Skip to main content
. 2023 Dec 14;7:e48351. doi: 10.2196/48351

Table 3.

Performances of the predictive models in the development and validation data sets.

Metric MELRa RNNb ME-SVMc ME-DTd

Development Validation Development Validation Development Validation Development Validation
Sensitivity, % (95% CI) 91.2 (89.4-92.8) 89.4 (85-92.8) 61.6 (58.3 64.9) 54.9 (48-61.7) 52.8 (49.5-56) 46.1 (39.1-53.2) 47 (44-50.1) 44.5 (38.4-50.7)
Specificity, % (95% CI) 90.3 (88.9-91.6) 92.5 (89.9-94.7) 72.9 (70.9-75) 74.4 (70.1-78.3) 82.7 (80.9-84.4) 78.2 (74.2-81.8) 80.2 (78.4-81.9) 81.3 (77.6-84.6)
Accuracy, % (95% CI) 90.6 (89.5-91.6) 91.4 (89.2-93.3) 69.3 (67.6-71.1) 68.2 (64.5-71.7) 72.7 (71-74.4) 68.6 (65-72.1) 68.8
(67.1 – 70.4)
68.7 (65.3-72)
AUCe (95% CI) 0.980 (0.977-0.984) 0.983 (0.977-0.989) 0.747 (0.727-0.766) 0.712 (0.669-0.754) 0.761 (0.754-0.766) 0.698 (0.681-0.734) 0.695 (0.677-0.714) 0.662 (0.621-0.702)
F1-score 0.869 0.878 0.573 0.543 0.564 0.467 0.509 0.493
Brier score 0.061 0.058 0.181 0.187 0.198 0.200 0.236 0.240
LR+f (95% CI) 9.4 (8.2-10.8) 11.9 (8.8-16.3) 2.3 (2.1-2.5) 2.1 (1.8-2.6) 3.1 (2.7-3.4) 2.1 (1.7-2.6) 2.4 (2.1-2.6) 2.4 (1.9-3.0)

aMELR: mixed-effects logistic regression.

bRNN: recurrent neural networks.

cME-SVM: mixed-effects support vector machine.

dME-DT: mixed-effects decision tree.

eAUC: area under the receiver operating characteristic curve.

fLR+: positive likelihood ratio.