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The renin–angiotensin system plays a crucial role in the
regulation of blood pressure. Activation of the angiotensin II
(Ang II)–Ang II type 1 receptor (AT1R) signaling pathway
contributes to the pathogenesis of hypertension and subse-
quent organ damage. AT1R-associated protein (ATRAP) has
been identified as an endogenous inhibitory protein of the
AT1R pathological activation. We have shown that mouse
Atrap (Atrap) represses various Ang II–AT1R-mediated pa-
thologies, including hypertension in mice. The expression of
human ATRAP (ATRAP)/Atrap can be altered in various
pathological states in humans and mice, such as Ang II stim-
ulation and serum starvation. However, the regulatory mech-
anisms of ATRAP/Atrap are not yet fully elucidated. miRNAs
are 21 to 23 nucleotides of small RNAs that post-
transcriptionally repress gene expression. Single miRNA can
act on hundreds of target mRNAs, and numerous miRNAs have
been identified as the Ang II–AT1R signaling–associated dis-
ease phenotype modulator, but nothing is known about the
regulation of ATRAP/Atrap. In the present study, we identified
miR-125a-5p/miR-125b-5p as the evolutionarily conserved
miRNAs that potentially act on ATRAP/Atrap mRNA. Further
analysis revealed that miR-125a-5p/miR-125b-5p can directly
repress both ATRAP and Atrap. In addition, the inhibition of
miR-125a-5p/miR-125b-5p resulted in the suppression of the
Ang II–AT1R signaling in mouse distal convoluted tubule cells.
Taken together, miR-125a-5p/miR-125b-5p activates Ang II–
AT1R signaling by the suppression of ATRAP/Atrap. Our re-
sults provide new insights into the potential approaches for
achieving the organ-protective effects by the repression of the
miR-125 family associated with the enhancement of ATRAP/
Atrap expression.

Hypertension is one of the most common complications
worldwide, predisposing health problems and affecting various
organs. In 2010, 31.1% of the world’s adult population (1.39
billion people) had hypertension (1). Among the pathways
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involved in the development of hypertension, the renin–
angiotensin system (RAS) plays a crucial role; particularly,
the angiotensin II (Ang II)–Ang II type 1 receptor (AT1R)
signaling pathway directly affects the arterial constriction (2),
tubular sodium reabsorption (3–5), the release of aldosterone,
a mineralocorticoid (6, 7), and the induction of insulin resis-
tance (8). Activation of the Ang II-AT1R signaling pathway at
local sites contributes to the pathogenesis of hypertension,
renal diseases associated with oxidative stress, and fibrotic
conditions (9, 10). Consequently, RAS inhibitors are widely
utilized as key drugs due to their antihypertensive and organ-
protective effects (11). However, excessive inhibition of the
RAS has been associated with adverse events including hypo-
tension, hyperkalemia, and renal damage (12, 13).

AT1R-associated protein (ATRAP/Atrap) is identified as a
direct binding protein of AT1R. ATRAP/Atrap acts as an
endogenous inhibitory protein of the pathological AT1R
hyperactivation at local tissue sites (14–18). For instance, Atrap
overproduction (transgenic mice) or depletion (knockout mice)
displays repressive or enhancement effects for Ang II–AT1R-
mediated hypertension, cardiac hypertrophy, vascular injury,
and insulin resistance by blocking pathological activation of
AT1R without the alteration of baseline status. Hence, ATRAP/
Atrap is a potential therapeutic target of pathological AT1R
signaling activation without excessive inhibition.

Understanding how the ATRAP/Atrap expression is regu-
lated is essential because of its protective function against
harmful Ang II–AT1R signaling. The research shows that the
ATRAP/Atrap expression can be altered in various patholog-
ical states in mouse (19–23) and human (10, 24, 25). For
example, the Atrap protein degrades in response to the Ang II
stimulation in various cells and organs, probably through the
proteasome pathway (21, 26, 27). However, ATRAP protein
does not have a lysine residue in the putative ubiquitination
site. In addition, miR-376a and miR-135a act on and repress
rat Atrap mRNA in neurons (28). However, these two miRNAs
are expressed specifically in neurons and are not found in
kidney tissue.

miRNAs are 21�23 nucleotide noncoding RNAs that post-
transcriptionally repress hundreds of target mRNAs. Drosha
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miR-125 inhibition represses angiotensin II signaling
and Dicer are the miRNA-processing enzymes that are
required for the maturation of miRNAs. After Drosha- and
Dicer-mediated processing, miRNAs are loaded into the
Argonaute (AGO) family of proteins, the active part of the
RNA-induced silencing complex, binding the target mRNA
strand complementary in the cytoplasm, inducing mRNA
exoribonucleolytic degradation and translational repression
(29–31). As enhancement of ATRAP/Atrap can repress
pathogenic activation of the Ang II–AT1R signaling, the
identification of evolutionarily conserved miRNAs acting on
ATRAP/Atrap would be intriguing to define new therapeutic
target of the Ang II–AT1R signaling. Consistent with this view,
numerous miRNAs have been identified as the Ang II–AT1R
signaling–associated disease phenotype modulators (32–34).
Among these miRNAs, the miR-125 family plays critical roles
in the growth, development, and incidence of cardiovascular
diseases as well as various cancers (35–37).

In this study, we hypothesized that miRNA plays a role in
regulating Atrap expression following Ang II treatment in
renal tubular cells, and that this regulation is evolutionarily
conserved. Our analysis revealed that miR-125a-5p and miR-
125b-5p can directly repress both Atrap and ATRAP.
Furthermore, inhibition of miR-125a-5p–miR-125b-5p resul-
ted in the suppression of Ang II–AT1R signaling activation in
mouse distal convoluted tubule (mDCT) cells. Our results
should provide new insights into potential approaches for
achieving organ-protective effects by repressing the miR-125
family associated with enhancing ATRAP/Atrap expression.

