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ABSTRACT: A pervasive challenge in drug design is determining how
to expand a ligand�a small molecule that binds to a target
biomolecule�in order to improve various properties of the ligand.
Adding single chemical groups, known as fragments, is important for lead
optimization tasks, and adding multiple fragments is critical for fragment-
based drug design. We have developed a comprehensive framework that
uses machine learning and three-dimensional protein−ligand structures
to address this challenge. Our method, FRAME, iteratively determines
where on a ligand to add fragments, selects fragments to add, and
predicts the geometry of the added fragments. On a comprehensive
benchmark, FRAME consistently improves predicted affinity and
selectivity relative to the initial ligand, while generating molecules with
more drug-like chemical properties than docking-based methods currently in widespread use. FRAME learns to accurately describe
molecular interactions despite being given no prior information on such interactions. The resulting framework for quality molecular
hypothesis generation can be easily incorporated into the workflows of medicinal chemists for diverse tasks, including lead
optimization, fragment-based drug discovery, and de novo drug design.

■ INTRODUCTION
The drug discovery process is increasingly long and
expensive.1,2 A major challenge at all stages of this process is
choosing new molecules to synthesize and test. By selecting the
optimal candidates from the enormous space of possible
molecules, one can save time and money on resource-intensive
testing and ultimately find more viable therapeutics.3

A key part of this design process is adding chemical groups
(termed “fragments” in this work) to a starting molecule
known to bind to the target in order to tune its properties such
as affinity, selectivity, and solubility.4 For example, lead
optimization generally involves adding one or two fragments
at a time to a starting molecule, followed by iterative rounds of
testing and further modifications.5,6 In other cases, it is useful
to add multiple fragments; in fragment-based drug discovery,
multiple fragments are often added to a small starting molecule
obtained from structural screening methods.7−9 Expanding
these starting molecules can result in more desirable drug
properties, such as higher affinity and specificity for the protein
target.10−12 However, in practice it is still exceedingly difficult
to propose the optimal expansions as the desired properties are
hard to predict a priori and the space of possible chemical
modifications is vast.13−15

We have developed a comprehensive framework, Fragment-
Based Molecular Expansion (FRAME), that uses machine
learning and three-dimensional protein−ligand structures to
address this common challenge in drug design. FRAME
represents the expansion process as a sequence of steps in 3D

space. Given an input structure of a starting molecule bound to
a protein pocket, FRAME determines where to attach
fragments, selects the fragments to add, and determines the
fragments geometry. Rather than hard-coding rules about
synthesizability or affinity, we train neural networks to
recognize patterns from existing structures of high-affinity,
drug-like ligands bound to proteins. With recent innovations in
structure determination, these data sets are rapidly increasing
in size;16,17 FRAME will improve along with new discoveries
and approaches reflected in these data sets. Though not a
substitute for a trained medicinal chemist, FRAME is highly
effective for quick hypothesis generation, suggesting candidates
that chemists and biologists can then evaluate and
experimentally test.
Our approach differs substantially from existing strategies

currently in use, such as virtual screening with physics-inspired
scoring functions (ligand docking).18−20 First, our approach
does not require systematically evaluating every candidate
molecule as usually done in virtual screening, enabling FRAME
to explore a much larger chemical space.19 For example, in five
expansion steps, FRAME can express over 300 billion unique
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molecules, which would typically take weeks to evaluate with
docking. Yet, our method can intelligently sample promising
regions of this large chemical space in a few minutes.
Furthermore, FRAME does not use docking scores or expert-
crafted rules typically employed in virtual screening, which may
contain biases and pitfalls.21 Thus, FRAME can be used to
provide an orthogonal source of design hypotheses compared
to optimization methods that use docking scores.22−25

Likewise, many existing machine learning methods for
generating molecules are not directly suitable for structure-
based drug design as they do not leverage the 3D structure of a
target.26−29 A handful of recent machine learning methods do
utilize protein pocket structure for molecule generation, but
these methods are designed for different tasks than FRAME.
For example, some methods generate completely new
molecules, not expansions.30,31 Others predict a single
fragment to add to a preselected location,32 whereas FRAME
attempts a more complex sequence of actions with no
restriction on attachment location or number of added
fragments. FRAME overcomes these limitations and provides
a flexible framework for expanding molecules applicable to
diverse drug design tasks.

