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A B S T R A C T   

Antibodies are attractive therapeutic candidates due to their ability to bind cognate antigens with high affinity 
and specificity. Still, the underlying molecular rules governing the antibody-antigen interface remain poorly 
understood, making in silico antibody design inherently difficult and keeping the discovery and design of novel 
antibodies a costly and laborious process. This study investigates the characteristics of antibody-antigen binding 
interfaces through a computational analysis of more than 850,000 atom-atom contacts from the largest reported 
set of antibody-antigen complexes with 1833 nonredundant, experimentally determined structures. The analysis 
compares binding characteristics of conventional antibodies and single-domain antibodies (sdAbs) targeting both 
protein- and peptide antigens. We find clear patterns in the number antibody-antigen contacts and amino acid 
frequencies in the paratope. The direct comparison of sdAbs and conventional antibodies helps elucidate the 
mechanisms employed by sdAbs to compensate for their smaller size and the fact that they harbor only half the 
number of complementarity-determining regions compared to conventional antibodies. Furthermore, we 
pinpoint antibody interface hotspot residues that are often found at the binding interface and the amino acid 
frequencies at these positions. These findings have direct potential applications in antibody engineering and the 
design of improved antibody libraries.   

1. Introduction 

Antibodies represent one of the most versatile and important classes 
of biotherapeutics, primarily due to their ability to bind cognate anti-
gens with high affinity and specificity. The specific recognition of the 
antigen by the antibody is mediated by binding sites (paratopes) located 
in the antibody variable regions. Inside each variable region, three hy-
pervariable loops, known as complementary determining regions 

(CDRs), are generally believed to drive and determine the specific 
binding to the antigen through establishment of a multitude of non-
covalent interactions [1]. However, what makes antibodies particularly 
fascinating is their ability to genetically diversify their binding sites to 
target nearly any molecular entity. The versatility of antibody binding is 
clearly illustrated by a recent study, putting an estimated size of the total 
combinatorial antibody diversity at a staggering 1018 unique members 
[2]. 

Abbreviations: Ab, Antibody; Ag, Antigen; CDR, Complementarity-determining region; EA, Epitope atom; ER, Epitope residue; Fv, Variable fragment; ML, Machine 
Learning; PDB, Protein Data Bank; sdAb, Single-domain antibody; PA, Paratope atom; PR, Paratope residue; uEA, Unique epitope atom; uER, Unique epitope residue; 
uPA, Unique paratope atom; uPR, Unique paratope residue; VH, Heavy chain variable region; VL, Light chain variable region; VR, Variable region. 
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Despite the tremendous potential of antibodies as therapeutic agents, 
their discovery is far from trivial and selection of antibody candidates is 
often hampered by expensive and lengthy screening processes [3]. In 
attempts to improve antibody discovery methodologies, increasing ef-
forts are made to leverage the growing body of sequence- and structural 
data and establishing in silico workflows [4–6]. Due to the rise of ma-
chine learning (ML) in other fields, components for antibody design are 
increasingly being developed to help support parts in the antibody 
development; yet, still only few examples exist with experimentally 
validated antibodies generated through ML endeavors [7]. Thus, it has 
recently been argued that one of the main urgent necessities for 
improved ML-based antibody design is the need for better understanding 
of the mechanisms underlying the antibody-antigen (Ab-Ag) in-
teractions [8]. Antibody sequence data can be generated at higher 
throughput and lower costs than structural data [9] but it does not offer 
insights on the spatial arrangements of the binding interface. Such in-
sights are especially important for understanding Ab-Ag interactions, 
which are governed by high sequence diversity as well as binding in-
terfaces assembled from discontinuous contact points that do not follow 
sequence linearity. As such, sequence similarities are often decoupled 
from phenotypic similarity and thus the binding functionality can be 
difficult to ascertain from sequence alone [7]. It should be noted that 
computational methods, such as AlphaFold2 [10] and RoseTTAFold 
[11], are providing increasingly high-quality models of protein com-
plexes and their binding interfaces from sequence alone [11,12]. How-
ever, the accurate prediction Ab-Ag models still presents a significant 
challenge [13]. 

The growing number of experimentally determined Ab-Ag com-
plexes has spiked interest in computationally assessing the underlying 
rules that are governing how antibody paratopes engage antigen epi-
topes. Previous studies provide valuable consensus on some aspects of 
Ab-Ag binding interfaces, however, much of this research has focused on 
a limited number of complexes [14–17] or has been focused on specific 
types of Ab-Ag complexes [18–22]. While there has been some agree-
ment on specific attributes related to antibody binding, differences in 
methodologies and data sets still complicate comparisons across 
different studies. Several aspects of the underlying rules governing 
Ab-Ag interfaces thus, remain poorly understood. 

This work aims to improve the understanding of antibody binding 
mechanisms by characterizing noncovalent interactions in the interfaces 
of a large set of nonredundant Ab-Ag complexes. We use Biopython, a 
freely available Python library [23,24], for identifying atom-atom con-
tacts in the binding interface of Ab-Ag complexes where the structure of 
the biomolecular complex is experimentally determined. Our data 
comprise 1833 nonredundant Ab-Ag complexes with more than 850,000 
total atom-atom contacts distributed among both conventional variable 
fragment (Fv) antibodies, and single-domain antibodies (sdAbs) target-
ing both proteins and peptides. By comparing binding features of Fv 
antibodies and sdAbs, we obtain insights on the molecular binding 
patterns shared between the types of Ab-Ag complexes. Several of these 
insights have direct applications in engineering of improved antibodies 
as well as advancing the basis for in silico design and modelling efforts. 

