
Abstract. Background/Aim: Tyrosine kinase inhibitor (TKI)
therapy, a principal treatment for advanced non-small cell
lung cancer (NSCLC), frequently encounters the development
of drug resistance. The tumor microenvironment (TME) plays
a critical role in the progression of NSCLC, yet the
relationship between endothelial cells (ECs) and cancer-
associated fibroblasts (CAFs) subpopulations in TKI
treatment resistance remains largely unexplored. Materials
and Methods: The BioProject database PRJNA591860 project
was used to analyze scRNA-seq data including 49 advanced-
stage NSCLC samples across three different time points: pre-
targeted therapy (naïve), post-partial response (PR) to
targeted therapy, and post-progressive disease (PD) stage.
The data involved clustering stromal cells into multiple CAFs
and ECs subpopulations. The abundance changes and
functions of each cluster during TKI treatment were
investigated by KEGG and GO analysis. Additionally, we
identified specific transcription factors and metabolic
pathways via DoRothEA and scMetabolism. Moreover, cell-
cell communications between PD and PR stages were
compared by CellChat. Results: ECs and CAFs were
clustered and annotated using 49 scRNA-seq samples. We
identified seven ECs subpopulations, with OIT3 ECs showing
enrichment in the PR phase with a drug-resistance phenotype,
and ACKR1 ECs being prevalent in the PD phase with
enhanced cell adhesion. Similarly, CAFs were clustered into

7 subpopulations. PLA2G2A CAFs were predominant in PR,
whereas POSTN CAFs were prevalent in PD, characterized
by an immunomodulatory phenotype and increased collagen
secretion. CellChat analysis showed that ACKR1 ECs
strongly interacted with macrophage through the CD39
pathway and POSTN CAFs secreted Tenascin-C (TNC) to
promote the progression of epithelial cells, primarily
malignant ones, in PD. Conclusion: This study reveals that
POSTN CAFs and ACKR1 ECs are associated with resistance
to TKI treatment, based on single-cell sequencing.

Lung cancer is the second most prevalent cancer and the
leading cause of cancer-related deaths worldwide (1). The
majority of patients are diagnosed at an advanced stage (2). To
date, treatment of advanced lung cancer has been transformed
by the discovery of oncogenic driver genes and the subsequent
use of targeted therapy, particularly tyrosine kinase inhibitors
(TKIs) (3, 4). However, most patients eventually develop
resistance to treatment and experience disease progression (5,
6). Despite efforts, the mechanisms behind this resistance to
targeted therapy remain uncertain (6, 7).

The tumor microenvironment (TME) is an important
factor affecting the efficacy of TKIs (8). Previous studies
revealed dynamic changes in immune cell subpopulations
during TKI treatment (9). Specifically, IDO1+ macrophage,
regulatory T cell and dysfunctional T cells were found to be
more prevalent in PD and decreased in PR, which potentially
contribute to TKI treatment resistance. However, the changes
in stromal cell subpopulations during TKI treatment remain
unexplored. Stromal cells encompass all cells except
epithelial and immune cells, mainly comprising cancer-
associated fibroblasts (CAFs) and endothelial cells (ECs)
(10, 11). ECs form tumor vasculature, which provides
nutrients to cancer cells and serves as a barrier to drug
delivery (12, 13). Fibroblasts can enhance drug resistance in
targeted therapy by secreting growth factors such as
hepatocyte growth factor (HGF) (14, 15). In addition, the
heterogeneity and dynamic changes of ECs and fibroblasts
during targeted therapy may be pivotal in the development
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of secondary drug resistance (15, 16). However, there is a
lack of research exploring the dynamic changes in their
heterogeneity during the TKI treatment process. Therefore,
investigating the heterogeneity of these components in the
TME and their evolution before and after TKI treatment will
contribute to addressing the issue of secondary drug
resistance in targeted therapy of lung cancer (10). 

While bulk RNA-sequencing methods can process millions
of cells, single-cell RNA sequencing (scRNA-seq) enables the
specific profiling of cell populations at the single-cell level
(10). This technique enables the characterization of stromal
cell heterogeneity and the identification of dynamic
phenotypic changes during treatment. 