■ METHODS
Expanding Molecular Structures. FRAME uses trained

neural networks to select actions that expand a ligand molecule
based on the current molecular structure. Initially, the structure
consists of the starting molecule (of any size) as well as the
protein pocket including the 3D coordinates and element type
of each atom (Figure 1). FRAME sequentially adds fragments
to the ligand, connected by single bonds. Each action is broken
down into two steps: first, selecting a location to attach a
fragment and, second, choosing which fragment to add and the
attachment geometry. We train two separate SE(3)-equivariant
neural networks to make predictions for each step (Figure
1).33,34 The fragments are selected from a user-specified
library; for benchmarking, we used a library of common
fragments (Figure S1). Additional fragments can be easily

included in the library, as FRAME is able to evaluate fragments
not seen in the training data.
The FRAME neural networks are trained by using a curated

set of protein−ligand structures from the Protein Data Bank
(PDB), termed reference ligands. Each reference ligand
structure is broken down to produce a sequence of
intermediate molecular structures, termed reference trajectories
(see Supporting Information). As each ligand in our data set is
synthesizable and has relatively high affinity to the correspond-
ing target (median KD = 300 nM), its structure and constituent
fragments are to some extent optimized and desirable
compared to a random molecule. We therefore trained the
networks to reconstruct the trajectories of these known active
ligands. Although this approach may not necessarily output the
single best ligand, the immediate goal is to produce realistic
candidates for consideration by medicinal chemists or other
algorithms. Thus, the challenge is for the FRAME networks to
learn generalizable rules (favorable interactions and synthetic
feasibility) that produced these reference ligands rather than
simply memorizing them.
To simplify the problem and make it amenable to efficient

supervised learning, we break up the trajectories from the
reference ligands into individual labeled examples. To predict
attachment locations, we consider ligand hydrogen atoms as
potential attachment points for the new fragments. Using the
reference trajectories, we computed binary labels for each
ligand hydrogen atom in the intermediate steps, corresponding
to whether the hydrogen would be replaced by a fragment in
the final step. We then trained a neural network to predict
these labels. The resulting FRAME attachment location model
scores each ligand hydrogen atom to determine whether it
should be used as an attachment point (Figure 1).
For the fragment selection step, we trained a scoring

network that is used to rank the candidate fragments. The
resulting FRAME fragment scoring model outputs a numerical
score given a structure with the candidate fragment attached
(Figure 1). Candidate structures are generated by enumerating
fragments from the library, distinct attachment points on each

Figure 1. Overview of FRAME: FRAgment-based Molecular Expansion. Generation begins with a starting molecule (purple sticks) placed within a
protein pocket (gray surface; step 0). The method sequentially adds fragments to the molecule, connected by single bonds, until the molecule
reaches a user-specified goal, such as molecular weight or a predicted stopping point (step N). Each action is broken down into two steps: location
selection and fragment selection. First, to select a location to attach a fragment, potential attachment points are assigned a score by the Attachment
Location Model (purple), an SE(3)-equivariant neural network. The network is trained to recognize likely attachment points using curated
structures of the ligand−protein complexes. After selecting the highest scoring location (red arrow), we generated a set of candidate structures by
sampling fragments and geometries (only a small selection of fragments is shown here). These candidate structures are scored by the Fragment
Scoring Model (turquoise), which again is an SE(3)-equivariant neural network trained using a data set of known ligand−protein complexes. The
best-scoring state is selected, and the process is repeated (step 1).
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fragment, and fragment dihedral angles to a specified
resolution. The training data are derived from the intermediate
states of the reference ligand trajectories. The scoring network
is trained to assign a favorable (negative) score to the reference
intermediate states and an unfavorable (positive) score to the
decoy states. The decoy states are created by randomly
attaching other fragments or sampling other geometries. We
incorporated several fine-tuning strategies; we added more
challenging decoys and weighted the examples depending on
the types of interactions formed with the protein pocket (see
Supporting Information).
The molecular expansion process can output a single ligand