2. Materials and methods 

2.1. Data extraction 

Protein data bank (PDB) files containing Ab-Ag complexes were 
downloaded from the Structural Antibody Database (SAbDab) [25,26] 
on the 31st January 2023. The retrieved antibody structures were 
automatically renumbered according to IMGT numbering [27] (CDR1: 
residue 27–38, CDR2: residue 56–65, and CDR3: residue 105–117) by 
the SAbDab database using the ANARCI tool [28]. The IMGT system was 
chosen for annotating antibodies because this scheme is frequently used 
in immunoinformatics and widely adopted e.g., by The World Health 
Organization. The search was limited to antibodies targeting proteins or 

peptides and with resolutions ≤ 3 Å. The antigen type categories were 
taken from the SAbDab with peptides being defined as proteogenic 
polypeptide chains of < 50 amino acids. Definitions of which chains in 
the PDB structures belonged to the antibody and antigen, respectively, 
were made according to a metadata summary file also provided through 
the SAbDab database. Structures with the antibody heavy chain and 
light chain annotated to the same PDB chain ID (e.g., some single-chain 
variable fragments) were discarded as it was not possible to distinguish 
accurately between heavy- and light chain residues in these structures. 
Additionally, a small number of PDBs (2H32, 4ERS, 4NZR, 6W7S, 4HKZ, 
5U6A, 7UL4, 7KPJ and 1DEE) were manually removed because these did 
not contain Ab-Ag complexes. Lastly, 7ST3, 7SSH, 7YAR and 7STG were 
excluded as these PDB files could not be properly handled by the Bio-
Python software. 

2.2. Elimination of packing complexes 

Many PDB files contained more than one biological unit (Ab-Ag 
complex) that have co-crystallized. The occurrence of more than one Ab- 
Ag complex in the asymmetric crystal unit of the PDB files will poten-
tially skew the representation of the individual Ab-Ag complexes if 
contacts from all biological units in the PDB files are included in the 
analysis. From each PDB file, we therefore only included the Ab-Ag 
complex with the lowest average B-factor (atomic displacement) as 
taken across all atoms of the Ab-Ag complex. 

2.3. Removing antibody redundancy 

To avoid bias towards antibodies (or highly similar antibody vari-
ants) that have been crystallized several times we removed antibody 
redundancy based on amino acid sequence similarity. Individual VH- 
and VL sequences were clustered separately using the CD-HIT algorithm 
[29] and with a 95% sequence identity cut-off, which is a common 
strategy for dealing with redundant antibody sequences [30–32]. 
Redundant antibodies were defined as those where all antibody chains 
were clustered together; Fv antibodies sharing only one chain, such as 
common light chain antibodies, were not characterized as duplicates if 
the corresponding VH sequences show similarity < 95%. Only the var-
iable domain sequences (defined as residues with IDs≤128 according to 
IMGT numbering) were included in the sequence clustering to avoid 
overestimating sequence similarity by also including antibody constant 
domains, e.g., from crystallized Fab domains. This redundancy removal 
reduced the number of Ab-Ag structures from 2912 complexes to 1833 
complexes, thereby highlighting the need for effective redundancy 
filtering since certain antibodies have been co-crystallized several times. 

2.4. Defining the interface 

Atom-atom contacts between the antibody and the antigen were 
identified by using a ≤ 5 Å Euclidian distance cutoff. Definition of 
protein contacts according to atomic distances is a common strategy in 
analysis of Ab-Ag interfaces [19,33] as well as protein interface assess-
ment in general [34–36]. Similar outcomes are expected when defining 
the binding interface according to solvent-accessible surface area, where 
binding residues are those that become buried upon binding [19]. Our 
distance cutoff was based on recent evidence that a 5 Å cutoff for non-
covalent interactions was optimal for building robust protein structure 
networks. [37] We evaluated the relative differences in the results be-
tween the Ab-Ag groups using different distance cutoff values (2 Å, 3 Å, 
4 Å, 5 Å, and 6 Å) and found highly similar trends for 4 Å, 5 Å and 6 Å 
distance cutoffs (Supplementary Fig. S1-S6) thus illustrating that the 
selected cutoff did not bias the findings. At 3 Å some of the distributions 
show signs of skewing (Supplementary Fig. S1-S6) and at 2 Å contact 
points can no longer be properly identified, meaning that no interactions 
were detected in most complexes (data not shown). Further, a recent 
study found similar trends when comparing Fv antibodies and sdAbs 
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using both distance-defined interfaces and interaction-based interfaces 
identified with Arpeggio [19], an automated tool for identifying inter-
atomic interactions [38]. Collectively, a distance cutoff presents a robust 
means for identifying paratope-epitope interfaces that is unlikely to bias 
the results and can easily be reproduced. Computational extraction and 
analysis of the PDB files were performed using BioPython [23]. Only 
non-hydrogen atoms from amino acid were considered in the analysis, i. 
e. waters, ions, chemical modifications, and small molecules were not 
included as contact atoms. It should be noted that although not included 
in this analysis, interfacial waters are believed to affect the Ab-Ag 
interface [39]. In our data we find that almost 80% of the PDB struc-
tures have water atoms in the Ab-Ag interface although the water con-
tacts in the interfaces still only account for a relatively small number of 
interactions (~15% of total atom-atom contacts) compared to the 
number of contacts mediated directly between amino acids in the par-
atope and epitope (data not shown). Additionally, the ability to resolve 
waters are directly influenced by the structure resolution, which carries 
the risk of biasing the analysis towards high resolution structures with 
more interfacial waters resolved [39]. 