In this study, we aimed to investigate the changes
occurring in stromal cells during TKI treatment in advanced
lung cancer by scRNA-seq. scRNA-seq data from lung
cancer patients before and after TKI treatment were obtained
from the BioProject database PRJNA591860. By performing
clustering analysis, we identified distinct subpopulations of
ECs and CAFs that were enriched in PD or PR. Furthermore,
we evaluated the cell-cell interaction between ECs, CAFs,
and other type of cells during therapy process. 

Materials and Methods

Data acquisition and sorting. The lung cancer single-cell sequencing
data was downloaded from the BioProject database PRJNA591860
(https://www.ncbi.nlm.nih.gov/bioproject/) produced by Maynard A
et al. (9). The original dataset contains the sequencing data of 49
samples (45 lung adenocarcinoma samples, 3 tumor adjacent tissue
(TATs) samples, and one squamous cell carcinoma sample) with a
total of 23,261 cells. The data set samples came from 30 patients,
and were accompanied by detailed clinical data of the patients:
patient-specific driver gene mutations, targeted therapy received by
the patient, and the patient’s stage in the targeted therapy process
before treatment [TN, (TKI naïve)], treatment response period (i.e.
PR after treatment), treatment resistance period (i.e. PD after
treatment), tumor pathological stage, age, whether there was a
history of smoking and other 16 indicators. The original data set also
includes a preliminary clustering of all cells, dividing all cells into
three clusters of epithelial cells, immune cells and stromal cells. 

Data processing and unsupervised clustering. We merged gene
counts as previously described (9) and extracted all stromal cells
from lung adenocarcinoma samples in the dataset with R package
Seurat 4.0.3. Firstly, we removed cells with less than 400 expressed
genes or over 15% UMIs derived from mitochondrial genome.
Genes expressed in less than three cells were also removed. After
quality control, normalization was performed by dividing the UMI
counts per genes by the total UMI counts in the corresponding cells
and log-transforming, and scaling, centering was next conducted.
Then, we performed principal component analysis (PCA) on the
normalized expression matrix using highly variable genes identified
by “FindVariableGenes’’ function and were visualized using a 2-
dimensional uniform manifold approximation and projection method
(Umap) or T-distributed stochastic neighbor embedding (tSNE) plot
with 30 dims on the same distance metric. Finally, for the clustering

of ECs, the top 15 principal components (PCs) of PCA were
selected with a resolution parameter equal to 0.3 and for CAFs, the
top 15 PCs were selected with a resolution parameter equal to 0.1.
Analysis of epithelial cells and macrophages is the same as above.

Differentially expressed genes and cell annotation. “FindAllmarkers”
function of the Seurat package was used to find the differentially
expressed genes in each cell cluster. According to the identified
marker genes for each cluster, we assigned them to known cell types
and used the “plot_scdata” and the “plot_heatmap” function of the
Scillus (Scillus, https://scillus.netlify.app/ ) package to visualize the
unique genes of clusters. KEGG and GO analysis were performed
using top 100 different expressed gene (sorted by log2 fold change)
for each cluster by clusterProfiler (17).

Analysis of transcriptional factors (TFs). DoRothEA (18) is a gene set
resource containing transcription factors (TFs) interacting with their
targets, enabling inference of TF activity from gene expression data.
The viper score of TF in cell clusters was estimated by DoRothEA
within the database containing interactions with confidence level A, B
and C. And “FindAllMarkers” was used to identify the top2 TFs
(sorted by sorted by log2 fold change) of the clusters.

Quantification metabolism activity of each cluster. scMetabolism
(19) is a R package for quantifying metabolism activity at the
single-cell resolution. VISION method was used to estimate the
scores of metabolism pathway and “FindAllMarkers” was used to
identify the unique pathway in each cluster.

Analysis of cell-cell communication. CellChat (20) is a tool that is
able to quantitatively infer and analyze intercellular communication
networks from single-cell RNA-sequencing (scRNA-seq) data.
Firstly, we used “filterCommunication” to filter the interaction in
less than 10 cell and “computeCommunProbPathway” to estimate
the communication probability based on the mRNA expression level
of ligand-receptor pairs. Then, “netVisual_heatmap” and “rankNet”
were used to compare the different interaction strength and pathway.
Finally, we used “netVisual_bubble” to visualize the differential
ligand-receptor pairs.