by greedily choosing the highest scoring actions at each step.
Alternatively, the FRAME model scores can be used to inform
more sophisticated search strategies that produce a set of
diverse ligands. In this work, we focus on the greedy case and
leave other search strategies to future work. The molecule
expansion can continue until a user-specified goal is reached
such as molecular weight or number of atoms. Alternatively,
FRAME can automatically detect an end point when the
attachment location model outputs no predicted attachment
points.
Data Sets. For the training and testing data sets, we curated

a collection of high-resolution 3D structures containing drug-
like, relatively high-affinity ligands. An initial set of ligand−
protein complexes were obtained from the PDBBind data
set.35,36 The data set was filtered to remove common
biomolecules (lipids, peptides, carbohydrates, and nucleo-
tides), duplicate ligands, and compounds outside property

ranges. This resulted in a data set of 4200 ligands, with drug-
likeness scores similar to those of FDA approved drugs (Figure
S2). Reference trajectories were created by sequentially
removing fragments from each ligand. We then derived two
data sets: a data set used to evaluate the location to add
fragments and a data set to score candidate fragments. We split
both data sets using the same split of protein−ligand pairs into
training (70%), validation (15%), and test (15%) sets. To
assess the generalizability across diverse proteins, we split these
structures such that no protein in one set had more than 30%
sequence identity with any protein in the other sets. To
improve computational efficiency, we included only amino acid
residues in each binding pocket. To prepare the pocket
structures, we selected residues in close proximity to the
reference ligand. However, we also added noise to this
selection process to avoid the possibility of revealing
information to the model about the exact positions of the
reference ligand atoms (see Supporting Information).
We created a custom fragment library by combining curated

fragments relevant to drug discovery with automatically
detected fragments from the ligand data set (Figure S1,
Supporting Methods). We also accounted for differing
protonation and tautomeric states of the fragments. The data
set consists of 900 unique fragments; however, the vast
majority of these occurred very rarely (Figure S1). To train the
model, we used all of the available fragments in the training set.
For benchmarking tasks, we selected a subset of the 60 most
frequently occurring fragments, which strikes a balance
between efficiency and expressivity (Figure S1). As the

Figure 2. FRAME learns where to attach fragments in order to expand a ligand in the three-dimensional context of the protein pocket. (a, b)
FRAME identifies optimal attachment points for fragments (visualized as growth vectors here) by scoring the ligand hydrogen atoms using a
trained neural network. In the images, red arrows indicate high-scoring attachment points (score ≥ 0.5), while white arrows indicate low-scoring
ones. Comparison with the complete reference ligands (right images) shows that FRAME often selects the actual attachment points utilized in
these ligands. Panel a shows HIV1 protease (PDB 2Q5K), and panel b shows an allosteric pocket of FFAR1 (PDB 5TZY). (c) To evaluate
performance, we plotted a precision−recall curve for FRAME’s ability to correctly identify the attachment points used in reference ligands given
intermediate states. Precision is the fraction of predicted positive data points that are true positives (actual attachment points in reference ligands),
while recall is the fraction of true positive data points correctly predicted as positive. Curves are drawn by calculating the precision and recall at
varying score thresholds. FRAME (solid blue line) achieves a performance well above a random baseline (dashed line). To test the relevance of the
protein pocket information, we trained an additional model (“FRAME no pocket”, solid orange line) that excluded the pocket and observed that
the performance was reduced. The data are derived from 700 examples from the test set.
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fragment identities are not explicitly encoded within the
scoring models, the fragment library can be adjusted to the
specific application.
Architecture and Training. To predict scores from

atomic structures, we used SE(3)-equivariant neural networks,
which capture the precise geometry of the ligand relative to the
protein pocket.33,34,37 These neural networks consist of several
layers, with each layer’s outputs serving as the inputs of the
next layer. The first layer’s only inputs are the 3D atomic
coordinates, chemical element type of each atom, and flags
indicating whether an atom belongs to the ligand, protein, or
candidate fragment when applicable. We did not use any hand-
crafted features or other computed properties. Each layer then
computes new features for each atom based on the geometric

arrangement of surrounding atoms and the features computed
by the previous layer. These SE(3)-equivariant neural networks
take into account the geometry of all atoms in the pocket,
ligand, and candidate fragment, including hydrogens, allowing
the FRAME to implicitly consider factors such as ionizable
chemical groups, stereocenters, and molecular strain.
The final layers of the network aggregate information across

sets of atoms to produce scores. For scoring fragments, the
embedded features of the candidate fragment atoms are
aggregated and passed through dense neural network layers to
yield the final score. For the attachment location model, the
final embedded features of each ligand hydrogen atom are
passed independently through dense neural network layers,
which produces a list of scores corresponding to each