Results

Cloning, characterization, and the Ang II stimulation of mDCT
cells

ATRAP/Atrap is highly expressed in renal tissues, especially
in the proximal and distal tubules (10). In addition, the
inhibitory role of Atrap for the pathological Ang II–AT1R
signaling is investigated in a mouse model (15). Therefore, we
plan to analyze the regulatory mechanisms of Atrap in mDCT
cells. Due to the heterogeneity and instability of the cell
phenotype, we have cloned and characterized mDCT cells (10,
38). We selected mDCT_clone 2E because it showed higher
expression of distal convoluted tubular cell markers (Figs. 1A
and S1, A–D). From now on, we will refer to it as “mDCT.”We
then observed the response of the Ang II treatment for 6 h.
Consistent with previous reports (10), the mDCT cells showed
sensitivity to Ang II, which resulted in increased expression of
αENaC (alpha epithelial sodium channel) and transforming
growth factor beta (TGFβ) mRNAs, both downstream targets
of AT1R signaling. In addition, they increased the expression
of Atrap mRNA (as seen in Fig. 1, B and C) but decreased the
expression of Atrap protein in these cells (as observed in
Figs. 1D, S1E, and S5).

miRNAs repress the expression of Atrap in mDCT cells

In mDCT cells, Ang II–AT1R caused an increase in Atrap
mRNA and a decrease in Atrap protein. This indicated the
presence of post-transcriptional regulation of Atrap
2 J. Biol. Chem. (2023) 299(12) 105478
expression. To investigate this mechanism, we analyzed the
general effect of miRNAs on endogenous Atrap expression by
repressing miRNAs with siRNA-mediated Drosha and Dicer
knockdown (31). Knockdown of Drosha or Dicer was validated
by RT–quantitative PCR (qPCR; Fig. 2A). And an increase in
endogenous Atrap protein expression was observed (Figs. 2B,
S2A, and S5). Next, we developed an mDCT cell line
expressing the exogenous Hibit (a split Nanoluc fragment)-
tagged Atrap gene under the doxycycline (Dox)-dependent
exogenous promoter (mDCT_Hibit-Atrap gene) (39) (Fig. 2, C
and D). Using this cell line, we investigated the post-
transcriptional effects of Drosha knockdown nor Dicer
knockdown. Our results showed that the knockdown of either
Drosha or Dicer resulted in an increase in Hibit-Atrap
expression transcribed from an exogenous promoter, for a
duration of 8 h (Fig. 2E). These results indicated that miRNAs
have the potential to repress Atrap protein expression in
mDCT cells.
Identification of miR-125a-5p/miR-125b-5p as an
evolutionarily conserved direct repressor of Atrap expression

To identify specific miRNAs that act on both Atrap and
ATRAP mRNAs and are abundantly expressed in the kidney,
we examined the predicted miRNAs using two databases,
ENCORI (40) and miTED (41) (Fig. 3A, see Experimental
procedures section in detail). As a result, we identified four
candidate miRNAs: miR-34a-5p, miR-125a-5p, miR-125b-5p,
and miR-874-3p, which may act on Atrap–ATRAP mRNA in
renal tubules (Fig. 3A). The previously reported miRNAs tar-
geting rat Atrap mRNA were excluded as candidates because
miR-135a and miR-376a are less expressed in the kidney, and
miR-370, which targets mouse Atrap mRNA, has no target site
in ATRAP mRNA (28, 42).

To determine the effect of the four candidate miRNAs on
Atrap mRNA, we employed synthetic tough decoy (S-TuD), an
miRNA inhibitor (Fig. S2B) (43). As shown in Figure 4A, only
the miR-125a-5p inhibitor was able to enhance the Hibit-
Atrap protein expression in mDCT_Hibit-Atrap gene cells
(Fig. 4A). Note that the miR-125a-5p inhibitor could not
discriminate between miR-125a-5p and miR-125b-5p, thus
inhibiting both miRNAs. In addition, the miR-125a-5p inhib-
itor was found to increase the expression of exogenous Hibit-
Atrap mRNA (Fig. 4B). These results indicated that miR-125a-
5p–miR-125b-5p can repress both Atrap mRNA and protein
expression at the post-transcriptional mRNA level. Further-
more, the inhibitors of miR-34a-5p and miR-874-3p did not
increase Atrap expression. However, a single gene is regulated
by multiple miRNAs (29, 30), thus miR-34a-5p and miR-874-
3p might act in different cells/tissues and conditions.

Next, we analyzed whether miR-125a-5p/miR-125b-5p can
directly repress Atrap expression or not. For this purpose, we
introduced a point mutation of the miR-125a-5p/miR-125b-5p
targeting sequence, which was replaced by a complementary
sequence, into the Hibit-Atrap reporter gene and stably
expressed it in mDCT cells (mDCT_mut-Hibit-Atrap gene)
(Fig. 4C). We then evaluated the effects of the miR-125a-5p
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Figure 1. Cloning, characterization, and the Ang II stimulation to the mouse distal convoluted tubular (mDCT) cells. Comparison of mRNA expression
levels of distal and proximal tubular markers in the mDCT_2E cells, and the response to Ang II treatment after 6 h. A, the relative mRNA levels of distal and
proximal tubular markers in mDCT_2E cells as determined by RT–qPCR, normalized to β-actin. The mRNA levels in mDCT cells before cloning were set to 1
(n = 1). B, reactivity of Tgfβ and αENaC, the downstream gene of the AT1R signaling. The relative mRNA levels of αENaC and TGFβ were determined by RT–
qPCR, normalized to β-actin (n = 3). The mRNA levels obtained without Ang II (control; CTL) were set to 1. C, reactivity of Atrap mRNA. The relative mRNA
levels of Atrap were determined by RT–qPCR, normalized to β-actin (n = 3). The mRNA levels obtained without Ang II (CTL) were set to 1. D, reactivity of
protein. The relative protein levels by Western blotting analysis, normalized to β-actin (n = 3). The protein levels obtained without Ang II (CTL) were set to 1.
Data were obtained with three biologically independent experiments except (A). Values represent the means ± standard error. *p < 0.05, ***p < 0.001 versus
CTL (Ang II 0 μM) group. Data were analyzed via the unpaired t test. All preprocessing original Western blot data are shown in Fig. S5. αENaC, alpha
epithelial sodium channel; Ang II, angiotensin II; AT1R, Ang II type 1 receptor; Atrap, mouse Atrap; qPCR, quantitative PCR; TGFβ, transforming growth factor
beta.

miR-125 inhibition represses angiotensin II signaling
inhibitor on mut-Hibit-Atrap expression. Our results indicated
that the mutation of miR-125a-5p–miR-125b-5p targeting
sequence became insensitive to the miR-125a-5p inhibitor
(Fig. 4D). This suggested that miR-125a-5p/miR-125b-5p
directly acted on Atrap mRNA and repressed its expression.