Statistical analysis. Gene expression comparisons among cell types
and pathway comparisons between PD and PR in Cellchat were
performed using unpaired two-tailed Wilcoxon rank-sum tests. All
statistical analyses and presentation were performed using R 4.0.1.

Results

ECs increase in the process of TKI treatment, while CAFs
decrease in PD. In order to explore the dynamic changes of
ECs and CAFs populations in the process of TKI treatment,
this study extracted the PRJNA591860 data set from the
BioProject database, including 49 lung cancer samples from 30
patients (45 lung adenocarcinoma, 1 squamous Single-cell
sequencing data of epithelial carcinoma, 3 cases of adjacent
tissues). The samples were obtained from patients in three time
points of therapy process: 1) before initiating systemic targeted
therapy [TN, (TKI naïve)]; 2) treatment response period (i.e.
PR after treatment) state, which includes samples taken at any
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time during treatment with targeted therapy while the tumor
was regressing or stable by clinical imaging (PR) and upon
subsequent progressive disease as determined by clinical
imaging; 3) at the stage when tumors showed acquired drug
resistance [progression (PD)] (9). The data set contains a total
of 3678 stromal cells, and Principal Component Analysis
(PCA), cluster analysis and Uniform Manifold Approximation
and Projection (UMAP) dimensionality reduction were applied
to divide the cells into seven subpopulations. 

Based on the established markers of stromal cells in lung
cancer (16), seven clusters were grouped and annotated
(Figure 1A). CLDN5, FLT1, CDH5 were used as EC
markers, and COL1A1, DCN, COL1A2, and C1R were used

as CAFs markers. We defined 979 ECs and 2659 CAFs
(Figure 1B) and used a histogram to compare the proportion
of these cells in different periods (Figure 1C-E). The results
showed that the proportion of ECs continued to increase
from TN to PD, which may provide tumor nutrition and
promote tumor progression in PD (2, 21, 22). While
proportion of CAFs tended to drop in PD, which illustrated
that CAFs had a weak proliferative capacity in PD, but its
other functions may be enhanced.

OIT3 ECs enriched in PR phase and ACKR1 ECs enriched in
PD phase. To further clarify the changes of EC subsets during
targeted therapy, all 979 ECs were extracted and further
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Figure 1. Subpopulations of stromal cells at three time points. (A) Umap visualization of 3,678 stromal cells with its cluster results. (B) Heatmap
showing the expression of marker genes in identified stromal cell clusters. The top bars labeled the clusters corresponding to specific cell types.
(C-E) The proportion of stromal cell clusters (ECs, CAFs and others) in different periods of TKI treatment. ECs: Endothelial cells; CAFs: cancer-
associated fibroblasts; PR: partial response; PD: progressive disease.



divided into 6 clusters. We next attempted to identify marker
genes for each of these clusters and to assign them to known
EC subtypes (Figure 2A and B). In addition, we calculated the
fraction of cells originating from each of the three treatment
groups in each of the 6 EC clusters (Figure 2C).

ACKR1 and lymphatic ECs (TFF3+,PDPN+) were
enriched in PD, with a strong matrix secretion(CLU) and
intercellular signal transduction (ACKR1, CCL21) (Figure
2B; Figure 3A, B), associated with an phenotype of
activated ECs previously describe in prostate cancer (23,
24). And ACKR1 ECs overexpressed ACKR1 and SELP,
both of which play an important role in promoting the
adhesion and tissue migration of immune cell (25, 26).
OIT3 and S100A3 ECs were enriched in PR, expressed
features associated with drug resistance-related metabolic
enzymes (HPGD) and abnormal phagosome (CLEC4G)

(Figure 2B; Figure 3A, B). In addition, we identified RBP7
and FBLN5 ECs preferentially enriching in TN and IL7R
ECs distributing in all periods. 