2.5. Assigning secondary structure elements 

The secondary structure elements were calculated using the Define 
Secondary Structure of Proteins (DSSP) [40] implemented in BioPython. 
Residues assigned to H (alpha helix), G (3–10 helix), and I (pi helix) by 
DSSP were collectively considered as helix state; residues assigned to E 
(strand) and B (isolated beta-bridge residue) by DSSP were collectively 
considered as β strand elements; and residues assigned to T (turn), S 
(bend) and blank states were collectively considered as loop elements. 

2.6. Data analysis, visualization, and statistical testing 

Data analysis was performed using Python 3 relying on Numpy 
(v1.21.5) and Pandas (v1.4.2) for calculations and matplotlib (v3.5.1) as 
well as seaborn (v0.11.2) for visualizations. Statistical 95% confidence 
intervals were calculated through bootstrap re-sampling in seaborn with 
the n_boot flag set to 5000. The structural visualizations were made using 

PyMOL (The PyMOL Molecular GraphicsSystem, Version 2.6.0a0 Open- 
Source Schrödinger, LLC.). 

2.7. Code and data availability 

The code used in the study can be accessed through https://github. 
com/andreasvisbech/Ab_interface_mapping and resulting data files are 
available through 10.11583/DTU.22555672. 

3. Results 

3.1. Collection of interface data 

The pipeline applied for identifying and analyzing contacts in the Ab- 
Ag interfaces consisted of multiple steps (Fig. 1). In brief, from the 
SAbDab database [25] we extracted 3D structural Ab-Ag complexes at a 
resolution higher than 3 Å and where the antigen had been annotated as 
protein or peptide. In cases where more than one Ab-Ag complex was 
found in the asymmetric crystal unit, only the complex with the lowest 
average B-factor was considered to avoid registering the same contact 
points multiple times. Afterwards, redundant antibodies were removed 
by clustering the variable region sequences according to a 95% sequence 
similarity cutoff. The final body of data consisted of 1833 nonredundant 
structures from the PDB with experimentally derived and nonredundant 
Ab-Ag complexes. We extracted atom-atom contact pairs from all par-
atope residues (PRs) in the antibody and epitope residues (ERs) in the 
antigen based on a ≤ 5 Å distance cutoff. The contact atoms were limited 
to non-hydrogen atoms from amino acids in the antibody or antigen. 
Chemical modifications and solvent molecules, such as waters, ions, and 
noncovalently bound molecules, were therefore not included. The full 
body of contact data is made available in a simple tabular format (see 
Materials and Methods) for easy access also by non-bioinformaticians. 

The Ab-Ag complexes were grouped according to the type of antigen 
(protein or peptide) and whether the antibody consisted of both VH and 
VL (Fv antibody) or a single variable domain (sdAb). Only protein- 
binding Fv antibodies, peptide-binding Fv antibodies and protein- 
binding sdAbs derived from heavy chain (VH sdAbs) were included in 

Fig. 1. Computational workflow for identification and analysis of contact atoms in the Ab-Ag interface. For PDB files with more than one Ab-Ag complex in the 
asymmetric crystal unit we removed duplicate Ab-Ag complexes to avoid registering the same contact points multiple times. Next, the antibodies were clustered 
according to a 95% sequence similarity cutoff of the variable domains (defined as IDs≤128 according to IMGT numbering) and redundant antibodies were removed. 
Atom-atom contacts in the individual structures were determined as non-hydrogen atoms in the antibodies that were within 5 Å of non-hydrogen atoms in the 
antigen. The binding interfaces were quantitatively analyzed and used for comparative characterization of the different types of Ab-Ag complexes. 
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the further study due to the low number of structures in the other groups 
(Table 1). Examination of the Ab-Ag interfaces revealed that individual 
PRs can make multiple contacts to atoms of one or more ERs and thus 
contribute several atom-atom contacts. We therefore differentiate be-
tween total atom-atom contacts and unique PRs/ERs (uPRs/uERs). As an 
example, a single PR in which two atoms are each contacting a single 

atom on a single ER is registered as two total atom-atom contact points 
but only one uPR and uER, respectively. The same principle applies on 
the atom level meaning that the above-described interaction will reg-
ister two unique paratope atoms (uPAs) and two unique epitope atoms 
(uEAs) atoms. An illustration of the above-described example is pro-
vided in Supplementary Fig. S7, and a more comprehensive example is 

Table 1 
Summary statistics for the different groups of Ab-Ag complexes considered in the study. Fv antibodies are those that contain both VH and VL whereas the sdAbs contain 
a single variable domain derived from either heavy chain (VH) or light chain (VL).   