To validate the evolutionarily conserved effect of the miR-
125a-5p inhibitor on the expression of endogenous Atrap
and ATRAP, we transfected the miR-125a-5p inhibitor into
mDCT cells or human cloned immortalized renal proximal
tubule epithelial cells (ciRPTECs) (24). The results showed
that the miR-125a-5p inhibitor enhanced endogenous Atrap/
ATRAP protein expression in both mDCT cells and ciRP-
TECs (Figs. 4, E and F, S2, D and E, and S5). Taken together,
these results indicated that miR-125a-5p/miR125b-5p-medi-
ated Atrap/ATRAP repression is evolutionarily conserved be-
tween mouse and human.
Ang II promoted Atrap mRNA accumulation by repressing
miR-125a-5p/miR125b-5p expression

After observing an increase in Atrap mRNA and a decrease
in Atrap protein in Ang II-treated mDCT cells (Fig. 1C), we
examined the effect of miR-125a-5p/miR-125b-5p inhibition.
To analyze this, we transfected the miR-125a-5p inhibitor into
mDCT cells for 48 h, followed by treatment with Ang II for
6 h. The results showed that the miR-125a-5p inhibitor
increased Atrap mRNA expression to levels similar to those
induced by Ang II. No further Ang II-induced increase in
Atrap mRNA was observed in the miR-125a-5p inhibitor–
transfected condition (Fig. 5A). This suggested the possibility
that the Ang II-induced Atrap mRNA enhancement was
modulated by miR-125a-5p/miR-125b-5p. In this scenario,
miR-125a-5p/miR-125b-5p needs to be repressed in the Ang
II-treated condition. Consistent with this hypothesis, the
J. Biol. Chem. (2023) 299(12) 105478 3
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Figure 2. miRNAs repress the expression of Atrap in mDCT cells. Effect of the inactivation of mRNA pathway, using siRNAs of Drosha or Dicer, miRNA
processing factors, and the analysis of endogenous/exogenous Atrap expression in mDCT cells. The mDCT cells were treated with negative control siRNA
(control; CTL), Drosha/Dicer siRNA (Drosha/Dicer) for 48 h. A, confirmation of Drosha/Dicer mRNA expression by RT–qPCR, normalized to β-actin. The mRNA
levels of the CTL group were set to 1 (n = 4–5). B, the relative protein expression of Atrap in mDCT cells was determined by Western blot analysis,
normalized to β-actin expression. The protein levels of the CTL group were set to 1 (n = 3–4). C and D, establishment of mDCT cells capable of doxycycline
(Dox)-induced Hibit-Atrap expression (schema created at biorender.com). Hibit-Atrap contains the 30 UTR sequence encompassing even the most distant
poly A site (PAS). C, confirmation of the induction of Hibit-Atrap with Dox treatment. Hibit activity was measured by a plate reader. Hibit activity levels of the
Dox group were set to 1 (n = 2). D, the mDCT_Hibit-Atrap gene cells were treated with negative control siRNA (control; CTL), Drosha/Dicer siRNA (Drosha/
Dicer) for 48 h, followed with treatment by Dox for 8 h, then dual luciferase reporter assay was performed. The Hibit activity was measured by a plate reader
and normalized to firefly activity. The relative Hibit/firefly levels of the CTL group were set to 1 (n = 4). Data were obtained with three to five biologically
independent experiments. Values represent the means ± standard error. *p < 0.05, **p < 0.01, ***p < 0.001 versus siRNA-CTL group. Data were analyzed by
(B and E) one-way ANOVA with Tukey’s post hoc test. The data shown are presented as the mean ± SEM. All preprocessing original Western blot data are
shown in Fig. S5. Atrap, mouse Atrap; mDCT, mouse distal convoluted tubule cell; qPCR, quantitative PCR.

miR-125 inhibition represses angiotensin II signaling
expression of miR-125a-5p and miR-125b-5p was found to
decrease in response to Ang II treatment (Fig. 5B). These re-
sults suggested that miR-125a-5p/miR125b-5p kept decreasing
Atrap mRNA under normal conditions and that Ang II stim-
ulation repressed miR-125a-5p/miR125b-5p to promote Atrap
mRNA accumulation.
Ang II promoted Atrap protein decrease by enhancing
proteasome subunit expression

As noted previously, however, Ang II treatment would
decrease Atrap protein (Figs.6, A and B, S3B, and S6). This
discrepancy may reflect the alternative regulatory mechanism
for the decrease in Atrap protein in response to Ang II. Two
4 J. Biol. Chem. (2023) 299(12) 105478
reports described that the Ang II-induced downregulation of
Atrap protein was promoted by transcriptional activation of
the proteasome subunits β5i and β2i (Fig. 7D) (26, 27). To
validate this possibility, we examined the involvement of
proteolysis by the activation of the proteasome pathway using
bortezomib, a protease inhibitor. The results showed that the
Ang II-induced decrease in both endogenous Atrap protein
and exogenous Hibit-Atrap protein was abolished by borte-
zomib treatment in mDCT cells (Figs. 6, C and D, S3D, and
S6). Consistent with previous reports, the Ang II-stimulated
upregulation of β5i and β2i, but not β1i, proteasome subunit
mRNAs was observed as putative mechanism for the decrease
in Atrap protein (Figs. 7A and S4A). Enhancement of β5i
protein expression was confirmed by Western blotting

http://biorender.com


A B Mouse Atrap mRNA 3’UTR
5’
CUCAGAGUGCUGGCAUUAAAAAUUCAGGGGUUCUGUGGCUGCUCUGUGUCU
GAGCCACGAUUGAGCUCCAAGCACAGACCCACCCUGCUGUCUUGGUAUGAUU
UUUGCCUUUGAGUCAAGAGCCUGAUGGAAGGAAGGGCUACCUGUGGGCCUG
UGGGGGGAGCCUGACUGUGGCCAAACGGUCAGUGUGGCAUGUGGACAGACA
UCUGUCCUCUGAAUCUAAGUGACUAUCACUGCCUCUGAUACUGACCCAUGA
GGCAGGGCAUGGGUGACUCCCUCUAUCUCCUGCGUUCUUACCACAGUCGAC
UGCCUCCUGAGGUUCCAGGGCCCCUAUUCUUACUGCCAGAUCUCUGGGGAC
AGAUACUUGAAGACUUAUGGGGAACCACAGGCUGAGGUGACUGUCCUGAAA
GGACUGUCUGCACACCUGUGGACAGGCAGGGAGGCUGAGUGACAGCAUCUG
UGAAAAGUGAACCCCACCCCCCACCCCCGCCUCUGGACAGGGUCACUGUGGA
ACACCAUCCCAUACAAUCAGCAUCCCAUACAAUCAGCAUCCUGAGCCCAGUG

3’

