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Abstract

Alcohol use disorder (AUD) is a complex psychiatric disease characterized by periods of heavy drinking and
periods of withdrawal. Chronic exposure to ethanol causes profound neuroadaptations in the extended amyg-
dala, which cause allostatic changes promoting excessive drinking. The bed nucleus of the stria terminalis
(BNST), a brain region involved in both excessive drinking and anxiety-like behavior, shows particularly high
levels of pituitary adenylate cyclase-activating polypeptide (PACAP), a key mediator of the stress response.
Recently, a role for PACAP in withdrawal-induced alcohol drinking and anxiety-like behavior in alcohol-de-
pendent rats has been proposed; whether the PACAP system of the BNST is also recruited in other models of
alcohol addiction and whether it is of local or nonlocal origin is currently unknown. Here, we show that PACAP
immunoreactivity is increased selectively in the BNST of C57BL/6J mice exposed to a chronic, intermittent ac-
cess to ethanol. While pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor-expressing
cells were unchanged by chronic alcohol, the levels of a peptide closely related to PACAP, the calcitonin
gene-related neuropeptide, were found to also be increased in the BNST. Finally, using a retrograde chemoge-
netic approach in PACAP-ires-Cre mice, we found that the inhibition of PACAP neuronal afferents to the
BNST reduced heavy ethanol drinking. Our data suggest that the PACAP system of the BNST is recruited by
chronic, voluntary alcohol drinking in mice and that nonlocally originating PACAP projections to the BNST reg-
ulate heavy alcohol intake, indicating that this system may represent a promising target for novel AUD
therapies.
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Significance Statement

Our results point at a key role for the neuropeptide PACAP (pituitary adenylate cyclase-activating polypep-
tide), specifically of the bed nucleus of the stria terminalis, in mediating heavy alcohol drinking in mice. This
system may, therefore, represent a novel target for the treatment of alcohol use disorders.
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Introduction
Alcohol is the most common addictive substance in

the world (see National Survey on Drug Use and Health,
Table 5.4A—Alcohol Use Disorder in Past Year among
Persons Aged 12 or Older, by Age Group and Demo-
graphic Characteristics: Numbers in Thousands, 2017
and 2018; available at: www.samhsa.gov). Every year,
excessive alcohol use costs the United States $249 billion
and causes 88,000 deaths, as well as various chronic dis-
eases and social issues (Sacks et al., 2015). Alcohol use
disorder (AUD), a highly prevalent, chronic, relapsing disor-
der, affects .14 million people in the United States alone,
in addition to being severely undertreated, with only three
modestly effective pharmacological therapies available (see
National Survey on Drug Use and Health, Table 5.4A—
Alcohol Use Disorder in Past Year among Persons Aged 12
or Older, by Age Group and Demographic Characteristics:
Numbers in Thousands, 2017 and 2018; available at: www.
samhsa.gov; Reus et al., 2018; Koob, 2021; Mason and
Heyser, 2021).
Chronic exposure to ethanol has been shown to pro-

duce profound neuroadaptations in specific brain regions,
including the recruitment of key stress neurotransmitters,
ultimately causing allostatic changes that sustain exces-
sive drinking (Koob, 2003, 2009; Breese et al., 2011). The
bed nucleus of the stria terminalis (BNST) is a brain struc-
ture critically involved in the behavioral response to stress
as well as in chronic, pathologic ethanol use (Kash et al.,
2009, 2015; Pleil et al., 2015; Avery et al., 2016; Koob and
Volkow, 2016; Lebow and Chen, 2016; Pati et al., 2020).
Chronic ethanol causes hyperexcitability of and increased
glutamatergic drive onto neurons of the laterodorsal BNST
(BSTld), whose stimulation, in turn, results in an anxious
phenotype, which may drive excessive drinking (Kash et
al., 2009; Wills et al., 2012; Kim et al., 2013; Marcinkiewcz
et al., 2015; Pleil et al., 2015; Marcinkiewcz et al., 2016).
The BSTld expresses an extraordinary amount of pep-

tides, suggesting that diverse neuronal inputs may en-
code different signals allowing for fine-tuning of behavior
(Kash et al., 2015). Pituitary adenylate cyclase-activating
polypeptide (PACAP) is a 38 aa neuropeptide belonging
to the secretin/glucagon/vasoactive intestinal polypeptide
family, whose fibers, of nonlocal origin, are highly abun-
dant in the BSTld (Ghatei et al., 1993; Piggins et al., 1996;
Hannibal et al., 2002; Hammack et al., 2009; Missig et al.,
2014; Stamatakis et al., 2014). PACAP is a key mediator
of the stress response (Hashimoto et al., 2001; Agarwal et
al., 2005; Stroth and Eiden, 2010; Ressler et al., 2011;
Gaszner et al., 2012; Dore et al., 2013; Lehmann et al.,
2013); PACAP administration elicits anxiety-like and

anhedonic-like behavior (Dore et al., 2013; Missig et al.,
2014; Lezak et al., 2014a; Hammack and May, 2015;
Seiglie et al., 2015; Iemolo et al., 2016), and several types
of stressors recruit the PACAP system, especially that of
the BNST (Hannibal et al., 1995; Hammack et al., 2009;
Stroth and Eiden, 2010; Kocho-Schellenberg et al., 2014;
Missig et al., 2014; Lezak et al., 2014a; Seiglie et al.,
2019; Varodayan et al., 2020; Seiglie et al., 2022).
Suggesting a likely involvement of the PACAP system in