PDB 
files 

Total atom-atom 
contacts 

Unique paratope 
residues 

Unique paratope 
atoms 

Unique epitope 
residues 

Unique epitope 
atoms 

Mean resolution 
(Å) 

Total  1833  856751  41643  196315  35812  173940  2.2 
Protein-binding Fv  1058  515651  25414  118046  23347  110083  2.2 
Peptide-binding Fv  367  151799  7981  37494  3474  21898  2.1 
Protein-binding VH 

sdAb  
388  182243  7890  39058  8772  40695  2.1 

Peptide-binding VH 
sdAb  

14  5377  276  1316  155  936  1.9 

Protein-binding VL 
sdAb  

4  1304  62  309  52  250  2.2 

Peptide-binding VL 
sdAb  

2  377  20  92  12  78  2.7  

Fig. 2. Sizing of Ab-Ag binding interfaces. (a) Distributions of total atom-atom contacts in the binding interfaces. (b) Distributions of the number of uPRs in the 
binding interfaces. (c) Distributions of the number of uPAs in the binding interfaces. (d) Distributions of the number of uERs in the binding interfaces. (e) Distri-
butions of the number of uEAs in the binding interfaces. (f) Distributions of main chain atoms and side chain atoms in the PRs of protein-binding Fv antibodies (left), 
peptide-binding Fv antibodies (middle) and protein-binding sdAbs (right). The solid lines in the histograms represent kernel density estimations. 
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also provided in Supplementary Fig. S8. The distinction is made to 
ensure that the analysis is not biased towards residues and atoms that 
are frequently making multi-atom contacts. 

3.2. Comparing features from different types of Ab-Ag complexes 

The overall binding profile of the Ab-Ag interface is ultimately 
governed by the sum of contributions from the contact points. Exami-
nation of the apparent sizes of the binding interfaces revealed similar 
distributions of total atom-atom contacts between all three groups of Ab- 
Ag complexes (Fig. 2a). Comparison of uPR counts (Fig. 2b) suggested 
that mean uPR values of peptide-binding Fv antibodies (21.7 ± 5.3) and 
protein-binding sdAbs (20.3 ± 5.5) were lower than for protein-binding 
Fv antibodies (24.0 ± 5.8). Peptide epitopes generally contributed fewer 
uERs to the binding interface than protein epitopes on both amino acid- 
and atom level (Fig. 2d, e). Thus, peptide-binding antibodies establish a 
similar number of total atom-atom contacts in the Ab-Ag interface as 
protein-binding antibodies despite having fewer uEAs (Fig. 2a, e). This 
observation is likely due to the individual PRs being able to increase 
their contribution to the binding interface by contacting multiple ERs. 
This increased contribution to the binding could arise from the inherent 
flexibility of peptides, which allow sterically unrestrained access of the 
antibody to position itself to maximize the number of binding contacts. 

For the protein-binding sdAbs, the distributions of uPRs and uPAs in 
the binding interfaces are only slightly reduced compared to the Fv 
antibody groups (Fig. 2b, c) even though the sdAbs contain only 3 CDRs 
instead of 6. This illustrates that sdAbs apply a larger proportion of their 
available variable region residues in the binding interface compared to 
Fv antibodies (Fig. 3a, b). SdAbs appear more effective in engaging a 
larger proportion of both CDR and FR residues in the binding interface 
compared to Fv antibodies (Fig. 3c, d). The increased binding efficiency 
of the CDRs can likely be attributed to the CDRH3 which is relatively 
large in sdAbs compared to conventional Fv antibodies [19,41]. A 

definition of binding residues in sdAbs based on the antibody sequence 
and CDR boundaries alone might therefore also be associated with 
greater uncertainty than for Fv antibodies since a larger proportion of 
the PRs are likely to be located outside the CDRs. 

Protein-binding Fv antibodies were found to have paratopes and 
epitopes of comparable sizes (Fig. 2b-e) similar to previous findings that 
used surface-buried area for defining the interface [42]. Another simi-
larity between the different Ab-Ag complexes is found in the relative 
usage of uPR side chain atoms vs. main chain atoms, where the amino 
acid side chains appear to dominate the binding (Fig. 2f). The 
protein-binding sdAb antibodies also appear to use slightly more main 
chain atoms, which could potentially be attributed to a longer and more 
flexible CDRH3. Collectively, our findings indicate that antibody bind-
ing follows general patterns irrespective of antibody and antigen type. 

To further understand the interactions in the binding interface, we 
determined the frequencies of the individual amino acids for the resi-
dues actively participating in the binding (both uPRs and uERs). The 
types of amino acids in the uPRs are generally quite consistent across the 
three groups of Ab-Ag complexes (Fig. 4), thus indicating that the type of 
antibody or antigen does not dramatically affect the amino acid distri-
bution in the paratope. All three groups of Ab-Ag complexes presented 
with an overrepresentation of polar and aromatic tyrosine as well as 
smaller serine and glycine residues in the uPRs also when comparing to 
average amino acid usage in non-antibody proteins [43]. These residues 
have been found to be important for antigen recognition [44,45] and 
they have previously been reported to be abundantly present in Ab-Ag 
interfaces [16]. In one study they selected antibodies from a phage 
display library where the antibody diversity is restricted to tyrosine and 
serine residues only [46]. An abundance of polar residues is also evident 
when grouping the amino acids according to physicochemical properties 
as (Fig. 4b). It is interesting to note that the sdAb paratopes include more 
arginine residues compared to the Fv antibodies since enrichment for 
arginine residues has been associated with higher affinity at the expense 