Figure 3. FRAME scoring model selects fragments that form key interactions with the pocket, as desired in ligand optimization. (a, b) FRAME
ranks fragments by scoring each candidate structure with a learned model. Examples show the top 3 ranked fragments (with best scoring
geometries) at left, with selected lower ranked fragments at right. The reference fragment is that found in the reference ligand from the data set.
Hydrogen bonds are indicated by dotted red lines, and π−π interactions by dotted blue lines. These two examples are from PAR polymerase (PDB
3C49). (c) We evaluated the fragment-scoring model by measuring how often it ranked the reference fragment first (filled bars) or within the top
10 fragments (outlined bars). We compared to a random baseline (Random), a version of the model fine-tuned with weighted examples (FRAME +
tuning), and docking scores (Docking). The analysis used 100 ligand−protein complexes from the test set, and error bars indicate the 95%
confidence interval obtained from bootstrapping. (d) We also evaluated the frequency of interactions made by the top-ranked fragments. The
frequency value corresponds to the average number of interactions formed by the added fragment. Bar colors correspond to the methods described
in (c) along with the reference fragment (gray). The analysis used 100 ligand−protein complexes from the test set, and error bars indicate the 95%
confidence interval obtained from bootstrapping.
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hydrogen atom. These scoring networks are rotationally and
translationally invariant�that is, rotation or translation of the
input structures does not affect the output scores, improving
training efficiency and generalizability.

■ RESULTS AND DISCUSSION
FRAME Learns to Rank Individual Fragments in the

Context of the Binding Site. Before applying the full
capabilities of FRAME to add multiple fragments iteratively,
we assessed the model performance on the simpler tasks of
selecting attachment points and ranking fragments.
First, we found that the FRAME attachment location model

selects viable locations to attach fragments. From a visual
inspection, the model frequently identified unobstructed
attachment locations that pointed toward unfilled areas within

the protein pocket (Figure 2a,b). Given intermediate states
from the test set reference ligand trajectories, FRAME often
selects the actual attachment points utilized in the reference
ligands. Quantitatively, 95% of the points selected by the
model are attachment points in reference ligands (precision),
and 92% of the reference attachment points are selected by the
model (recall). The FRAME model far outperforms a random
baseline (Figure 2c), and overall, the model generalizes well for
this task.
FRAME considers the atoms of both the partial ligand and

protein pocket when predicting attachment locations.
Information from the ligand atoms may allow FRAME to
evaluate chemical synthesizability, while the pocket informs the
steric effects and interactions. To test the relative importance
of pocket information, we trained the network only on the
partial ligand atoms (no protein atoms). The performance was

Figure 4. FRAME successfully expands small starting ligands by adding multiple fragments, as desired in fragment-based drug design. Reference
ligands (green sticks) and pockets (gray surface) for three example proteins from the test set are shown in the left column. A small starting
molecule was randomly selected from the reference ligand to initiate expansion; the starting molecule is shown in green in the middle and right
columns. The starting molecules were expanded using FRAME to select attachment points and fragments; the resulting molecules are shown in the
middle column (added fragments shown in purple). We compared these to molecules generated using iterative docking (with Glide) to select
fragments, right column. A single expanded molecule (the one shown in each image) was generated per pocket for each method. Key interactions
are highlighted by circles and dotted lines: hydrogen bonds in red, π−π interactions in blue, and salt bridges in green. (a, b) Detail images show key
residues on the protein pocket (gray sticks) and interactions with ligands.