Human ATRAP mRNA 3’UTR
5’
AGCCAGCCACGCUGCGCCCGGCCCUGCCCCGGGCCUUCCUCGUGCCUGGGAG
GUCGUUCUAGGGAUGCUCCUGACCUCCGUCUCUUGGACCUAAGAUGGAAUG
UGUCCCCAGCUCAGGGAUUGCCUGAACCAAGAGGCCAGGAGCCCCCAUGGGC
CGCCCAGUACCAUGCACACUCCUGUCCCGAACUCCCUGAGGCCUCCCCUCCC
UUCAGGGCACCCACUGGUUCCCAGGCUGGAACCAGGGUCUCUCUUUACCUCC
UACCCCAUGGUGGCACCACAGAGGCCCUCAGCCGAGUCCUGCCUGAGUGUUG
CAAGCUCAGGCCUUUAAGGACUGCUGAUGCCCCCUCAGGCCUCCCCCAAGUU
UGCUGGGCUUUGGUGGAAGCCCUGAGAGCUUCAGGUCCUGCUCAGCCCGAG
GAGCAGUCUGGCAUGGGAGUGAGGCCCCGUCCUUCUCACUGCCUGGUCACA
UGGUGCCUAGGGAUGCAGGGCUGGAGGCCAGAGGUGUCAGCAACACUGUGU
CCCACCACAACCUCCAGCCUCCCUUUUCAGAGCACAGCAUUAAAGUUUGGGG
AAUUCUGUA 3’

magenta text: AGO binding regions from ENCORI database 
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TS: Target sequence
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Figure 3. Predicted the candidates of miRNA targeting Atrap/ATRAP using the database. A, predicted the miRNAs targeting Atrap and ATRAP using
ENCORI miRNA-target. ENCORI provides a comprehensive Ago2-mRNA binding dataset and includes both human and mouse genes. Then selected miRNAs
with high expression (RPM >10) in kidney using miTED. Eventually, identified four candidate miRNAs, miR-34a-5p, miR-125a-5p, miR-125b-5p, and miR-874-
3p. The sequence of each miRNA is shown, and the shaded areas indicate the binding site. This figure was created using biorender.com. B, represents
fragments of Atrap and ATRAP mRNA 30UTRs. Magenta letters indicate argonaute-binding sites. The shaded areas indicate target sequences of the cor-
responding miRNAs. Ago2, argonaute 2; ATRAP, human Atrap; Atrap, mouse Atrap.

miR-125 inhibition represses angiotensin II signaling
(Figs. 7B, S4, B and C, and S7). In contrast to miR-125a-5p/
miR-125b-5p inhibition, proteasome repression did not
enhance Atrap protein expression under normal conditions
(Fig. 6C, upper panel, lanes 1 and 3; and bottom graph, col-
umns 1 and 3; and Fig. 6D columns 1 and 3). This indicated
that the proteasome degraded Atrap protein only in response
to Ang II but not under normal conditions.
The miR-125a-5p inhibitor and Atrap enhancement repressed
the Ang II-stimulating expression of the proteasome subunit

We next analyzed the involvement of miR-125a-5p/
miR125b-5p in Atrap protein expression. Consistent with the
previous results (Fig. 4), the miR-125a-5p inhibitor increased
Atrap protein expression under normal conditions (Fig. 6A,
upper panel, lanes 1 and 3; and bottom graph, columns 1 and
3). Unexpectedly, however, the miR-125a-5p inhibitor could
also abolish the Ang II-induced Atrap protein repression
(Fig. 6A, upper panel, lanes 3 and 4; and bottom graph, col-
umns 3 and 4). The transcriptional regulation–independent
effect of the miR-125a-5p inhibitor on Atrap protein expres-
sion was confirmed by using the Hibit-Atrap gene reporter, in
which similar results of endogenous Atrap protein were
observed (Fig. 6B). These results suggest that the miR-125a-5p
inhibitor has the ability to suppress Ang II-induced protea-
some activation.

Since Ang II stimulates the expression of proteasome sub-
units (Fig. 7, A–C, columns 1 and 2), we analyzed the effect of
the miR-125a-5p inhibitor on their expression. Intriguingly,
the miR-125a-5p inhibitor could repress the Ang II-induced
expression of proteasome subunit (Fig. 7, A and B, columns
3 and 4). This is probably through the enhancement of Atrap
protein expression, as it could repress Ang II–AT1R signaling.
To support this notion, we found that the enhancement of
exogenous Atrap expression could also repress the Ang II-
induced proteasome subunit expression (Fig. 7C, columns 3
and 4).
The inhibition of miR-125-5p ameliorates Ang II–AT1R
signaling by playing a role in regulating Atrap protein
expression

Finally, we examined the effect of miR-125a-5p inhibitor
on other downstream effectors of Ang II–AT1R signaling;
namely TGFβ mRNA (Fig. 8A), αENaC mRNA–protein
(Figs. 8, B and C, S4F, and S8), phospho-p38 (Figs. 8D,
S4G, and S8), and oxidative stress (NRF2 [NFE2 like bZIP
transcription factor 2] protein and HO-1 mRNA) (Figs. 8E,
S4H, and S9). We showed that the Ang II stimulation
enhanced all these effectors of Ang II–AT1R pathway.
However, transfection of the miR-125a-5p inhibitor
decreased all these downstream effectors of Ang II–AT1R
signaling (Figs. 8, A–E, S4, F–H, S8, and S9). No alternation
in basal level of these effectors was observed by the miR-
125a-5p inhibitor, although the basal level of Atrap protein
expression is elevated (Figs. 8, A–E, S4, F–H, S8, and S9).
J. Biol. Chem. (2023) 299(12) 105478 5
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Figure 4. Identification of miR-125-5p as an evolutionarily conserved direct repressor of Atrap–ATRAP expression. A, effect of the four candidate
miRNAs on Atrap mRNA, employing synthetic tough decoy (S-TuD), an miRNA inhibitor. C and D, effect of the miR-125-5p on Atrap mRNA directly, by
introducing the mutation to replace a complementary sequence at the site where miR-125a-5p–miR-125b-5p can bind. E and F, effect of the miR-125-5p
inhibition on endogenous Atrap–ATRAP. A, the mDCT_Hibit-Atrap gene cells were treated with S-TuD (3 nM), negative control (NC), mmu-miR-34a-5p,
mmu-miR-125a-5p, and mmu-miR-874-3p for 48 h, followed by the treatment with Dox for 8 h, then Dual-Luciferase Reporter Assay was performed.
The Hibit activity was measured by a plate reader and normalized to firefly activity. The relative Hibit/firefly levels of the S-TuD NC group were set to 1 (n =
3). B, the mDCT_Hibit-Atrap gene cells were treated with S-TuD (3 nM), NC, and mmu-miR-125a-5p for 48 h, followed by the treatment with Dox for 8 h. The
relative mRNA expression of Hibit-Atrap was determined by RT–qPCR, normalized to β-actin expression. The mRNA levels of the NC–CTL group were set to 1
(n = 3). C, represents miR-125a-5p sequences and Atrap–ATRAP mRNA 30UTR sequences of various species (mouse, rat, chicken, pig, and human). The
shaded region indicates a possible binding sequence. The mut-miR-125-5p refers to the sequence with mutation replacing the complementary base. D, the
mDCT_Hibit-Atrap gene (WT) cells and the mDCT_mut-Hibit-Atrap gene (mut-miR-125-5p) cells were treated with S-TuD (3 nM), NC, and mmu-miR-125a-5p
(miR-125-5p) for 48 h, followed by the treatment with Dox for 8 h, and then Dual-Luciferase Reporter Assay was performed. The Hibit activity was measured
by a plate reader and normalized to firefly activity. The relative Hibit/firefly levels of both S-TuD NC groups were set to 1 (n = 3). E and F, the mDCT cells and
human immortalized proximal tubular cells (ciRPTEC) were treated with S-TuD (3 nM), NC, and mmu-miR-125a-5p (miR-125-5p) for 48 h. The relative protein
expression of Atrap–ATRAP in the mDCT cells and ciRPTEC was determined by Western blot analysis, normalized to β-actin expression. The protein levels of
the NC group were set to 1 (n = 3). Data were obtained with three biologically independent experiments. A, one-way ANOVA with Tukey’s post hoc test:
*p < 0.05 versus NC (n = 3). B, an unpaired t test: *p < 0.05 versus S-TuD NC (n =3). The data shown are presented as the mean ± SEM. D, values represent the
means ± standard error. ***p < 0.001 versus CTL group. Data were analyzed by two-way ANOVA with Tukey’s post-hoc test, n = 3 to 4. The data shown are
presented as the mean ± SEM. E and F, values represent the means ± standard error. *p < 0.05 versus NC group. Data were analyzed by unpaired t test, n =
3. The data shown are presented as the mean ± SEM. All preprocessing original Western blot data are shown in Fig. S5. ATRAP, human ATRAP; Atrap, mouse
Atrap; CTL, control; Dox, doxycycline; mDCT, mouse distal convoluted tubule cell; qPCR, quantitative PCR.