Fig. 3. Distributions of uPR contacts in the different regions of the antibodies. (a) Distribution of the number of available CDR residues in the antibodies according to 
IMGT numbering. The distribution includes all CDR residues irrespective of whether they are part of the paratope or not. (b) Distribution of the proportions of 
residues in the variable region (VR) that are considered to be part of the paratope. (c) Distribution of the proportions of CDR residues that are considered part of the 
paratope. (d) Distribution of the proportions of FR residues that are considered part of the paratope. Solid lines represent kernel density estimations. 
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of specificity [44,47]. Sequence analysis of more than 11,000 antibodies 
also indicates that arginine residues are overrepresented in CDRH3 in 
comparison with FRs as well as proteins in general [43]. A relative 
abundance of arginine residues in the uPRs of sdAbs compared to Fv 
antibodies might help explain how this antibody type obtains affinities 
similar to Fv antibodies even though it has fewer CDRs and generally 
seem to engage slightly fewer uPRs in the paratope (Fig. 2b). There did 
not appear to be any systematic differences in amino acid frequencies 
between the heavy chain and the light chain (Fig. 4c). 

The average amino acid frequencies of the uERs are more uniformly 
distributed than those of the uPRs (Fig. 5a) and generally show close 
resemblance to the background frequencies observed in globular- and 
transmembrane proteins [43]. Although epitopes appear to lack intrinsic 
properties making them clearly distinguishable from protein surfaces in 

general, they seem to favor certain secondary structure elements with 
the majority of the uERs found in unstructured loops (Fig. 5b). We 
further examined the continuity of the epitopes and found that the 
amino acids composing the protein antigen epitopes are rarely con-
nected in sequence. Antibody epitopes (sometimes known as B cell 
epitopes) are commonly known to be discontinuous [48] and here we 
confirm that linear epitopes formed from uERs connected in sequence 
appear to be extremely rare for protein antigens (Fig. 5c). 

Paratopes show a preference for incorporation of certain amino acids 
in the binding interface (Fig. 4a), but it is less clear if these PRs also show 
preference for contacting certain types of amino acids in the epitope. We 
examined co-occurrences between amino acids in the paratope and 
epitope and found a high degree of adaptability by the PRs (Fig. 6). 
Besides the charged PRs, which favor interactions with ERs of opposite 

Fig. 4. Average amino acid frequencies in antibodies. (a) Average amino acid frequencies in the paratope. The frequencies were obtained by calculating the fre-
quency of each amino acid relative to the total number of uPRs in the individual PDB files. The average frequency was then found for each of the three groups of Ab- 
Ag complexes. (b) Average frequencies of uPRs in the binding interface grouped according to the type of amino acids. The frequencies were calculated similar to pane 
(a) and then grouped as non-polar (ALA, VAL, PRO, LEU, ILE, TRP, PHE), polar (SER, THR, TYR, ASN, GLN), positively charged (LYS, HIS, ARG), negatively charged 
(GLU, ASP) or special (GLY, CYS, MET). (c) Average amino acid frequencies in VH (left) and VL (right). The frequencies were calculated from amino acid usage in the 
given domain relative to total number of uPRs in that domain i.e., the frequencies sum to 100% for each domain. All frequencies were calculated on the uPRs to avoid 
any bias towards multi-contact residues. Error bars represent 95% confidence intervals. 
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charge, the paratope amino acids do not seem to follow a simple 1:1 
binding scheme where specific amino acids in the paratope interact with 
specific cognate amino acids in the epitope. Tyrosine, which is the most 
abundant type of uPR (Fig. 4a) and has been proposed as a key driver in 
antibody binding [49], appears to have little preference with regard to 
the type of amino acid in the ER. Tyrosine has previously been reported 
as a highly versatile amino acid capable of mediating a wide range of 
molecular contacts often with high affinity and specificity [50,51] also 
for non-antibody proteins [52]. The epitope amino acids cysteine and 
methionine are only rarely contacted by any paratope amino acids 
(Fig. 6), in agreement with their rare use as uERs (Fig. 5a). 

3.3. Binding interactions are not evenly distributed across the antibodies 

Mapping of the uPRs to the different regions of the antibodies 
revealed that the contact points are not evenly distributed among these 
different regions (Fig. 7a) and the same pattern was observed for total 
atom-atom contacts (Supplementary Fig. S9). The average proportions 
of uPRs in the different antibody regions confirm that most of the PRs are 
localized in the CDRs although some of the uPRs seem to be located 
within the framework regions outside the CDR boundaries (Fig. 7b). Our 
analysis using the IMGT numbering scheme is in agreement with a 
previous finding that approximately 20% of PRs are located outside the 
CDRs as defined by classical antibody numbering schemes [53,54]. 