Finally, to further assess the difference in Transcription
Factor (TF) and metabolism pathway activities among our
ECs clusters, DoRothEA and scMetabolism were applied. We
identified FOSL2 and JUND as candidate transcription
factors underlying rapid proliferation of ARCK1 ECs as
previously described (27, 28). Moreover, elevated Glycolysis
and Pyrimidine metabolism reflects its activation phenotype,
which may be was one of the efficient target of ACKR1 ECs
to inhibit angiogenesis in PD (29, 30) (Figure 3C, D).
Likewise, in OIT3 ECs, genes regulated by NR2F2 and
HHEX were highly upregulated and Riboflavin metabolism
were activated, which may contribute to its resistant
phenotype (31). 
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Figure 2. ACKR1 ECs enriched in PD stage and OIT3 ECs enriched in PR stage. (A) Umap visualization of ECs subtypes derived from TN, PR and
PD patients. (B) Heatmap showing the expression of marker genes in each subtype of ECs and their associated clinical stage information. (C)
Fraction of cells belonging to each treatment stage for ECs clusters. ECs: Endothelial cells; PR: partial response; PD: progressive disease.
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Figure 3. Different EC clusters present distinct functions and metabolisms. (A-B) GO and KEGG enrichment result for the top 100 markers of each
ECs cluster. In parentheses is the number of genes matched to the pathways. (C) Bubble chart of the estimated regulon activity of transcription
factors in each ECs cluster. (D) Bubble chart showing the metabolism pathways enrichment result calculated by scMetabolism. ECs: Endothelial
cells; PR: partial response; PD: progressive disease.



ACKR1 ECs mediate macrophage function through the CD39
signaling pathway in PD. With the dynamic change of EC’s
phenotype across three treatment periods, we hypothesized
that ECs also have distinctive interactions with other cells in
different periods. To explore the cell-cell interaction between
ECs clusters and other cell types, we performed CellChat
analysis and found ECs had a strong interaction strength with
macrophage (MF) (Figure 4A). Next, we re-clustered,
annotated the macrophage and compared the macrophage-
ECs interactions between PR and PD and observed that
ACKR1 ECs - SLC2A5 MF interactions were enhanced
while OIT3 ECs - SLC2A5 MF and OIT3 ECs - EGR1 MF
were decreased in PD (Figure 4B). These collective findings
suggested that different ECs subtypes had distinctive
interactions with macrophages and some interactions may
promote drug resistance from unique cell cluster.

To further explore the ACKR1 ECs - macrophage
communication pathways in PD, we compared the
informative flow between PR and PD and found that CD39
related pathway were enriched in PD (Figure 4B), which can
converse extracellular ATP (eATP) to AMP and thus
potentially inhibit eATP-P2-mediated proinflammatory
response (32). We also verified the expression of ENTPD1
(encoding CD39) in ECs during the treatment and found that
its expression decreased in PR but increased in PD and
expressed mainly in ACKR1 ECs, which further proved the
correlation between ECs CD39 pathway activation and PD
period (Figure 4C). 

In summary, ACKR1 ECs presented a unique interaction
with macrophage. It can promote macrophage migration
through ACKR1 and SELP and activate the CD39 pathway to
inhibit macrophage function and may promote targeted therapy
resistance. Thus, our result suggested that targeting CD39
combined with TKI therapy may prolong the efficacy of TKI
treatment which need further verification by experiments.

POSTN CAFs enriched in PD phase and PLA2G2A CAFs
enriched in PR. To further clarify the changes of CAFs
subsets during TKI treatment, all 2659 CAFs were extracted
and further divided into 7 clusters. Then, we attempted to
identify marker genes for each of these clusters and assigned
them to known CAFs subtypes (Figure 4A, B). In addition,
we calculated the fraction of cell clusters from each of the
three treatment phases (Figure 5C).