ACS Central Science http://pubs.acs.org/journal/acscii Article

https://doi.org/10.1021/acscentsci.3c00572
ACS Cent. Sci. 2023, 9, 2257−2267

2261

https://pubs.acs.org/doi/10.1021/acscentsci.3c00572?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.3c00572?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.3c00572?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.3c00572?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://doi.org/10.1021/acscentsci.3c00572?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


degraded (recall 70%, precision 80%) though still better than
the random baseline, indicating the importance of both ligand
and pocket information (Figure 2c).
Next, we evaluated FRAME’s ability to select single

fragments at a given attachment point, which is applicable
for ligand optimization tasks where users want a ranked list of
candidate fragments to consider. We found that the model
often selects fragments that form key interactions, despite the
model having no prior knowledge of these interactions or even
chemical properties like donors and acceptors (Figure 3a,b). In
one case study, FRAME selected ring fragments that formed
both π−π interactions and multiple hydrogen bonds�
important interactions found in the reference ligand (Figure
3a). Notably, FRAME correctly distinguished these hetero-
cycles from other rings that could not form the same
interactions. FRAME was also capable of enriching diverse
fragments. In another example, the top three fragments differ
in size and chemical properties, but all form the same key
hydrogen bond with the pocket (Figure 3b).
FRAME successfully recovers fragments found in reference

ligands (termed reference f ragments) and does so at a rate
higher than that of docking scores. As reference fragments are
optimized relative to random fragments, the ability to enrich

reference fragments is an important quantitative measure of the
model’s performance. On test set examples, the fragment-
scoring model selects the reference fragment as the top choice
45% of the time and within the top 10 fragments 65% of the
time, which is approximately 3 times higher than random
choice or using docking scores (Figure 3c).
FRAME selects fragments that form key interactions with

the protein pocket, which is important for ligand affinity and
specificity. Not all fragments in a ligand are of equal
significance; interactions such as salt bridges are rare but
often essential for a functional effect.38 The fine-tuned version
of the FRAME model selected fragments that form specific
interactions at a rate similar to that of reference fragments,
including salt-bridges and π−π interactions (Figure 3d, Table
S1). We also measured the model’s ability to select fragments
that specifically recover the interactions of the reference
fragments; the fine-tuned version of the model recovers the
interactions 78% of the time (Figure S3, Table S2). In contrast,
docking scores select fragments that form far more interactions
than reference fragments (Table S1 and Table S2). Pending
experimental evaluation, it is unclear if these extra interactions
are in fact deleterious to binding.

Figure 5. FRAME improves predicted affinity relative to starting molecules while maintaining more drug-like chemical properties compared to
other methods. 100 ligands were expanded using FRAME, using 100 unique structures from the test set. A small starting molecule was randomly
selected from the reference ligand to initiate expansion, and multiple fragments were added. The property distributions of the expanded ligands
were compared to those of ligands expanded by using iterative docking (with physics-based docking software Glide). The property distributions of
the reference ligands are also included. The number of heavy atoms of the reference ligand was used to determine when to stop adding fragments
for a particular example. Distributions are plotted using kernel density estimations. (a) Docking scores are Glide scores at the target protein
obtained after restrained minimization of the ligands (lower is better). Distribution of starting molecules is also shown (gray). (b) Off-target
docking scores are the scores of ligands when docked against the other 99 pockets in the test set (higher is better). (c) Synthetic accessibility score,
calculated using the standard implementation in RDKit, is a relative measure of the ease of synthesizing the ligand, with lower scores indicating
easier synthesis. (d) Number of hydrogen bond donors on the ligand that do not form any hydrogen bond with the protein pocket; generally lower
is better to avoid a high desolvation penalty. (e−h) All other properties are standard molecular descriptors computed with RDKit.
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We also explored the robustness of FRAME to perturbations
of the starting molecule such as translations and rotations. The
fragment ranking was generally robust to perturbations with
translation distances less than 0.5 Å and rotations less than 10°
(Figure S4). We found one possible strategy to address larger
perturbations is to first apply a force-field minimization of
ligand coordinates prior to FRAME scoring (Figure S4d).
FRAME Learns to Adds Multiple Fragments to

Produce Drug-Like Ligands. We next applied FRAME to
a fragment-based drug discovery scenario in which multiple
fragments are attached to expand a small starting molecule.
This task requires iterative application of the attachment and
fragment selection models, which is a substantially harder
problem than scoring single fragments. To evaluate the
performance for this task, we applied FRAME to expand 100
molecules for 100 unique test protein pockets, using randomly
selected small substructures from the reference ligands as
starting molecules. We produced one expanded molecule per
pocket. To simplify comparisons, we stopped adding fragments
to the ligand once it reached a similar number of heavy atoms
to that of the corresponding reference ligand, avoiding
significant size differences. For comparison, we also generated
ligands using iterative docking; a state-of-the-art physics-based
scoring function (Glide, see Supporting Information) was used
in place of FRAME scoring to select and position a fragment at
each step. This approach is widely employed in molecular
design software.22,39,40

FRAME often generates ligands that form key interactions
and fill out the pocket similarly to reference ligands, as
demonstrated in several case studies with test set proteins
(Figure 4). As a challenging case study, we applied FRAME to
design inhibitors of hepatitis C virus protease, which presents a
mostly shallow, solvent-exposed binding site (Figure 4a).41

The randomly chosen starting molecule is distant from the
catalytic site needed for high affinity, requiring several precisely
placed fragments to reach it. Promisingly, FRAME was able to
expand toward the active site and place a carboxylate fragment
in an optimal location to form interactions with the catalytic
site residues.41 Because FRAME learns to imitate ligand
growth trajectories, it learns to expand molecules in beneficial
directions even when multiple fragments must be added before
the expanded ligand forms energetically favorable interactions.
In contrast, the ligand generated with iterative docking failed
to enter the catalytic site at all. Standard docking scores
evaluate only immediate interactions at each step, so iterative
docking does not anticipate advantageous growth directions
that require the addition of multiple fragments over several
steps in order to form favorable interactions.
In another example, FRAME was applied to design

inhibitors of protein kinase A starting from a minimal starting
molecule.42 Again, FRAME was able to extend the ligand to
make critical interactions, this time by adding a protonated
piperidine ring (Figure 4b). This mimics the azepane ring in
the reference ligand that is known to be essential for binding.43

The ligand generated with iterative docking failed to form
these interactions. We also investigated a simpler case that
requires less expansion steps: inhibitors of poly(ADP-ribose)
polymerase of interest for cancer therapy.44 FRAME was able
to again extend the ligand effectively (Figure 4c); a
heterocyclic ring extends into a cleft to make π−π interactions
and hydrogen bonds, while an amide links to an aliphatic ring
that occupies a shallow pocket. These features are also present
in the reference ligand. While iterative docking performs better

in this simpler example than those discussed previously, it adds
several extraneous fragments that increase the synthetic
complexity.
We next quantitatively evaluated the properties of ligands

generated by FRAME and found that they matched the drug-
like reference ligands across many key features. We also
compared three alternative methods for generating ligands.
First, we employed iterative docking, as discussed above.
Second, we used random expansion, in which we randomly
selected a fragment that did not clash with the pocket or form
unstable bonds. Third, we compared to virtual screening using a
commercial library of over 30 billion ligands (Enamine REAL
Space) and state-of-the-art docking software (see Supporting
Information). For each set of generated ligands, we measured a
panel of 20 properties (Figure 5, Figure S5) including log P,
synthetic complexity, and docking scores (using the physics-
based scoring function Glide). We note that docking scores are
used here as an indicator of binding affinity, with the caveat
that they provide only a rough estimate of affinity.
The FRAME-expanded ligands improved the predicted

binding affinity relative to starting molecules, as estimated by
median docking scores after energy minimization (−7.54 vs
−4.36 kcal/mol; Figure 5a, Figure S5). We also evaluated
specificity by docking the expanded ligands to all other
nontarget pockets: FRAME improved the docking scores more
for the targets than the nontargets (Figure 5a,b). The median
docking scores of the generated molecules were not as low as
those of the reference ligands (−9.17 kcal/mol), although they
were better than those of ligands from random expansion
(−5.45 kcal/mol). FRAME also excelled at producing ligands
similar to the reference ligand in chemical features, such as
formal charge, number of rings, and number of rotatable bonds
(Figure 5e,g,h). Molecules generated by FRAME had a median
synthetic complexity score slightly higher than that of reference
ligands, likely due to a higher number of stereocenters (Figure
5c, Figure S5).
Molecules produced with iterative docking tended to have

favorable final docking scores (Figure 5a), but they were more
charged and polar than reference ligands (Figure 5e, f).
Iterative docking also produced ligands with the highest
median synthetic complexity of the methods assessed (Figure
5c). We note that the favorable docking scores of ligands
generated by iterative docking are unsurprising given that this
method explicitly optimizes for docking scores. This may tend
to generate ligands whose binding affinity is overestimated
when also evaluated with docking scores.45 By contrast,
FRAME makes no use of docking scores internally but still
manages to improve them. Experimental measurements will be
necessary to determine with confidence how affinities of
FRAME-generated ligands compare to the affinities of those
generated by docking methods.
FRAME also outperformed the virtual screening approach.

For 27 of the 100 proteins in the benchmark, the virtual
screening approach was unable to generate any ligands because
no molecule in the large commercial library contained the
starting molecule as a substructure. In the remaining 73 cases,
the virtual screening method did generate ligands, but these
were overall of lower quality than those produced by FRAME
(Figure S5). For example, the median docking score of the
molecules selected by virtual screening was −6.8 kcal/mol,
worse than the median docking score of the FRAME-generated
molecules at −7.5 kcal/mol�despite the fact that the virtual
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screening method was specifically designed to select ligands
with the best docking scores.
As a final comparison of ligands produced by each method,

we calculated an overall quality score using the statistical
similarity of the property distributions shown in Figure 5 to the
reference ligand distributions (Figure S6). In this evaluation,
we also included LiGAN, a recent machine learning method
that generates complete ligands (not expansions) using density
grids and convolutional neural networks (Figure S7). Ligands

produced with FRAME had the highest overall quality
compared to the other methods evaluated.
To conclude our evaluation, we also confirmed that

FRAME’s performance was robust to changes in the input
protein pocket structure and in particular that FRAME can be
applied effectively to the type of structures available at the
beginning of a ligand optimization process. In the preceding
benchmark (Figure 5) and in FRAME training data, the
protein structures we started with were each determined with a

Figure 6. FRAME fragment scoring model learns to accurately describe specific molecular interactions despite being given no prior knowledge of
such interactions. (a) The FRAME model was used to score a set of ligand-pocket structures that varied only in the dihedral angle of an attached
methyl fragment. Dots represent measured scores, and the solid line is a smoothed spline curve. The lowest model scores (most favorable)
correspond to the staggered conformation, which is the most energetically favorable. The highest scores correspond to the eclipsed conformation
which is the least energetically favorable. (b) To test the recognition of hydrogen bonds, we varied the distance between a donor (backbone amine)
and acceptor (carbonyl) atom and computed a FRAME model score for each structure. The lowest scores corresponded to reasonable distances for
hydrogen bonds (approximately 3 Å). The observed distance corresponds to that in the experimental structure from which this example is derived.
As a control, we replaced the acceptor (carbonyl) with a methyl group and did not observe the same behavior. (c) To test the recognition of π−π
interactions, we varied the distance between the centroids of two perpendicular phenyl rings. The minimum score was close to the observed
distance for π−π interactions in the experimental structure from which this example was derived (3.9 Å). As a control, we replaced one ring with a
methyl group and saw no interaction. (d) To test the recognition of interactions with metal ions, we varied the distance between a carboxylate and
a coordinated calcium ion. The lowest scores correspond to the metal coordination distance observed in this specific experimental structure (2.6
Å). All structures in the figure were curated from the test set.

ACS Central Science http://pubs.acs.org/journal/acscii Article

https://doi.org/10.1021/acscentsci.3c00572
ACS Cent. Sci. 2023, 9, 2257−2267

2264

https://pubs.acs.org/doi/suppl/10.1021/acscentsci.3c00572/suppl_file/oc3c00572_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscentsci.3c00572/suppl_file/oc3c00572_si_001.pdf
https://pubs.acs.org/doi/10.1021/acscentsci.3c00572?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.3c00572?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.3c00572?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.3c00572?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://doi.org/10.1021/acscentsci.3c00572?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


large, high-affinity ligand bound. At the beginning of a ligand
optimization process, a structure would often be available only
with a small, fragment-like ligand bound. We thus constructed
an additional benchmark data set consisting of a pair of
structures for each of 100 proteins�one structure determined
with a large ligand bound and the other determined with a
substantially smaller ligand bound (Figure S8). We found that
FRAME’s performance did not depend on the ligand present
in the experimentally determined structure, even when that
ligand was only a small fragment (Table S3 and Figure S8).
FRAME Learns to Recognize Molecular Interactions.

We next analyzed the FRAME fragment scoring network,
finding that it accurately describes molecular interactions
(Figure 6), despite being given no prior information about
such interactions or physics properties like charge. By learning
these principles rather than memorizing specific atom
arrangements, FRAME can generalize to unseen examples.
First, we examined whether FRAME could identify energeti-

cally favorable ligand conformations by using it to score a
series of structures that varied only in the dihedral angle of a
methyl group. The FRAME scores had a sinusoidal pattern
that aligns with chemical intuition; the most energetically
favorable conformations scored the lowest, corresponding to
the staggered conformation, while the unfavorable eclipsed
conformation scored the highest (Figure 6a).
FRAME also recognized intermolecular interactions, includ-

ing hydrogen bonding and π−π stacking. We varied the
distance between a hydrogen-bond donor on the protein and
acceptor atom on the fragment by pulling the fragment away
from the pocket and scored the resulting conformations
(Figure 6b). The minimum FRAME score corresponded to a
donor−acceptor distance of 2.9 Å, precisely within the
expected range of typical hydrogen bonds. To confirm this
was specific to fragments with acceptors, we repeated the test
with a nonpolar methyl. This fragment had much less favorable
scores and an altered minimum. Thus, the model specifically
recognized the interactions between the donor and acceptor
atoms, given only the chemical elements and geometries.
We performed the same type of experiment with two

aromatic rings (Figure 6c). FRAME identified a ring centroid
distance of about 4 Å as optimal, consistent with the geometry
of typical π−π interactions in proteins. Additionally, FRAME
recognizes metal−ligand interactions despite their rarity in the
data set. For example, the optimal distance between a calcium
ion and carboxylate group as predicted by FRAME matches
the distance observed in the unseen reference structure (Figure
6d). These examples demonstrate the ability of the model to
generalize and learn fundamental physical principles from small
sets of molecular structures.
Conclusions. In this work, we present a method to

efficiently expand a small starting molecule bound to a protein
pocket into a drug-like ligand. Our work provides a novel
hypothesis generation tool for medicinal chemists to accelerate
drug discovery and advances in human health.
FRAME relies on the combination of several key ideas. First,

we break down the generative process into a sequence of
individual actions guided by trained models. This gives our
method flexibility in being applied to diverse optimization tasks
whether they require adding a few final functional groups or
building new scaffolds. Although molecule generation is a
complex, multistep process, we train neural networks efficiently
using supervised learning. Second, FRAME’s rotationally and
translationally equivariant scoring networks consider 3D

structure and geometry, which naturally capture the ligand
within the full context of a protein pocket. Third, we train
neural networks as scoring functions, which avoids encoding
our fragment library within the network itself. Thus, we can
easily vary the fragments for each application, and the model
can be applied to new fragments.
These results come with several caveats. First, FRAME still

fails to produce good ligands in some instances, resulting in
worse docking scores and synthetic complexities than those of
reference ligands. The autoregressive approach is not robust to
occasional mistakes, such as blocking the growth trajectory or
missing a critical interaction. These issues could be resolved by
searching more effectively or combining our approach with
more global structure generation such as denoising diffusion
probabilistic models.46 Furthermore, many of the properties
used in this work for benchmarking are themselves computa-
tional estimates or predictions, including log P, synthetic
accessibility, and docking scores. To fully validate the
effectiveness of molecules produced by FRAME and other
computational methods, these molecules will ultimately need
to be synthesized and their properties will need to be measured
experimentally. Indeed, future work will necessitate the
application of FRAME and related methods to tackle the
challenges of specific, real-world drug design projects.
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