The uPRs that are found outside the hypervariable loops are almost 
exclusively located in FR2 and FR3 (Fig. 7a), which are among the 
structurally conserved stretches of amino acids connecting the three 
CDRs. Although some uPRs in FR2 and FR3 appear to establish contacts 

in the binding interface, kernel density estimations suggest that it is in 
fact unlikely that antibodies rely heavily on FR residues as contact points 
(Fig. 7c). The data also indicates that the CDRH3 in sdAbs is highly 
important for binding considering that > 40% of the uPRs in sdAbs are 
located in this region. The importance of CDRH3 for sdAb binding has 
long been speculated based on their larger size [55,56] and our data 
confirm that this can also be shown on a structural level. Examination of 
the lengths of the CDRH3 regions in our structural data without 
considering contact points also confirms that the CDRH3 lengths are 
generally longer than for Fv antibodies (Supplementary Fig. S10). For Fv 
antibodies, the majority of the VL contacts are found in CDRL1 and 
CDRL3. These two VL regions have shown variability in length greater 
than CDRH1 and CDRH2 as well as amino acid diversity similar to 
CDRH1 and CDRH2 on a sequence level [43]. Further, CDRL2 does not 
contribute more uPRs to the binding interface than the surrounding VL 
FR2 and VL FR3 (Fig. 7a) although it should be noted that VL CDR2 is the 
smallest of the regions in the Fv. 

3.4. Pinpointing interface hotspots 

In the previous section we demonstrated how identification of uPRs 
can be used for mapping which regions of the antibody variable domains 
are important in establishing the binding interface. To further dissect the 
Ab-Ag interactions, we investigated if certain positions (according to 
IMGT numbering) were more frequently identified as PRs (Fig. 8). 
Mapping of interface hotspot residues can have direct applications for 
engineering of antibodies e.g., by allowing informed prioritization of 
residues to diversify in the construction of antibody libraries or during 

Fig. 5. Epitope characteristics. (a) Average amino acid frequencies in the epitope. The frequencies were obtained by calculating the frequency of each amino acid 
relative to the total number of uERs in the individual PDB files. The average frequency was then found for each of the three Ab-Ag complex groups. (b) Average 
proportions of secondary structure elements of the uERs. (c) Distributions of the number of discontinuous epitope segments. Two segments were defined as 
discontinuous if they are separated by one or more amino acids on a sequence level. The frequencies of (a) and (b) were calculated on uERs to avoid bias towards 
multi-contact residues. Error bars represent 95% confidence intervals. 
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affinity maturation. The CDRH1 in all three data groups shows 
increasing involvement in the binding interface for higher residue in-
dexes, thus suggesting the CDRH1 is oriented inward towards the center 
of the binding interface. CDRH2 shows an alternating pattern where 
hotspot residues are surrounded by “cold spot” residues on both sides. 
The pattern most likely arises because the amino acids in the CDRH2 are 
positioned so the side chains are alternately arranged inwards and 
outwards from the center of the binding interface. Mapping of the 
interface hotspots further revealed that even though the CDRL2 con-
tributes relatively few uPRs to the binding interface (Fig. 7a), it still 
appears that certain positions in the CDRL2 are favored over others for 
antigen binding. 

Examination of uPRs positions relative to the IMGT numbering 
scheme show that IMGT numbering is quite effective in capturing the 
PRs within the boundaries of the CDRs (Fig. 8). This is exemplified for 
the CDR3 domains where most of the PRs are captured within the CDR3 
boundaries in all three data groups. Mapping of interface hotspots also 
reveals how the IMGT numbering might be improved (Fig. 8). As an 
example, it seems that most of the previously described uPRs that were 
found in FR2 and FR3 of Fv antibodies are positioned just outside the 
CDR2 boundaries. We find that expanding the CDR2 definition from 56- 
65 to 55–66 increases the number of uPRs classified as being within the 
boundaries of the CDRs from 82% to 90% for protein-binding Fv anti-
bodies and 84–92% for peptide-binding Fv antibodies. 

The sdAbs exhibit a more diverse engagement of FR2 and FR3 resi-
dues, thereby suggesting that binding residues of sdAbs are more diffi-
cult to accurately map using classical antibody numbering schemes. In 
sdAbs, the framework regions FR2 and FR3 are more frequently included 
in the paratope. This is particularly prominent for FR2 where the posi-
tions 42, 49, 50 and 52 in FR2 are clearly more frequent as uPRs as 

compared to the same positions in Fv antibodies. In Fv antibodies, these 
FR2 positions are highly conserved hydrophobic residues which are 
mediating the VH-VL interface. In camelid sdAbs, these residues are 
replaced by hydrophilic amino acids, which have traditionally been 
considered to exert solubility-increasing effects [57]. However, our data 
suggest that they are also exposed for interactions and instrumental in 
compensation for fewer CDR regions in sdAbs mediating specific and 
strong binding interactions of sdAbs with their cognate epitopes. The 
findings are consistent with recent reports illustrating that sdAbs can 
effectively utilize their FR residues in binding or fold the CDRH3 over 
the side of the sdAb. Both strategies enable the sdAb to bind in a side-
ways manner [58–61], which contrasts the binding behavior of Fv an-
tibodies, where the paratopes are relatively flatter and shaped for more 
direct head-on binding [62]. It is further worth noting that many of the 
interface hotspot residues also show high variability on the sequence 
level using the Wu-Kabat variability coefficient [63] (Supplementary 
Fig. S11). We also assigned germline sequences to the antibodies using 
ANARCI [28] and analyzed how often the PRs were mutated from the 
assigned germline. We find that FR residues frequently involved in 
binding were also more often observed to be mutated from the germline. 
This was especially pronounced for the sdAbs where the PRs at the three 
FR residues most frequently involved in binding (position 52, 55 and 66) 
was mutated from the germline in > 55% of the cases (Supplementary 
Table S1). 

We further investigated amino acid usages for uPRs in some of the 
positions most frequently involved in binding according to the mapping 
of interface hotspots. We generally find that residues most frequently 
involved in binding also show a high degree of diversification (Fig. 9). 
This is especially evident in CDRH3 domain, which we previously found 
to be the largest contributor of uPRs (Fig. 7a). The interface hotspot of 

Fig. 6. Heatmap of amino acid co-occurrences in the binding interface. The figure combines total atom-atom contacts from protein-binding Fv antibodies, peptide- 
binding Fv antibodies and protein-binding sdAbs. Each square represents the percentage wise contacts of the different amino acids in the epitope by the various 
amino acids in the paratope. The data has been normalized horizontally so all rows sum to 100% to allow easy comparison between different amino acids in 
the paratope. 
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this region is largely bell shaped (Fig. 8) thus showing that contact 
points are clustered around the tip of the CDRH3 loop. The uPRs in these 
positions also show a high degree of diversification (Fig. 9), and similar 
high diversity of CDRH3 center residues have also been found on a 
sequence level [43]. Also positions 56, 63 and 65 in CDRH2 of the Fv 
antibodies were found to be less frequent as PRs than their neighboring 
residues and accordingly show less amino acid diversity. 

4. Discussion 

This study sought to explore the underlying mechanisms of Ab-Ag 
interactions through computational analysis of experimentally deter-
mined structural Ab-Ag complexes. Increasing efforts are made to 
leverage structural data in computational workflows for improving 
discovery and development of therapeutic antibodies, which can be 
expensive and laborious. Prior research has offered valuable insights 
into antibody-antigen interfaces, but it has primarily focused on a 
restricted set of experimentally determined structures [14–17]. The 
underlying mechanisms governing these interfaces remain complex and 
not exhaustively understood. Here, we analyze the largest set of 
nonredundant Ab-Ag complexes to date, consisting of 1833 nonredun-
dant structures, including both protein-binding Fv antibodies, 
peptide-binding Fv antibodies and protein-binding sdAbs to capture the 
diversity of antibody binding interfaces most effectively. Our findings 
corroborate some existing notions about Ab-Ag binding interactions, 

including an overrepresentation of polar PRs, clustering of PRs in the 
CDRs as well as high involvement of CDRH3 in binding [14,19,42]. The 
study also expands the knowledge of Ab-Ag interfaces, e.g. by high-
lighting regions and specific positions that are likely to be contact points 
as well providing amino acid distributions in these positions. Such in-
sights have a solid engineering perspective and could help guide the 
design of novel antibody phage display libraries by using the observed 
position-specific amino acid frequencies for informing library diversifi-
cation in synthetic or semi-synthetic libraries [64,65]. This could help 
create libraries that effectively mimic binding profiles of functional 
antibodies and prevent wasting diversification on positions that are 
unlikely to engage in binding. Similar approaches for leveraging struc-
tural information in design of (semi-)synthetic antibody libraries are 
rare and typically based on only a relatively small number of structures 
[66]. Knowledge of interface hotspots can also be used for prioritizing 
residues in antibody affinity maturation campaigns. As an example, 
CDRH1 residues showed increasing propensity for binding with 
increasing IMGT indexes for all three groups of Ab-Ag complexes 
(Fig. 8). Diversifying CDRH1 positions with higher IMGT indexes should 
thus be more likely to yield changes in affinity than positions with lower 
IMGT indexes given that they are more likely to be situated in the par-
atope. Similarly, position 105 of Fv antibodies is very rarely involved in 
binding, even though it is classified as a CDR residue, and thus makes a 
bad candidate for diversification when attempting to improve antibodies 
or construct functional antibody libraries. Additionally, the presented 

Fig. 7. Mapping of PRs to specific antibody domains. (a) Average proportion of uPRs found in the different antibody regions. The mean frequencies were calculated 
by taking the number uPRs in each region relative to the total number of uPRs for the individual PDBs. The mean frequencies were then found by averaging within 
the three data groups. (b) Average percent of uPRs found in the CDRs and FRs, respectively. (c) Violin plots showing kernel density estimations for uPR counts in the 
different antibody regions. The top 1% percentile has been excluded to remove outliers with high uPR counts in the FRs. Error bars in (a) and (b) represent 95% 
confidence intervals. 
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data holds potential for use in developing computational tools for 
characterization of antibody binding behavior that factor in structural 
data [31]. 