AUD, a single nucleotide polymorphism of the PACAP gene
was found to be linked to high alcohol intake in a European
population (Kovanen et al., 2010); furthermore, a specific ge-
notype of the type I PACAP receptor (PAC1R) is associated
with problematic alcohol use in women (Dragan et al., 2017).
In the preclinical realm, the PACAP/PAC1R system has also
been shown to be involved in the actions of alcohol by phar-
macological and genetic deletion studies (Feany and Quinn,
1995; Tanaka et al., 2004, 2010; Gargiulo et al., 2020; Minnig
et al., 2021, 2022). In particular, in the BNST, it has recently
been shown that rats made dependent via chronic exposure
to alcohol vapors display increased levels of PACAP, and
that the pharmacological antagonism of PAC1R in this area
is able to block dependence-induced excessive alcohol in-
take as well as anxiety-like behavior in these rats (Ferragud
et al., 2021).
Whether the PACAP system of the BNST is also re-

cruited in other models of alcohol addiction is currently un-
known. Here, we first assessed PACAP immunoreactivity
in the BNST of mice exposed for several weeks to chronic,
intermittent access to ethanol. In the same model, we also
measured the number of PAC1R-expressing cells and the
levels of a peptide closely related to PACAP, the calcitonin
gene-related neuropeptide (CGRP). We then used a retro-
grade approach to test the effect of chemogenetically in-
hibiting PACAP neuronal afferents to the BNST on ethanol
consumption in the same model. Our data suggest that the
PACAP system of the BNST is recruited by chronic, volun-
tary alcohol drinking in mice and that nonlocally originating
PACAP projections to the BNST regulate heavy alcohol
intake.

Materials and Methods
Subjects
Male and female C57BL/6J mice (7weeks old on arrival)

were purchased from The Jackson Laboratory. Group 1
was used for the time course and the PACAP immunohis-
tochemistry (IHC; n¼ 20 for time course; n¼ 23 for the
PACAP BNST IHC), group 2 was used for the PAC1R
BNST IHC (n¼ 26), and group 3 was used for CGRP
BNST IHC (n¼ 25). Male and female Pacap-ires-Cremice,
a gift from Bradford Lowell (Harvard Medical School,
Boston, MA; Krashes et al., 2014; Ross et al., 2018) were
bred in house onto a C57BL/6J background. Group 4 was
used for the chemogenetic experiment (n¼ 20). Mice
were housed in an AAALAC-approved vivarium on a 12 h
reverse light/dark cycle, with ad libitum access to water
and regular rodent corn-based chow (Teklad Irradiated
Global Rodent Diet 2918). Male and female mice were
housed in the same vivarium room, though at a distance
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from each other. Experiments were conducted during the
dark cycle of the animals. Procedures adhered to the
National Institutes of Health Guide for the Care and Use
of Laboratory Animals and The Principles of Laboratory
Animal Care (eighth edition) and were approved by the
Institutional Animal Care and Use Committee.

Drugs
Ethanol solution (20% v/v) was obtained by diluting 200

proof ethanol in tap water. Clozapine-N-Oxide (CNO) was
provided courtesy of Kenner Rice (National Institutes of
Health) and was dissolved in sterile saline.

Mouse intermittent access to two-bottle choice
Fifty milliliter conical tubes (Thermo Fisher Scientific)

equipped with rubber stoppers and 2.5 inch straight metal-
ball bearing sipper tubes (Ancare) were used for the deliv-
ery of solutions and were placed on top of the home cages.
Mice were then given intermittent access using an intermit-
tent access to two-bottle choice (IA2BC) paradigm for the
entire duration of the experiments, during which time one
water bottle was replaced with a bottle containing 20%
(v/v) ethanol on alternating days for 24 h, as done previ-
ously (Hwa et al., 2011; Navarro et al., 2019; Quadir et al.,
2020). Briefly, at the beginning of the dark cycle, pre-
weighed bottles (one ethanol, one water) were provided,
and 24 h later both bottles were removed and weighed
again to calculate intake. Water controls received identical
treatment, except that the bottles were filled with tap
water. Additional cages and sets of bottles were used to
ensure negligible spillage during cage handling. All groups
of mice were exposed to the IA2BC paradigm.

Brain tissue preparation
Mice for IHC or fluorescence in situ hybridization (FISH)

were deeply anesthetized and transcardially perfused
with PBS followed by 4% paraformaldehyde (PFA). Brains
were removed, postfixed at 4°C for 24 h, and then trans-
ferred to 30% sucrose at least until saturation. Brain sec-
tions were cut using a cryostat into 30 or 14mm sections for
IHC or FISH, respectively. For IHC, sections were stored in a
cryoprotectant solution at �20°C until processed; for FISH,
sections were mounted directly on slides, then dried at
�20°C for 2 h, and finally stored at �80°C until the assay
was performed.