miR-125 inhibition represses angiotensin II signaling
γENaC protein (non–Ang II effector) showed no significant
change neither by Ang II treatment nor by the treatment
with miR-125a-5p inhibitor (Figs. 8C, S4F, and S8). These
results showed that miR-125a-5p/miR-125b-5p inhibition not
only enhanced Atrap protein expression but also decreased
the Ang II–AT1R signaling pathway.
Discussion

In the present study, we demonstrated that miR-125a-5p/
miR-125b-5p directly acts on Atrap/ATRAP mRNA and re-
presses its expression in mouse distal tubular cells, mDCT, and
6 J. Biol. Chem. (2023) 299(12) 105478
human proximal tubular epithelial cells, ciRPTEC. In addition,
we found that miR-125a-5p/miR-125b-5p inhibition attenu-
ated the proteasome-mediated decrease in Atrap protein
expression in response to Ang II treatment. Furthermore, we
revealed that miR-125a-5p–miR/125b-5p inhibition antago-
nized the effects of Ang II inducing cellular responses con-
sisting of the proteasome subunits, TGFβ and αENaC
expression, and p38 mitogen-activated protein kinase activa-
tion in mDCT cells. These results suggest that miR-125a-5p/
miR-125b-5p promotes the Ang II–AT1R signaling and may
be involved in the pathogenesis of hypertension and cardio-
vascular disease.
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miR-125 inhibition represses angiotensin II signaling
Consistently, a previous report presented that miR-125b-5p
was identified as the driver of Ang II–TGFβ profibrotic
signaling (37). In this report, the locked nucleic acid–based
inhibition of miR-125b-5p was found to protect the Ang II
infusion inducing cardiac fibrosis in mice. The authors showed
that the Ang II infusion enhances miR-125b-5p expression
through TGFβ signaling in the mouse heart. Furthermore, our
group previously reported that Ang II infusion decreases Atrap
mRNA and Atrap protein expression in the heart and outer
renal medulla of mice (19, 44). On the other hand, in the
present study, we showed that the Ang II treatment immedi-
ately decreased the expression of miR-125a-5p and miR-125b-
5p in mDCT cells (Fig. 5B). The expression of miR-125a-5p/
miR-125b-5p may vary because of time-dependent modula-
tion, where primary Ang II signaling represses and secondary
TGFβ signaling restores/promotes their expression, causing
discrepancies in the effects on tissues and mDCT cells.
Consistent with this view, TGFβ induces the transcriptional
activation of the miR-125b-1 host gene (45). TGFβ–receptor
expression may vary among cells/tissues, and therefore, the
effect of Ang II stimulation on miR-125a-5p/miR-125b-5p
expression would be different. Nevertheless, it remains
coherent that the inhibition of miR-125a-5p and miR-125b-5p
effectively suppresses Ang II-induced pathological responses
in both the heart and kidney. Therefore, miR-125a-5p/miR-
125b-5p could be a therapeutic target for hypertension and
cardiac fibrosis.

Wang et al. (46) proposed that the Ang II-induced
enhancement of proteasome subunits is prerequired to
reduce Atrap expression in a mouse model. In line with this,
our study demonstrated that the degradation of Atrap protein
in mDCT cells by Ang II stimulation was mediated by the
activation of proteasome subunits. This mechanism could be
explained by our results in which the miR-125a-5p inhibitor
caused the enhancement of exogenous Atrap expression or the
increase in endogenous Atrap expression, thereby preventing
the Ang II–AT1R signaling–mediated proteasome subunit
expression (Fig. 7D).

On the other hand, we found that the miR-125a-5p in-
hibitors also upregulated ATRAP expression in human ciRP-
TEC cells (Fig. 4F). However, we were unable to analyze the
effects of Ang II stimulation for ATRAP expression because of
the faint Ang II response in our ciRPTEC cells. This is one of
the limitations of our current work. We need to develop hu-
man cells that can respond to the Ang II stimulation. Alter-
native regulatory mechanisms may promote the decrease of
ATRAP expression in human Ang II-associated pathologies
(25) because the lysine residues of the Atrap ubiquitination site
are missing in human ATRAP (Fig. S2F). Therefore, it is
desirable to further investigate the role of the miR-125 family
under Ang II stimulation in human tissues and cells.

We also observed that the miR-125a-5p inhibitor sup-
pressed the activation of proteasome subunits (Fig. 7, A and B)
and the degradation of Atrap protein (Fig. 5, A and B). How-
ever, miRNAs have multiple targets in a single signaling pro-
cess (47). Therefore, our results may not be solely because of
the increased Atrap expression. Although our study did not
include an in vivo examination, such an analysis would be
valuable to predict off-target effects for in vivo administration.
In addition, it would be important to know the precise target
organs/tissues for delivery of miR-125a-5p/miR-125b-5p in-
hibitor consisting of antisense locked nucleic acid or S-TuD to
enhance its potential as a therapeutic target.

We showed that the Ang II treatment enhanced Atrap
mRNA expression most likely through the decrease of miR-
125a-5p/miR-125b-5p. This enhancement may be one of the
feedback regulation mechanisms of Atrap protein abundance.
In this case, Atrap protein would rapidly recover after Ang II
ablations to suppress the pathogenic/excessive activation of
Ang II–AT1R signaling (48). In addition to the post-
transcriptional regulation of Atrap expression described in
the present study, Atrap expression can also be
J. Biol. Chem. (2023) 299(12) 105478 7
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miR-125 inhibition represses angiotensin II signaling
transcriptionally regulated by Runx3 and USF1/USF2 (20, 49).
Further analysis including these factors will help to understand
the more precise regulatory mechanism of Atrap under Ang II-
stimulated conditions.

The involvement of Ang II–AT1R signaling in the devel-
opment and progression of nonalcoholic fatty liver disease and
cancer has been well documented (50, 51). In the context of
nonalcoholic fatty liver disease, ATRAP protein expression is
decreased (22), whereas miR-125b-5p is upregulated (52). On
the other hand, ATRAP expression is upregulated in various
cancers, including bladder urothelial carcinoma, breast inva-
sive carcinoma, hepatocellular carcinoma, lung adenocarci-
noma, kidney cancer, and multiple gastrointestinal cancers
(23). Intriguingly, the expression level of miR-125a-5p and/or
miR-125b-5p is decreased in bladder urothelial carcinoma,
breast cancer, hepatocellular carcinoma, colorectal cancer,
cervical cancer, and lung adenocarcinoma (53–58). Although
8 J. Biol. Chem. (2023) 299(12) 105478
the expression of the miR-125 family and ATRAP is negatively
correlated, the direct relationship between them in these dis-
eases remains unknown. Further investigation holds the po-
tential to define new therapeutic targets.

In conclusion, our findings show that the miR-125a-5p/
miR-125b-5p not only directly represses Atrap–ATRAP
expression in renal tubular cells but also promotes Ang II–
AT1R activation. These results suggest new avenues for po-
tential therapeutic approaches to achieve the organ-protective
effects of the miR-125a-5p/miR-125b-5p inhibitor in Ang II-
associated diseases.
Experimental procedures

Cell culture

The mDCT cells were kindly provided by Dr Peter A.
Friedman (University of Pittsburgh School of Medicine). These
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Figure 7. Atrap upregulation and miR-125a-5p inhibition suppressed proteasome subunit expression stimulated by Ang II. A and B, effect of the
miR-125-5p inhibition on Atrap mRNA in Ang II-stimulated mDCT cells. C, effects of the enhancing exogenous Atrap expression for the Ang II-induced
proteasome subunit expression. A, the relative mRNA expression of β2i and β5i was determined by RT–qPCR, normalized to β-actin expression. The
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miR-125 inhibition represses angiotensin II signaling
cells have been shown to have a phenotype of a polarized tight
junction epithelium along with both morphological and
functional features retained from the parental cells (59). The
mDCT cells were cloned with limiting dilution, resulting in the
isolation of six individual clones. These cloned mDCT cells,
along with other noncloned mDCT cells, were maintained in
Dulbecco’s modified Eagle’s medium (DMEM)/Ham’s F12
medium supplemented with 5% fetal bovine serum (FBS)
(Sigma–Aldrich) in a CO₂ incubator.

The normal human RPTECs were purchased from Lonza
(catalog no.: CLCC-2553, lot no.: 0000203150, Caucasian fe-
male, 10 years old) and immortalized by infecting it with
lentivirus-expressing human telomerase reverse transcriptase
and shRNA targeting p16 (plenti6_TERT_sh-p16). The
immortalized RPTECs (ciRPTECs) were cloned as mentioned
previously (24). The ciRPTECs were cultured in DMEM with
10% FBS in a CO₂ incubator.
Isolation of genomic DNA and cloning the complementary
DNA of Atrap including the 30UTR region

Mouse genomic DNA was extracted from mDCT cells. The
Wizard Genomic DNA Purification Kit from Promega was
used for this purpose, according to the manufacturer’s in-
structions. The extracted DNA samples were then used as
templates for PCR amplification of the target genes, specifically
J. Biol. Chem. (2023) 299(12) 105478 9
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Figure 8. The inhibition of miR-125-5p ameliorates Ang II–AT1R signaling by playing a role in regulating Atrap protein expression. Effect of the
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our analysis. Lower, the relative mRNA expression of Tgfβ as determined by RT–qPCR, normalized to β-actin expression. The mRNA levels of the NC–CTL
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determined by RT–qPCR, normalized to β-actin expression. The mRNA levels of the NC–CTL group were set to 1 (n = 3). C, the relative protein expression of
α/γENaC was determined by Western blot analysis, normalized to β-actin expression. The Western blot data of β-actin were the same as in Fig. S3B (left
panel) and Figure 6A (right panel). The protein levels of the NC–CTL group were set to 1 (n = 3). D, upper, schematic diagram of Ang II–AT1R–p38 pathway in
our analysis. Lower, the relative protein expression of p-p38 was determined by Western blot analysis, normalized to p38 expression. The protein levels of
the NC–CTL group were set to 1 (n = 3). E, upper, schematic diagram of Ang II–AT1R–NRF2/HO-1 pathway in our analysis. Lower, the relative protein
expression of Nrf2 was determined by Western blot analysis, and the relative mRNA expression of Ho-1 was determined by RT–qPCR, normalized to β-actin
expression. The mRNA and protein levels of the NC–CTL group were set to 1 (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001 versus CTL. †p < 0.05 versus NC–CTL.
Data were obtained with three biologically independent experiments. Data were analyzed by two-way ANOVA with Tukey’s post hoc test. The data shown
are presented as the mean ± SEM. All preprocessing original Western blot data are shown in Figs S8 and S9. αENaC, alpha epithelial sodium channel; Ang II,
angiotensin II; AT1R, Ang II type 1 receptor; Atrap, mouse ATrap; CTL, control; HO-1, heme oxygenase 1; mDCT, mouse distal convoluted tubule cell; NC,
negative control; NRF2, NFE2 like bZIP transcription factor 2; qPCR, quantitative PCR; TGFβ, transforming growth factor beta.
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the Atrap gene with its 30 UTR. The following primers were
used: Atrap (forward: 50-AGCTCTGTGAGCRRGTGGTC-30,
reverse: 50-TAAAGGTGCCTCCCTCAGGA-30).
Predicted miRNAs targeting Atrap–ATRAP

To identify evolutionarily conserved miRNAs targeting
Atrap–ATRAP mRNA, we employed two databases: ENCORI
(40) and miTED (41). miRNAs typically act in the site where
RNA-induced silencing complex, such as Argonaute1–4
(Ago1–4), binds to the target gene mRNAs. ENCORI provides
a comprehensive Ago2–mRNA binding dataset (Fig. 3A) and
includes both human and mouse genes. On the other hand,
miTED provides valuable information on miRNA expression
levels in various human tissues and cell lines. As a result, we
10 J. Biol. Chem. (2023) 299(12) 105478
identified four candidates according to the algorithm in
Figure 3A.
Establishment of mDCT cells capable of Dox-induced Hibit-
mouse Atrap gene expression

In this study, we constructed three plasmids:
pLenti_TetOn_Hibit-Atrap gene (Hibit-Atrap gene, contain-
ing blasticidin-resistance gene), mutation-miR-125-
5p_binding_site-Hibit-Atrap gene (mut-miR-125-Hibit-Atrap
gene, containing blasticidin-resistance gene), and
pLenti_SV40p-Luc2 (SV40-Luc2, containing puromycin-
resistance gene) plasmids. Dox was used to induce Hibit-
Atrap based on the Tet-On system. The Hibit tag was inser-
ted at the 50-terminal region of the Atrap coding sequence.
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Detailed plasmid maps are available upon request. Lentiviral
supernatants were produced as described elsewhere. Briefly,
pLenti_TetOn_Hibit-Atrap gene (including mutant plasmid)
or pLenti_SV40p-Luc2 (3 μg), pLP1, 3 μg of pLP2/VSVG (3 μg;
Thermo Fisher Scientific), and pAdvantage (1.3 μg; Promega)
were mixed in Opti-MEM medium (1.5 ml; Thermo Fisher
Scientific) and added to Lipofectamine 2000 (39.9 μl; Thermo
Fisher Scientific) in Opti-MEM (1.5 ml). The resulting solution
was mixed and incubated for 20 min at room temperature.
While incubating the DNA–Lipofectamine mixture, LentiX
human embryonic kidney 293T cells (Thermo Fisher Scienti-
fic) (5 × 106) were seeded in a poly-L-lysine-coated 10 cm
tissue culture plate. After the incubation, the DNA–
Lipofectamine mixtures were added to the LentiX human
embryonic kidney 293T cells. At 8 h post-transfection, the
medium was exchanged with DMEM containing 10% FBS and
10 μM forskolin. After 24�48 h, the culture supernatants were
collected and filtered through 0.22 μm Steriflip filters (Milli-
pore) to generate the lentiviral supernatants. For the lentiviral
infections, the lentiviral supernatant (2 ml) was incubated with
mDCT cells or Hibit-Atrap gene (including mutant plasmid)
mDCT (1.0 × 106) for 24 h. Thereafter, the lentiviral super-
natants were discarded followed by the addition of DMEM/
Ham’s F12 containing blasticidin (1.5 μg/ml) or puromycin
(2.5 μg/ml). Finally, we stably cotransfected the mDCT cells
with a plasmid expressing Hibit-Atrap and Luc2. The Hibit tag
served as a NanoLuc reporter to Atrap protein expression, and
Luc2 was also employed as a firefly luciferase to measure
cellular internal standards, which allowed the use of the Dual-
Luciferase Reporter Assay system.
siRNA and cell transfection

The following siRNAs purchased from Qiagen were used:
Drosha siRNA #1: (Mm_Etohi2_1 FlexiTube siRNA), Dicer
siRNA #1: (Mm_Dicer1_1 FlexiTube siRNA) and AllStars
negative control siRNA.

The mDCT cells were seeded in 12-well plates and trans-
fected with Lipofectamine RNAiMax Reagent (Thermo Fisher
Scientific) for 48 h at 37 �C according to the manufacturer’s
protocol.
miRNA inhibitor assay (S-TuD assay)

The S-TuD were obtained from Ajinomoto Bio-Pharma,
including mmu-miR-34a-5p, mmu-miR-125a-5p, mmu-miR-
874-3p, and a negative control.

Transfection of the S-TuD into mDCT cells/ciRPTEC was
performed in a 12-well plate, seeded at a density of 5 × 104/1 ×
105 cells per well and transfected with 75 μl of OptiMEM, 1 μl
of Lipofectamine 2000 Reagent, and 1 or 3 μl of the respective
S-TuD (mmu-miR-34a-5p, mmu-miR-125a-5p, mmu-miR-
874-3p, or negative control). S-TuD was prepared at a con-
centration of 1 μM, and the final concentration used for
transfection was 1 to 3 nM. After 48 h of incubation, S-TuD-
treated cells were used in subsequent experiments.
Dual-Luciferase Reporter Assay

The mDCT_Hibit-Atrap gene cells transfected with each S-
TuD were seeded into a 96-well plate containing 100 μl of
DMEM/Ham’s F12 medium supplemented with 5% FBS. The
cells were treated with or without Dox (3 μg/ml) and incu-
bated for 4�8 h. After incubation, half of the medium was
removed from each well, and 50 μl of ONE-Glo EX Luciferase
Assay Buffer (Promega) was added. The reaction was allowed
to occur at room temperature for 10 min. Luminescence
measurement was performed to quantify the Luc2 (firefly
luciferase) signal using a plate reader. Subsequently, 50 μl of
NanoDLR Stop & Glo Buffer containing 1% NanoDLR Stop &
Glo Substrate and 1% Lgbit Protein was added to each well.
Then again, the plate was incubated for 10 min at room
temperature to allow the reaction. Luminescence measure-
ment was performed to quantify the NanoLuc (Hibit + Lgbit)
signal using a plate reader. This experimental setup helped to
determine the quantification of Hibit-Atrap expression using
the NanoLuc reporter (Hibit) and normalization with the in-
ternal standard Luc2 (firefly luciferase).
Western blot analysis

Western blot analysis was performed as described elsewhere
(60). Briefly, total protein was extracted from cells using a
sample buffer containing SDS (1%). Then, the protein con-
centration in each sample was measured with a Qubit 2.0
Fluorometer (Thermo Fisher Scientific). An equal amount of
each protein extract was resolved on a 5 to 20% polyacrylamide
gel (ATTO Corporation) and electrophoresed. After separa-
tion, the proteins were transferred to a polyvinylidene fluoride
membrane. The membranes were blocked for over 1 h at room
temperature with Tris-buffered saline with Tween containing
skim milk (5%) or Blocking One-P (nacalai tesque) and probed
overnight at 4 �C with specific primary antibodies. Antibodies
against the following proteins were used: Atrap and ATRAP
(1:1000–3000 dilution, rabbit, developed in our previous study
(60)), β-actin (1:5000 dilution, catalog no.: A5441, mouse,
Sigma–Aldrich), β5 (PSMB5) (1:10,000 dilution, catalog no.:
19178-1-AP, rabbit, Proteintech), β5i (PSMB8) (1:1000 dilu-
tion, catalog no.: 13635, rabbit, CST), αENaC (1:1000 dilution,
PA1-920A, rabbit, Invitrogen), γENaC (1:2000 dilution, catalog
no.: ab3468, rabbit, abcam), active p38 (1:3000 dilution, catalog
no.: V121A, rabbit, Promega), p38 (1:1000 dilution, N-20,
rabbit, Santa Cruz), and Nrf2 (1:2000 dilution, catalog no.:
GTX103322, rabbit, GeneTex). The membranes were washed
and further incubated with an appropriate secondary antibody
for 60 min at room temperature. When detecting Atrap–
ATRAP, αENaC, γENaC and p38, anti-Rabbit immunoglob-
ulin G (IgG), horseradish peroxidase (HRP)-Linked Whole Ab
(NA934-1Ml, donkey, GE Healthcare), was diluted 1:2000 to
5000 with Tris-buffered saline with Tween containing skim
milk (5%). When detecting β-actin, antimouse IgG, HRP-
Linked Whole Ab (NA931-1Ml, sheep, GE Healthcare) was
diluted 1:5000. When detecting Active p38, anti-Rabbit IgG,
HRP-Linked Whole Ab (NA934-1Ml, donkey, GE Healthcare),
was diluted 1:5000 with Signal Enhancer Hikari solution B
J. Biol. Chem. (2023) 299(12) 105478 11
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(nacalai tesque). Full-range Rainbow Molecular Weight
Markers (Cytiva) (Figs. 6, A and C, 7B, 8, C–E, S3, B and D, and
S4, B, C, F, G, and H) and DynaMarker protein MultiColor
Ladder Marker (Figs. 1D, 2B, 4, E and F, S1E, and S2, A, E, and
F), stable II were used as molecular weight markers. The bands
were visualized using Luminata Classico/Forte (Merck) or
ImmunoStar LD (Fujifilm Wako Pure Chemical) as the
enhanced chemiluminescence substrate. The resulting images
were quantitatively analyzed using a Chemidoc Touch Imager
(Bio-Rad Laboratories). All these experiments were performed
at least three times, and representative results are illustrated.
RT–qPCR analysis

Total RNA was extracted from mDCT cells using the
NucleoSpin RNA Plus Kit (Takara Bio) or MagMAX mirVana
Total RNA Isolation Kit (Thermo Fisher Scientific), and com-
plementary DNA was produced using ReverTra Ace qPCR RT
Master Mix with genomic DNA Remover (Toyobo) and Taq-
Man MicroRNA Reverse Transcription Kit (Thermo Fisher
Scientific). RT–qPCR was performed with a Bio-Rad CFX96
Touch Real-Time PCR Detection System (Bio-Rad Labora-
tories), and the reverse-transcribed products were incubated
with THUNDERBIRD Next SYBR qPCR Mix (Toyobo) or
TaqMan Fast Advanced Master Mix (Thermo Fisher Scientific).
The Atrap-Ho-1 mRNA levels were normalized to those of β-
actin. The miR-125a-5p and miR-125b-5p miRNA levels were
normalized to those of snoRNA202.

The following primers were used: Atrap (forward: 50-CC
ACCATCTTCCTGGACATT-30, reverse: 50-AGACGAGGCA
GCAAGAGAAG-30), Drosha (forward: 50-GGACCATCAC-
GAAGGACACT-30, reverse: 50-CACGGGTCTCTTGGTTT
TGT-30), Dicer (forward: 50-ACCAAGTGATCCGTTTACGC-
30, reverse: 50-CAACCGTACACTGTCCATCG-30), β-actin
(forward: 50-GCCGCCAGCTCACCAT-30, reverse: 50-TCGT
CGCCCACATAGGAATC-30), Scnn1a (αENaC): (forward: 50-
ACCCCGTGAGTCTCAACATC-30, reverse: 50-CCTGGCGA
GTGTAGGAAGAG-30), Tgf-β (forward: 50-TGCTTCAGCT
CCACAGAGAA-30, reverse: 50-TGGTTGTAGAGGGCAAG
GAC-30). Cdh1 (cadherin; forward: 50-AGCCATTGCCAAG-
TACATCC-30, reverse: 50-AAAGACCGGCTGGGTAAACT-
30), Cdh2 (forward: 50-AGGGTGGACGTCATTGTAGC-30,
reverse: 50-CTGTTGGGGTCTGTCAGGAT-30), Calb1 (cal-
bindin 1; forward: 50-CCACCTGCAGTCATCTCTGA-30,
reverse: 50-TTCCGGTGATAGCTCCAATC-30), Aqp2 (aqua-
porin 2; forward: 50-TTGCCATGTCTCCTTCCTTC-30, reverse:
50-GGTCAGGAAGAGCTCCACAG-30), Ncc (sodium-chloride
cotransporter; forward: 50-CTGGAGAACCTGTTCGCTTC-30,
reverse: 50-GATGTCACCATGACCGACAG-30), Pth1r (para-
thyroid hormone 1rReceptor; forward: 50-ATCTTCGTGAAG-
GACGCTGT-30, reverse: 50-CCCTCCACCAGAATCCAGTA-
30), At1r (forward: 50-GGAAACAGCTTGGTGGTGAT-30,
reverse: 50-ACATAGGTGATTGCCGAAGG-30), Hibit-Atrap
(forward: 50-AGAAGATCAGCGGAGAGCTG-30, reverse: 50-
GGCCAGGATAGTGAAGTTGC-30), β1i (PSMB9) (forward:
50-TCTTCTGTGCCCTCTCAGGT-30, reverse: 50-GGTCCC
AGCCAGCTACTATG-30), β2i (PSMB10) (forward: 50-
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CTTTACTGCCCTTGGCTCTG-30, reverse: 50-GTGATCACA
CAGGCATCCAC-30), β5i (PSMB8) (forward: 50-CAGTCCT-
GAAGAGGCCTACG-30, reverse: 50-CACTTTCACCCAACC
GTCTT-30), and Ho-1 (forward: 50-TTGAGGAGCTGCA
GGTGATG-30, reverse: 50-TGCCAACAGGAAGCTGAGAG-
30). For the detection of miRNA expression, we purchased Taq-
Man MicroRNA Assay (has-miR-125a-5p, has-miR-125b-5p,
and snoRNA202) from Thermo Fisher Scientific.

Statistical analysis

Statistical analyses were performed with GraphPad Prism9
(GraphPad Software). All data are shown as the mean ± SEM.
Differences were analyzed using the following statistical tests.
Two-way ANOVA, followed by Tukey’s post hoc analysis, was
performed to determine differences between CTL (control)
and Ang II groups (Figs. 5, A–C, 6, 7, 8, and S4, A, B, and D).
One-way ANOVA, followed by Tukey’s post hoc analysis, was
performed to determine differences between CTL and other
groups (Figs. 2, B and E, and 4A). In addition, an unpaired t
test was used to analyze the differences between the two
groups (Figs. 1, B–D, 4, B, E, and F, and 5D). p Values <0.05
were considered statistically significant. Data were obtained
with three to five biologically independent experiments.
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The data presented in this study are available on request
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