The epitopes, contrary to the paratopes, exhibit no clear preference 
for incorporation of selected amino acids (Fig. 5a). This seemingly 
random amino acid usage in the uERs suggests that there is no selective 
pressure for incorporation of certain amino acids in the epitopes. The 
antibody therefore seems to shape its binding profile to fit the amino 
acids that are exposed in the epitope. An overall random distribution of 
amino acids in the epitope agrees with previous findings that epitopes 
are dominated by common protein surface features [14,67]. Such epi-
topes that do not appear to differentiate from protein surfaces in general 
would support the extreme binding versatility of antibodies and might 
help explain why epitopes are inherently difficult to accurately predict 

outside the context of a specific antibody [68,69]. From an antibody 
engineering perspective, it might also be argued that identifying the 
optimal epitope on a given antigen is not necessarily important, unless 
the identified epitope is situated in an area that is functionally relevant 
for antibody targeting, such as in agonistic or antagonistic antibodies. As 
an example, an epitope identified outside the binding site of a receptor 
might not be relevant for the development of a blocking antibody unless 
binding of the antibody causes a change in target protein conformation 
and thereby or otherwise affecting its activity, multimerization or signal 
transduction. On the other hand, identification of optimal epitopes can 
hold great potential for design of vaccines for eliciting effective pro-
tective immunity and avoiding immune evasion of pathogens [70]. 

While it was possible to map contact points to specific regions of the 
antibodies (Fig. 7), the number of contacts in each region does not 

Fig. 8. Mapping of interface hotspots in the paratope. On the x-axis is shown residue IDs according to IMGT numbering and y-axis is given in percentage. The red line 
shows the raw residue ID occurrences i.e., the fraction of the PDBs where the specific residue IDs are found in the antibody sequence no matter if they are contact 
points or not. Only residue IDs that are found in minimum 10% of the PDBs were included in the analysis so rare CDR insertions are not shown. As expected, drops in 
background occurrence is mainly seen in the CDRs because these insertions are naturally only found in some of the antibodies. The blue bars indicate how often (in 
percent) a given residue ID is considered a uPR when that position is present. The value is calculated as the number of PDBs where the ID is considered a uPR relative 
to the number of PDBs where the given ID is available in the sequence. The data is shown for protein-binding Fv antibodies (a), peptide-binding Fv antibodies (b) and 
protein-binding sdAbs (c). 
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necessarily say anything about the energetic contributions of this region 
to the binding interface. However, CDRH3, which is generally believed 
to be crucial in mediating antibody contacts, is also the region with 
highest uPR population, thus suggesting a correlation between the 
number of uPRs and the energetic contribution in the binding interface. 
The total contribution of the CDRH3 is nevertheless still below 50% of 
the total uPRs even in the sdAbs, hereby supporting a previously 
formulated notion that the CDRH3 is “necessary, yet insufficient, for 
specific antibody binding” [71]. We observed low occurrences of uPRs in 
CDRL2, which might be speculated to be because this region is 

contributing to other favorable biophysical properties of the antibody. 
The CDRL2 has, however, previously been reported as a mutational 
hotspot for improving antibody aggregation resistance [72]. The low 
uPR occurrence in the CDRL2 could also have implications for design of 
novel antibody-fusions by targeting this domain for grafting of foreign 
motifs into the antibody without disturbing the affinity of the antibody 
scaffold. 

Although this work, and antibody engineering campaigns in general, 
often focus on the specific residues mediating binding to the antigen it is 
important to remember that non-contact residues might play an 

Fig. 9. Position-specific amino acid frequencies of uPRs. (a) Average amino acid frequencies on specific positions of uPRs in the VH (top) and VL (bottom) of protein- 
binding Fv antibodies. (b) Average amino acid frequencies on specific positions of uPRs in the VH (top) and VL (bottom) of peptide-binding Fv antibodies. (c) Average 
amino acid frequencies on specific positions of uPRs in the paratope of protein-binding sdAbs. 
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important role in supporting the orientation and flexibility of the PRs. 
This is illustrated by antibody humanization experiments where CDRs 
from murine antibodies are grafted onto human antibody scaffolds, 
which is often associated with reduced affinity. Similarly, the packing of 
VH and VL domains in Fv antibodies may affect the conformation of the 
paratope [73,74] and thus the epitope binding. Coupling of different 
germline genes might affect the VH-VL packing and thereby influencing 
the binding interface, however, more work is needed to understand if 
coupling of specific germline genes can be linked to specific patterns in 
the Ab-Ag interface. 

While our study includes a large number of Ab-Ag structures broadly 
sampled from available complex structures the data is inherently 
somewhat biased towards popular antigenic targets and proteins that 
could actually be expressed, purified and crystallized. Additionally, the 
study defines the contacts based on a distance cutoff, and while this is a 
broadly accepted approach, it does not directly distinguish between 
chemically meaningful contacts and proximity contacts. Similarly, the 
work does not include the study of interfacial waters, which might affect 
the binding interfaces, but also risk biasing the data towards structures 
with higher resolution, as described above. It should further be noted, 
that the analyzed Ab-Ag complexes were all static structures that are 
unable to capture any potential dynamic binding behavior in the com-
plexes [75]. 

5. Conclusion 

In this study we analyzed the binding interfaces of 1833 nonredun-
dant experimentally determined Ab-Ag complexes with more than 
850,000 unique atom-atom contacts to understand the mechanisms that 
are governing antibody binding. We compared different types of Ab-Ag 
complexes consisting of both conventional Fv antibodies and sdAbs 
targeting both proteins and peptides to effectively map patterns in the 
binding interfaces. From the analysis we find that several binding fea-
tures are shared between the different Ab-Ag groups although some 
differences are also present. The work provides actionable insights with 
direct applications in engineering of antibodies with improved binding 
functionality. 
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