Immunohistochemistry
PACAP IHC. Every fourth section (120mm apart) of the

BNST region (range, 10.38 to 10.02 mm from bregma)
and every sixth section (180mm apart) of the CeA region
(range, �0.82 to �1.70 mm from bregma) were collected
systematically and processed for IHC. Free-floating sec-
tions were washed in Tris-buffered saline (TBS) after every
incubation. After rinsing, free-floating sections were incu-
bated in a 0.3% hydrogen peroxide TBS solution to quench
endogenous peroxidases, followed by additional rinsing
and a blocking step (3% normal goat serum in 0.4% Triton
X-100). Sections were then incubated in anti-PACAP pri-
mary antibody [1:1000; catalog #T-4473, Bachem (RRID:
AB_519166); Piggins et al., 1996; Norrholm et al., 2005;

Das et al., 2007; Csati et al., 2012; Nakamura et al., 2014;
Matsumoto et al., 2016; Steinberg et al., 2016; Liu and
Wong-Riley, 2019; Meloni et al., 2019] in blocking solution
for 24 h at 4°C. Sections were then incubated in a biotinylated
anti-rabbit secondary antibody (1:500; Vector Laboratories) in
blocking solution for 2 h at room temperature (RT). Sections
were then incubated in secondary antibody (1:500; biotinyl-
ated anti-rabbit, Vector Laboratories) in blocking solution for
2 h at room temperature, and, finally, incubated in an avidin–
biotin horseradish peroxidase ABC complex solution (Vector
Laboratories) in blocking solution for 1 h. Sections were
then processed using a diaminobenzidine (DAB) sub-
strate kit (Vector Laboratories) until reaction was com-
plete, mounted onto slides, and allowed to dry overnight.
The following day, slides were dehydrated and coverslipped
using DPXMountant (Electron Microscopy Sciences).

PAC1R and CGRP IHC. Every fourth section (120mm
apart) of the BNST region (range, 10.38 to 10.02 mm from
bregma) was processed. Free-floating sections were washed
in TBS after every incubation. Following initial TBS washes,
10 mM sodium citrate buffer, pH 6, antigen retrieval was per-
formed at 80°C for 30min. Sections were blocked with a
blocking solution (3% normal goat serum in 0.2% Triton
X-100 in TBS) for 1 h at RT, followed by incubation with pri-
mary antibody [1:250, for 48 h at 4°C; anti-PAC1R; cat-
alog #AVR-003 Alomone Labs (RRID: AB_2756805); 1:250,
for 24 h at 4°C; anti-CGRP; catalog #ab81887, Abcam
(RRID: AB_1658411)]. Sections were then incubated with
secondary antibody (for PAC1R: 1:200; anti-rabbit; catalog
#AF555, Thermo Fisher Scientific; for CGRP: anti-mouse;
1:250; catalog #AF488, Thermo Fisher Scientific). Sections
were then washed in TBS and coverslipped with DAPI-con-
taining mounting medium (VECTASHIELD Antifade Mounting
Mediumwith DAPI, Vector Laboratories).

Quantification
PACAP density quantification. To assess PACAP im-

munoreactivity, chromogen PACAP pictures were taken
in bright field at a 10� magnification under a preset expo-
sure and gain to standardize the images. For each image,
area contours were drawn corresponding to the laterodor-
sal subdivision (oval nucleus) of the BSTld or the capsular
subdivision (CeC) and lateral subdivision (CeL) of the central
nucleus of the amygdala (CeA) along the entire bregma
range, with a microscope (model BX-51, Olympus) equipped
with a live video camera (model Retiga 2000R, QImaging)
and a three-axis motorized stage (model MAC6000 XYZ,
Ludl Electronics). Densitometry analysis was then performed
using the ImageJ software (NIH), where images were con-
verted to 8 bit and adjusted using the autothreshold Triangle
algorithm. Once converted, the mean optical density of signal
was calculated by subtracting the background signal and
then by normalizing the value to the traced area. The final
number of brains was n¼ 23 for PACAP BNST and n¼ 29 for
PACAP CeA IHC from n¼ 32 (only brains with good staining
and tissue quality were used).

CGRP density quantification. To assess CGRP immu-
noreactivity, fluorescent pictures of sections containing
the BSTld were captured as described above, while imag-
ing parameters were held constant for all images. Three
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digital squares were placed randomly within the staining
region, and the mean labeling intensity of the three
squares was determined. The final number of brains was
n¼ 26 for CGRP BNST IHC.

PAC1R-positive cell quantification. The number of PAC1R-
expressing cells was quantified using an unbiased stereologi-
cal approach as previously described (Ferragud et al., 2020,
2021; Minnig et al., 2021). The BSTld was outlined with an
Olympus PlanApo N 2� objective (numerical aperture, 0.08),
and counting was done using an Olympus UPlanFL N 20�
objective (numerical aperture, 0.75). Counts were performed
by an experimenter blind to conditions using a grid and a
counting frame of 250� 250mm, a guard zone of 2mm,
and a dissector height of 20mm in the Optical Fractionator
Workflow module in Stereo Investigator. The final number
of brains was n¼ 25 for PAC1R BNST IHC.

Stereotaxic surgery
Pacap-ires-Cre mice were 7–10weeks of age at the

time of surgery. Surgeries were performed using a Kopf
stereotaxic frame, using isoflurane for anesthesia. BNST
coordinates were as follows: anteroposterior,10.85; medio-
lateral, 60.90; dorsoventral, –4.10 (from skull). A retrograde
adeno-associated virus (AAV) expressing a Cre-dependent
inhibitory designer receptor exclusively activated by
designer drugs (DREADD), AAVrg-hSyn-DIO-hM4D(Gi)-
mCherry, was delivered bilaterally into the BNST (0.3 ml/
side) via a 22 gauge syringe (2ml neurosyringe, Hamilton)
over the course of 5min, with an additional 5min wait to
avoid backflow. Approximately 1week after surgery, the
IA2BC paradigm began, and drug testing began ;7weeks
after surgery (after 6weeks of ethanol drinking). At the end
of testing (;13weeks after surgery), mice were killed by
isoflurane anesthesia, and brains were collected after trans-
cardial perfusion for brain histology.

Clozapine-N-oxide administration
For DREADD experiments, CNO was administered in-

traperitoneally (0, 1, and 3mg/kg, in a volume of 10 ml/kg
in saline) 30min before the beginning of the drinking ses-
sion, using a within-subject Latin-square design. Mice
were allowed at least one treatment-free drinking session
between test days. CNO is a pharmacologically inert me-
tabolite of the atypical antipsychotic clozapine; although
there is a slight risk of CNO back-metabolizing to cloza-
pine, studies have shown that it has little or no pharmaco-
logical activity in mice and rats when administered at the
recommended doses (Urban and Roth, 2015), and previ-
ous studies have shown that CNO itself does not impact
alcohol intake (den Hartog et al., 2016; Kreifeldt et al.,
2022; Flanigan et al., 2023; Griffin et al., 2023; Zamudio et
al., 2023). Alcohol, water, and food weights were recorded
at 2, 6, and 24 h, common time points used in the literature
(Sabino et al., 2013; Newman et al., 2018; Quadir et al.,
2021a, b).

Histology in DREADDmice
Mice were deeply anesthetized with isoflurane and

transcardially perfused with ice-cold heparinized PBS, fol-
lowed by 4% paraformaldehyde. Brains were extracted,
allowed to fix in 4% paraformaldehyde for 24 h, and then

placed in 30% sucrose for cryoprotection. Brains were sliced
at 30mm on a cryostat and then stored at �20°C in cryo-
protectant. Sections containing the BNST were mounted
on slides and coverslipped with VECTASHIELD Antifade
Mounting Media, and the injection tract was verified under
a microscope. A few slices containing the lateral parabra-
chial nucleus (LPB) were also collected to verify successful
retrograde transport of the virus (mCherry expression) in an
upstream area as well as to verify the specificity of the virus
for PACAP neurons (see next paragraph).

Fluorescence in situ hybridization
RNAscope Multiplex Fluorescent Reagent Kit version 2

(ACD) was used following the manufacturer instructions.
Slides were first baked at 60°C for 30min, fixed in 4%
PFA, and dehydrated in ethanol. Sections were then incu-
bated with hydrogen peroxide (10min, RT), then boiled in
target retrieval solution for 5min and surrounded by a hy-
drophobic barrier (ImmEdge Pen, Vector Laboratories).
Sections were incubated in Protease Plus (30min, RT),
followed by incubation with target probes (Adcyap1, cata-
log #405911; Tac1, catalog #410351; mCherry, catalog
#431201; all from ACD) for 2 h at 4°C. Signal was then
amplified using amplifiers AMP1-3. Following amplifica-
tion, each probe was assigned a TSA Plus fluorophore
(FITC, Cy3, Cy5; for 30min at 40°C) and corresponding
channel (C1, C2 and C3, 15min at 40°C), each channel step
concluding with an HRP blocker. Sections were incubated
in DAPI for 30 s at RT and then coverslipped in mounting
medium (Vectashield Hardset AntiFade Mounting Medium,
Vector Laboratories). Slides were imaged using a VS120
Virtual Slide Scanner (Olympus) at a 20� magnification.
Images were then processed using QuPath version 0.4.3
software.

Statistical analysis
Data from the IHC studies were analyzed using either

two-way ANOVAs (Sex and Group as between-subjects
factors) or with Student’s t tests when sexes were pooled.
Data from the alcohol-drinking study were analyzed using
two-way ANOVAs (Dose of CNO and Time as within-sub-
ject factors). Pairwise post hoc comparisons were made
using the Student–Newman–Keuls test or a Student’s t
test when comparing two groups. Significance was set at
p, 0.05. The software/graphic packages used were
StatSoft Statistica 12 and GraphPad Prism 8.

Results
Acquisition of drinking in males and female C57BL/6J
mice in IA2BC paradigm
C57BL/6J mice given intermittent access to 20% v/v

ethanol and water (IA2BC) increased their intake of alcohol
across the time of observation (6weeks), as shown in
Figure 1 (Session: F(17,306) ¼ 5.59, p, 0.001). Female mice
showed significantly higher ethanol intake compared with
male mice (Sex: F(1,18) ¼ 124.51, p, 0.001; Sex * Session:
F(17,306) ¼ 2.57, p,0.001), as shown in Figure 1A. Female
mice rapidly increased their ethanol drinking behavior (esca-
lation), with a significant difference between sexes evident
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already on day 3. The average ethanol intake in session 18
was 20.9 and 12.2 g/kg in females and males, respectively.
Intake of water decreased across time (Session: (F(17,306) ¼
4.10, p, 0.001) consistently in both sexes [Sex: F(1,18) ¼
0.077; not significant (n.s.); Sex * Session: F(17,306) ¼ 0.51,
n.s.; Fig. 1B]; the average water intake in session 18 was
54.5 and 60.5 ml/kg in females and males, respectively. Total
fluid intake was also higher in female mice (Sex: F(1,18) ¼
77.78, p, 0.001; Sex * Session: F(17,306) ¼ 1.63, p¼ 0.055),
as shown in Figure 1C; the average total fluid intake in ses-
sion 18 was 186.7 and 137.5 ml/kg in females and males, re-
spectively. Ethanol preference was also higher in female mice
throughout the observation period (Sex: F(1,18) ¼ 17.02,
p, 0.001; Sex * Session: F(17,306) ¼ 1.05, n.s.); the average
preference for ethanol in session 18 was 71.4% and 56.7%
in females andmales, respectively.

Chronic, intermittent ethanol drinking increases
PACAP levels in the BNST
After 7weeks of IA2BC access, IA2BC and control mice

were killed 24 h after the last drinking session. Brain slices

were processed for PACAP IHC and DAB staining quanti-
fied by densitometry. Average ethanol intake during the
last session in these animals was as follows: males,
12.16 1.0 g/kg; females, 20.361.5 g/kg. As shown in
Figure 2A, mice with a history of chronic, intermittent
alcohol drinking displayed higher levels of PACAP in
the BNST in both male and female mice (Ethanol: F(1,19) ¼
34.38, p, 0.001; Ethanol * Sex: F(1,19) ¼ 0.06, n.s.). A main
effect of Sex was also observed, with female mice showing
higher levels of PACAP in this region (Sex: F(1,19) ¼ 40.13,
p, 0.001). Figure 2B shows the data not dissociated by
sex; IA2BC overall caused a 33.5% increase in PACAP
levels in the BSTld. As previously shown, across the ante-
rior–posterior axis of the BNST, the majority of PACAP im-
munoreactivity was found in the BSTld (Missig et al., 2014;
Seiglie et al., 2019; Jiang et al., 2023), and the PACAP im-
munohistochemical staining pattern was found to be lim-
ited to incoming fibers, with no local cell bodies labeled.
On the other hand, no statistically significant increase in
PACAP immunoreactivity was observed in the CeA (capsu-
lar and lateral subdivisions) of IA2BC mice compared with
controls, as shown in Extended Data Figure 2-1, although

Figure 1. Male and female C57BL/6 mice were exposed to intermittent access to alcohol (IA2BC; Monday, Wednesday, Friday,
24 h/d, 20% v/v ethanol vs water) for 6 consecutive weeks or 18 drinking sessions. A, C, D, Female mice drank more alcohol than
males (A), drank more fluids (C), and showed a higher preference for alcohol (D). B, Water intake did not significantly differ between
sexes. Data represent the mean 6 SEM (n¼ 10/group, total 20 mice). a, p , 0.05; b, p , 0.01; c, p , 0.001; versus males.
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a trend to an Ethanol * Sex interaction could be observed
(p¼ 0.08).

Chronic, intermittent ethanol drinking does not affect
the number of PAC1R-positive cells in the BNST
IA2BC and control mice were killed 24 h after the last

drinking session. Brain slices were processed for PAC1
IHC, and immunofluorescent staining was quantified
by cell counting. Average ethanol intake during the
last session in these animals was as follows: males,
15.26 1.4 g/kg; females, 21.56 1.2 g/kg. No differ-
ence in the number of PAC1R-positive cells was found
in the BSTld between mice with a history of chronic,
intermittent ethanol drinking and control mice in either
sex (Ethanol: F(1,22) ¼ 0.53, n.s.; Ethanol * Sex: F(1,22) ¼
0.003, n.s.). Figure 3A shows the data after pooling the
two sexes. PAC1R immunoreactivity was found to be
present also in the other subdivisions of the dorsal BNST,
where similarly no group differences were found (data not
shown).

Chronic, intermittent ethanol drinking increases
CGRP levels in the BNST
Since PACAP immunoreactivity significantly overlaps

with that of CGRP in the fibers of extended amygdala
(Missig et al., 2014), we assessed whether IA2BCmice also
displayed increased CGRP levels in the BNST. Average
ethanol intake during the last session in these animals was

as follows: males, 13.66 1.3 g/kg; females, 20.762.1 g/kg.
We observed that BNST CGRP expression was highest
within the BSTld, and that its localization closely mimics
PACAP expression in this area, as previously shown.
IA2BC mice displayed higher levels of CGRP in the
BSTld in both sexes (Ethanol: F(1,21) ¼ 4.65, p, 0.05;
Ethanol * Sex: F(1,21) ¼ 0.05, n.s.). Interestingly, unlike
with PACAP, no sex differences in CGRP levels could
be observed in this region (Sex: F(1,21) ¼ 0.20, n.s.).
Figure 3D shows the data after pooling the two sexes;
IA2BC overall caused a 19.2% increase in CGRP levels.

Inhibition of afferent PACAP projections to the BNST
reduced heavy ethanol drinking in mice
As shown in the scheme in Figure 4A, a group of

Pacap-ires-Cre mice were infused with a Cre-dependent
retrograde virus expressing an hM4Di inhibitory DREADD
expressing the fluorophore mCherry in the BNST. Extended
Data Figure 4-1 shows the viral injection sites in the BNST; 7
of the 20 mice were removed because of absent or inaccu-
rate injection placement (n¼ 13). As expected, mCherry
was detected upstream in the LPB, as shown in Figure 4B.
Importantly, as assessed with fluorescence in situ hy-
bridization, the Cre dependency of the virus was verified
as the expression of mCherry was restricted to PACAP-
expressing cells. Indeed, mCherry was colocalized with
PACAP (Adcyap1 gene, .95%) but not with tachykinin
(Tac1 gene), another neuropeptide widely expressed in
LPB, as shown in Figure 4C–G. The totality of PACAP-

Figure 2. A, PACAP immunoreactivity levels are elevated in the BSTld of male and female C57BL/6J mice exposed to intermittent
access to alcohol (IA2BC; EtOH), compared with control, water-only mice (Ctrl). B, Data are reported with the two sexes pooled. C,
D, Representative PACAP staining (DAB) in mouse BNST of a Ctrl and an EtOH subject, respectively. Magnification, 10�. Scale bar,
200 mm. Mice were killed after 7weeks of IA2BC, 24 h after the end of the last drinking session. BSTlp, BNST lateral-posterior;
BSTlj, BNST lateral-justacapsular. Data represent the mean 6 SEM (A, n¼10–13/group; B, n¼ 5–8/group; total, 23 mice). ***p ,
0.001 versus Ctrl. Extended Data Figure 2-1 shows the effect of IA2BC on PACAP immunoreactivity in the CeA.
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expressing neurons expressed mCherry only partially,
consistent with the Cre line being heterozygous for Cre
and with the spatial limitations of the viral spread. In addi-
tion, some neurons appeared to express both Adcyap1
and Tac1, in line with previous literature.
In AAVrg-hSyn-DIO-hM4D(Gi)-mCherry-infused mice

exposed to chronic, intermittent ethanol access, adminis-
tration of the selective DREADD ligand CNO (0–3mg/kg,

i.p.) dose-dependently reduced the incremental ethanol
intake at both the 2 and 6 h time points, in both sexes
(Dose: F(2,22) ¼ 11.01, p, 0.001; Dose * Time: F(2,22) ¼
0.83, n.s.; Dose * Sex: F(2,22) ¼ 1.58, n.s.). Post hoc analy-
ses revealed that, at the 2 h time point, both doses of
CNO (1 and 3mg/kg) significantly reduced ethanol intake
(�16.6% and �41.8%, respectively) as shown in Figure
5A (male and female data pooled); at the 6 h time point,

Figure 3. A, The number of PAC1R-immunoreactive cells is not altered in the BNST of IA2BC mice. B, C, Representative PAC1R
staining (fluorescence) in mouse BNST of a Ctrl and an EtOH subject, respectively. Magnification, 10�. Scale bar, 200 mm. D, CGRP
levels are elevated in the BSTld of IA2BC mice (EtOH), compared with control mice (Ctrl). E, F, Representative CGRP staining (fluo-
rescence) in mouse BNST of a Ctrl and an EtOH subject, respectively. Magnification, 10�. Scale bar, 200 mm. Mice were killed 24 h
after the end of the last IA2BC session. BSTlp, BNST lateral-posterior; BSTlj, BNST lateral-justacapsular. Data represent the
mean 6 SEM (A, n¼11–15/group; D, n¼10–15/group; total, 26 mice). *p , 0.05 versus Ctrl.
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only the 3mg/kg dose significantly decreased intake
(�31.8%). The effect of CNO persisted when looking at
the cumulative 24 h ethanol intake (Dose: F(2,24) ¼
4.04, p, 0.05), with the highest dose causing an over-
all 16.6% reduction (Fig. 5B). However, in line with the
reported CNO half-life, no effect of CNO could be

observed on the incremental 6–24 h ethanol intake
(Dose: F(2,24) ¼ 0.05, n.s.).
Water intake was not significantly affected by the

CNO treatment in either sex either at the 2 and 6 h time
points (Dose: F(2,22) ¼ 0.60, n.s.; Dose * Time: F(2,22) ¼
0.31, n.s.; Dose * Sex: F(2,22) ¼ 1.19, n.s.) or at the 24 h

Figure 4. A, Scheme and timeline of the chemogenetic experiment. B, Representative picture of mCherry fluorescence in the
LPB. Scale bar, 100 mm. C–H, Verification (by in situ hybridization) of the selectivity of the retrograde AAV [AAVrg-hSyn-DIO-
hM4D(Gi)-mCherry] for Adcyap1, and not Tac1, neurons in the LPB. Filled arrows indicate representative mCherry-express-
ing cells (where coexpression with Adcyap1 is visible); empty arrows indicate representative Tac1 (where absence of
mCherry is visible). Extended Data Figure 4-1 shows the location of the AAVrg-hSyn-DIO-hM4D-mCherry infusions in the
BNST.
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time point (Dose: F(2,24) ¼ 0.44, n.s.), as shown in
Figure 5, C and D.
Preference for the ethanol solution showed a very

strong trend to be affected by CNO treatment (Dose:

F(2,22) ¼ 2.40, p¼ 0.11; Dose * Time * Sex: F(2,22) ¼
3.44, p¼ 0.050), with a significant effect observed at
the 6 h time point by the 3mg/kg dose, as revealed by
post hoc analysis (�20.5%), as shown in Figure 5E. No

Figure 5. A–F, The effect of inhibition of PACAP neurons afferent to the BNST on ethanol intake (A, B), water intake (C, D), and
ethanol preference (E, F). Administration of CNO (0–3mg/kg, i.p.) dose-dependently reduced 2, 6, and 24 h ethanol intake in AAVrg-
hSyn-DIO-hM4D(Gi)-mCherry BNST-infused mice, while it did not affect water intake. CNO also reduced 6 h ethanol preference.
Data represent the mean 6 SEM (n¼ 13 mice). *p , 0.05, **p , 0.01, ***p , 0.001; versus Vehicle.
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significant effect on ethanol preference persisted at
24 h (Fig. 5F).
Finally, food intake was not significantly affected by the

CNO treatment in either sex at either the 2 and 6 h time
points (Dose: F(2,22) ¼ 1.00, n.s.; Dose * Time: F(2,22) ¼
0.02, n.s.; Dose * Sex: F(2,22) ¼ 1.11, n.s.) or at the 24 h
time point (Dose: F(2,24) ¼ 0.07, n.s.; data not shown).

Discussion
The main findings of this series of studies were as fol-

lows: (1) chronic, intermittent ethanol drinking increases
PACAP levels in the BNST, but not the CeA, of mice;
(2) chronic, intermittent ethanol drinking does not affect
the number of PAC1R-expressing cells in the BNST;
(3) chronic, intermittent ethanol drinking also increases
CGRP levels in the BNST; and (4) inhibition of afferent
PACAP projections to the BNST is sufficient to reduce
heavy ethanol drinking in mice.
Our immunohistochemistry data revealed an increased

expression of PACAP-positive fibers specifically within
the BSTld of mice exposed to 7weeks of chronic, inter-
mittent ethanol drinking, compared with control, water-
drinking mice (133.5%). This increase was observed 24 h
after the end of the last drinking session, hence during
acute withdrawal, when alcohol was no longer onboard.
Our results in this mouse model of heavy alcohol drinking
are consistent with previous studies that have shown in-
creased PACAP expression in the BSTld in rats following
chronic passive exposure to ethanol vapors (Ferragud et
al., 2021), following chronic cocaine administration (Miles
et al., 2018), and also following chronic variable stress
(Hammack et al., 2009), suggesting that PACAP is re-
cruited specifically in the BNST following chronic expo-
sure to both stressors or drug and alcohol exposure.
PACAP immunoreactivity in the BSTld, as well as the CeA
(CeC and CeL subdivisions), appears as fibers, consis-
tently with previous results from our and other laborato-
ries and strengthening the notion that PACAP is not
locally produced, but rather that these fibers are afferent
projections from other brain areas (Piggins et al., 1996;
Hannibal, 2002; Missig et al., 2014; Seiglie et al., 2019).
Interestingly, in our mouse IA2BC model, PACAP levels
were not significantly altered in the CeA, a brain region also
part of the extended amygdala, which receives similar affer-
ent projections, suggesting a selective effect in the BNST, in
line with our previous finding in the rat dependence model
(Ferragud et al., 2021). Notably, the number of PAC1R-posi-
tive cells, as assessed by immunohistochemistry, did not
differ in the BSTld of ethanol drinking mice compared with
controls; future studies incorporating different stages of
ethanol exposure and withdrawal could, however, provide
more comprehensive insights into the potential impact of
chronic ethanol exposure on the expression of PAC1R-pos-
itive cells.
We also observed a significant increase in the levels of

the neuropeptide CGRP in the BSTld of ethanol drinking
mice, compared with controls (119.2%). CGRP is a 37 aa
peptide whose immunoreactivity displays considerable
overlap with PACAP in the BNST, both being particularly
abundant in fibers of the BSTld (Dobolyi et al., 2005;

Hammack et al., 2009; Sink et al., 2011). It was shown
that the majority of PACAP-expressing fibers in this region
appears to coexpress CGRP (Missig et al., 2014), sug-
gesting that these two neuropeptides may be coreleased
from the same neurons, which likely originate in the LPB
(Missig et al., 2014; Zhang et al., 2021; Jiang et al., 2023;
Seiglie et al., 2023). CGRP also shares similarities with
PACAP in terms of functions; CGRP has been shown
to play an important role in the regulation of stress and
anxiety-like behaviors, physical and emotional pain
responses, migraine, and taste aversion (Kocorowski
and Helmstetter, 2001; Campos et al., 2018; Chen et
al., 2018). Despite the similarities, however, some re-
cent studies in the context of migraine have suggested
that the two peptides may act by independent mecha-
nisms, possibly by distinct intracellular signaling path-
ways (Ernstsen et al., 2022; Kuburas and Russo, 2023).
Interestingly, while an anxiogenic-like and pronocicep-
tive role of CGRP in the CeA has been described (Han
et al., 2005, 2010), much less is known about the func-
tion of CGRP in the BNST, warranting the need for
further studies. The role of CGRP in alcohol addiction
is still unclear. Alcohol directly evokes the release of
CGRP in the trigeminal ganglia (Nicoletti et al., 2008).
Early studies have also found lower basal CGRP levels
in multiple brain regions of Indiana P alcohol-preferring
rats, at the same time as increased levels during pro-
tracted withdrawal after ethanol vapor administration
(Hwang et al., 1995; Ehlers et al., 1999). More recently,
intermittent alcohol drinking during adolescence was
shown to increase CGRP levels in the brainstem of rats
(Tringali et al., 2023). In addition, in line with our current
findings, continuous access to alcohol drinking was shown
to increase CGRP levels in the BNST of Sardinian alcohol-
preferring rats (Rossetti et al., 2019). The finding of in-
creased levels of CGRP after heavy alcohol drinking in the
BNST of C57BL/6 mice is, therefore, an interesting one,
and the potential functional relevance of this change for al-
cohol drinking and associated negative states warrants fur-
ther investigation.
The use of an AAV produced with a retrograde serotype

permits retrograde access to projection neurons. Specifically,
to assess the significance of the increased PACAP levels in
the BNST following intermittent alcohol drinking, we used a
retrograde chemogenetic approach in Pacap-ires-Cre mice
to Cre-dependently inhibit PACAP neurons that project to the
BNST and then measured ethanol intake. Our results show
that the chemogenetic inhibition of PACAP afferents to the
BNST is sufficient to reduce ethanol drinking behavior. The
effect was more marked at the 2 h time point, with both
doses of CNO producing a significant reduction in ethanol in-
take (�16.6% and �41.8%, compared with vehicle treat-
ment, respectively), consistent with the short half-life of the
DREADD ligand CNO. The effect of the high dose of CNO,
however, was still evident at the 6 h (�31.8%) and 24 h
(�16.6%) time points, and ethanol preferencewas also signif-
icantly reduced at the 24 h time point. Water intake was not
affected by the PACAP pathways inhibition, ruling out the al-
ternative explanation that the manipulationmay have induced
malaise.
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The present data suggest that neuronal pathways that
express PACAP and project to the BNST contribute to the
high levels of alcohol drinking seen in this mouse model.
Stressors have been shown to increase PACAP levels
within the BNST and intra-BNST PAC1R antagonism at-
tenuates the response to stress as well as stress-induced
reinstatement of cocaine-seeking behavior (Roman et al.,
2014; Lezak et al., 2014b; Miles et al., 2018; Seiglie et al.,
2019, 2022). Recently, it has been shown that antagonism
of PAC1R within the BNST is able to reduce dependence-
induced excessive drinking as well as heightened anxiety-
like behavior in rats exposed to alcohol vapors (Ferragud
et al., 2021); hence, also considering the immunohisto-
chemical data showing increased PACAP levels in the
BNST in both models, we can conclude that chronic, in-
termittent exposure to ethanol consistently recruits the
PACAP system of the BNST. Therefore, although chemo-
genetic approaches manipulate entire neuronal popula-
tions rather than individual neurotransmitter systems, we
hypothesize that the increased PACAP release onto
BNST neurons acts via PAC1R to mediate heavy alcohol
drinking.
These data strongly suggest that the PACAP population

mediating alcohol-related behaviors and alcohol drinking
originates in brain regions sending PACAP projections to
the BNST, consistent with the lack of reported PACAP
mRNA in the mouse BNST. The type of approach we used
here does not differentiate among specific inputs to the
BNST, and, therefore, experiments directly manipulating
a single PACAPergic pathway to the BNST will be neces-
sary to ascertain the exact origin. Although multiple brain
regions that project to the BNST are known to contain
PACAP neurons (e.g., paraventricular nucleus of the hy-
pothalamus, paraventricular nucleus of the thalamus, me-
dial prefrontal cortex, dorsal vagal complex, and LPB;
Weller and Smith, 1982; Légrádi et al., 1994; Kozicz et al.,
1997; Missig et al., 2014; Missig et al., 2017; Kirry et al.,
2018), recent studies have suggested that the majority of
PACAP terminals found in both the BNST and the CeA
originates in the LPB, which is recognized as a critical
source of the peptide in these regions (Missig et al., 2014,
2017; Zhang et al., 2021; Jiang et al., 2023). In line with
these observations, we confirmed the presence of
mCherry in the LPB of the mice injected with the retro-
grade AAV in the BNST. In addition, we verified that our
retrograde AAV only infected PACAP-expressing neurons
and not another neuronal population also present in the
LPB, Tac1-expressing neurons. The LPB, and in particular
the external subnucleus, is indeed densely populated with
PACAP-positive neurons that coexpress the glutamater-
gic marker VGluT2 and that largely overlap with CGRP-
expressing neurons; these PACAP neurons mainly inner-
vate the extended amygdala (Missig et al., 2014, 2017;
Zhang et al., 2021; Pauli et al., 2022; Jiang et al., 2023).
Interestingly, the chemogenetic activation of either the
LPB-BNST or the LPB-CeA PACAP projection enhances
anxiety-like behavior (Boucher et al., 2022; Seiglie et al.,
2023), while the effects of the direct stimulation of these
pathways on alcohol-related behaviors has not yet been
investigated. Since axonal transport does not allow the

visualization of clear peptide immunostaining in cell
bodies, future studies will assess the effects of alcohol
drinking on PACAP and CGRP mRNA expression in LPB,
also assessing their coexpression.
Our experiments included both male and female mice.

The BNST, in general, has a plethora of sexually dimor-
phic behavioral effects (Lebow and Chen, 2016). In the
context of the PACAP/PAC1R system, sex differences
have been reported in the context of stress-related be-
haviors and of nicotine effects (Ressler et al., 2011; King
et al., 2017; Nega et al., 2020; Clancy et al., 2023; Slabe
et al., 2023), and basal levels of PACAP were shown to be
higher in specific brain regions of female animals (Curtis
et al., 2023). On the other hand, other studies have re-
ported no sex differences in the role of the PACAP/
PAC1R system (Rajbhandari et al., 2021). In this study, we
observed higher levels of PACAP in the BNST in female
mice, which strengthens the notion of a sexual dimor-
phism of the PACAP system also in this brain area and
perhaps suggests that higher endogenous levels of
PACAP may predispose females to drink more alcohol.
However, the effect of chronic alcohol drinking on PACAP
levels did not differ in the two sexes. Similarly, no sex dif-
ferences were observed in the effects of alcohol on CGRP
and PAC1R levels, and no sex differences were found in
alcohol drinking following the manipulation of the PACAP
pathways to the BNST, suggesting a lack of sex differen-
ces in the action of chronic alcohol on these pathways.
Future studies may address the role of sex hormones in
the role of PACAP in alcohol-drinking behavior.
This study has a few limitations. The effects of the inhi-

bition of PACAP afferents to the BNST were not assessed
on the intake of an alternative reinforcer, as for example
sucrose, which is useful to determine the selectivity of the
effects for alcohol. In addition, the chemogenetic study
did not include a control, non-DREADD virus to rule out a
potential intrinsic effect of the DREADD ligand CNO on al-
cohol drinking; however, several studies have now shown
that these doses of CNO do not affect ethanol intake per
se in rodents (den Hartog et al., 2016; Kreifeldt et al.,
2022; Suresh Nair et al., 2022; Griffin et al., 2023; Khan et
al., 2023; Zamudio et al., 2023).
Together, these data suggest that BNST PACAP, possi-

bly originating from cell bodies in the LPB, has a central
role in driving heavy alcohol drinking in mice. This system
may, therefore, represent a promising target for the devel-
opment of novel treatments for AUD.
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