [DOI] [PubMed] [Google Scholar]
  10. Petersen N. O., McConnaughey W. B. Effects of multiple membranes on measurements of cell surface dynamics by fluorescence photobleaching. J Supramol Struct Cell Biochem. 1981;17(3):213–221. doi: 10.1002/jsscb.380170303. [DOI] [PubMed] [Google Scholar]
  11. Sandelius A. S., Penel C., Auderset G., Brightman A., Millard M., Morré D. J. Isolation of highly purified fractions of plasma membrane and tonoplast from the same homogenate of soybean hypocotyls by free-flow electrophoresis. Plant Physiol. 1986 May;81(1):177–185. doi: 10.1104/pp.81.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Shinitzky M., Barenholz Y. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta. 1978 Dec 15;515(4):367–394. doi: 10.1016/0304-4157(78)90010-2. [DOI] [PubMed] [Google Scholar]
  13. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  14. Steponkus P. L., Lynch D. V. Freeze/thaw-induced destabilization of the plasma membrane and the effects of cold acclimation. J Bioenerg Biomembr. 1989 Feb;21(1):21–41. doi: 10.1007/BF00762210. [DOI] [PubMed] [Google Scholar]
  15. Tocanne J. F., Dupou-Cézanne L., Lopez A., Tournier J. F. Lipid lateral diffusion and membrane organization. FEBS Lett. 1989 Oct 23;257(1):10–16. doi: 10.1016/0014-5793(89)81774-0. [DOI] [PubMed] [Google Scholar]
  16. Tournier J. F., Lopez A., Tocanne J. F. Effect of cell substratum on lateral mobility of lipids in the plasma membrane of vascular endothelial cells. Exp Cell Res. 1989 Mar;181(1):105–115. doi: 10.1016/0014-4827(89)90186-9. [DOI] [PubMed] [Google Scholar]
  17. Vigh L., Horváth I., Horváth L. I., Dudits D., Farkas T. Protoplast plasmalemma fluidity of hardened wheats correlates with frost resistance. FEBS Lett. 1979 Nov 15;107(2):291–294. doi: 10.1016/0014-5793(79)80393-2. [DOI] [PubMed] [Google Scholar]
  18. Yoshida S. Chemical and Biophysical Changes in the Plasma Membrane during Cold Acclimation of Mulberry Bark Cells (Morus bombycis Koidz. cv Goroji). Plant Physiol. 1984 Sep;76(1):257–265. doi: 10.1104/pp.76.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yoshida S., Uemura M. Lipid Composition of Plasma Membranes and Tonoplasts Isolated from Etiolated Seedlings of Mung Bean (Vigna radiata L.). Plant Physiol. 1986 Nov;82(3):807–812. doi: 10.1104/pp.82.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES