Table 3.
Performances of the predictive models in the development and validation data sets.
| Metric | MELRa | RNNb | ME-SVMc | ME-DTd | |||||||
|
|
Development | Validation | Development | Validation | Development | Validation | Development | Validation | |||
| Sensitivity, % (95% CI) | 91.2 (89.4-92.8) | 89.4 (85-92.8) | 61.6 (58.3 64.9) | 54.9 (48-61.7) | 52.8 (49.5-56) | 46.1 (39.1-53.2) | 47 (44-50.1) | 44.5 (38.4-50.7) | |||
| Specificity, % (95% CI) | 90.3 (88.9-91.6) | 92.5 (89.9-94.7) | 72.9 (70.9-75) | 74.4 (70.1-78.3) | 82.7 (80.9-84.4) | 78.2 (74.2-81.8) | 80.2 (78.4-81.9) | 81.3 (77.6-84.6) | |||
| Accuracy, % (95% CI) | 90.6 (89.5-91.6) | 91.4 (89.2-93.3) | 69.3 (67.6-71.1) | 68.2 (64.5-71.7) | 72.7 (71-74.4) | 68.6 (65-72.1) | 68.8 (67.1 – 70.4) |
68.7 (65.3-72) | |||
| AUCe (95% CI) | 0.980 (0.977-0.984) | 0.983 (0.977-0.989) | 0.747 (0.727-0.766) | 0.712 (0.669-0.754) | 0.761 (0.754-0.766) | 0.698 (0.681-0.734) | 0.695 (0.677-0.714) | 0.662 (0.621-0.702) | |||
| F1-score | 0.869 | 0.878 | 0.573 | 0.543 | 0.564 | 0.467 | 0.509 | 0.493 | |||
| Brier score | 0.061 | 0.058 | 0.181 | 0.187 | 0.198 | 0.200 | 0.236 | 0.240 | |||
| LR+f (95% CI) | 9.4 (8.2-10.8) | 11.9 (8.8-16.3) | 2.3 (2.1-2.5) | 2.1 (1.8-2.6) | 3.1 (2.7-3.4) | 2.1 (1.7-2.6) | 2.4 (2.1-2.6) | 2.4 (1.9-3.0) | |||
aMELR: mixed-effects logistic regression.
bRNN: recurrent neural networks.
cME-SVM: mixed-effects support vector machine.
dME-DT: mixed-effects decision tree.
eAUC: area under the receiver operating characteristic curve.
fLR+: positive likelihood ratio.