POSTN CAFs enriched in PD, with a strong matrix
secretion (COL10A1) and intercellular signal transduction
function (CTHPC1, SULF1) (Figure 5B; Figure 6A, B).
POSTN CAFs overexpressed CTHPC1, COL10A1, POSTN.
According to previous studies, the CTHPC1 gene and its
products can interact with the Wnt pathway and TGF-β/Smad
pathway to promote the migration of tumor cells (33, 34).
COL10A1 has been shown to increase expression in gastric

cancer tissues and plays an important role in promoting
epithelial-mesenchymal transition (EMT) (35, 36). The protein
encoded by POSTN can supports the adhesion and migration
of epithelial cells, promoting cancer stem cell maintenance and
metastasis (37). Therefore, we believed that POSTN CAFs
were closely related to tumor metastasis. 

PLA2G2 CAFs enriched in PR, with a strong intercellular
signal transduction and immune activity (Figure 5B; Figure 6A,
B). PLA2G2 CAFs overexpressed SCARA5 and PLA2G2A.
Previous studies have suggested that SCARA5 acts as a tumor
suppressor gene, which mediates G2/M cell cycle arrest by
inhibiting FOXM1 expression and inhibits the expression of
G2/M cyclins and kinases in A549 cells (38). Most of the
known functions of PLA2G2A are related to inflammation,
immune response, antithrombosis, cell proliferation, ischemic
injury and allergy (39). Studies in both ovarian and gastric
cancer have shown that PLA2G2A can inhibit the proliferation,
invasion and migration of tumor cells by acting on β-catenin
(40). Therefore, we believe that PLA2G2A may play a role in
inhibiting tumor progression during PD.

Finally, Dorothea and scMetabolism were  used to assess
the difference in Transcription Factor (TF) and metabolism
pathway activities among CAFs clusters (Figure 6C, D).
POSTN CAFs was highly enriched at transcription factors
HHEX and ZEB2 while the expression levels of ZEB1 and
NR3CI were higher in PLA2G2A CAFs. Both POSTN CAFs
and PLA2G2A CAFs are metabolically active.

POSTN CAFs mediate epithelial cells, growth through the
TENASCIN signaling pathway in PD. To dissert the dynamic
interaction between CAFs and other cells, we performed
CellChat analysis and found CAFs had a strong interaction
with epithelial cells (mainly malignant cells) (Figure 7A).
We reclustered, annotated the epithelial cells, compared the
epi-CAFs interactions between PR and PD and found that
POSTN CAFs – KRT7 epi interactions were sharply
enhanced in PD while FGFR4 interacts with KRT7 in
opposite trends (Figure 7B). These collective findings
suggested that different CAFs subtypes had distinctive
interactions with epithelial cells, consistent to its great
heterogeneity. And the enhanced POSTN CAFs – KRT7 epi
interaction may contribute to the tumor progression in PD.

To further explore the POSTN CAFs - epithelial cells
communication pathways in PD, we compared the
informative flow between PR and PD and found that
TENASCIN pathway was significantly enriched in PD
(Figure 7C), which can promote the epithelial-mesenchymal
transition and cell proliferation of cancer through TNC-
integrins interaction as previously describe (41). We next
verified the TNC expression in CAFs and ITGAV expression
in epithelial cells found them mainly expressed in PD
(Figure 7D, E), which further proved the activation of
TENASCIN pathway in PD phase. 
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Figure 4. CellChat analysis reveals CD39 related MF- ACKR1 ECs interactions enriched in PD. (A) Heatmap showing the cell-cell communication
strength between ECs clusters and other cell types. (B) Heatmap of differential MF- ECs cell interaction between PR and PD. The elevated
interaction (red block) and down-regulation (blue block) interaction in PD is shown. (C) Histogram showing the up-regulated MF-ACKR1 ECs
interaction pathway in PD. The score of informative flow was calculated by summing all the interaction probability in PD and PR. The pathway
significantly enriched in PD is indicated with red letters, while the pathway significantly enriched in PR is indicated with blue letters, p<0.01. (D)
Violin plot illustrating the expression of ENTPD1 of ECs at different treatment time points. (E) Violin plot indicating the expression of TMIGD3 of
macrophage in different treatment time points. ECs: Endothelial cells; PR: partial response; PD: progressive disease.



In summary, POSTN CAFs had a unique interaction with
epithelial cells. It can promote the tumor epithelial-
mesenchymal transition (EMT) and invasion through
secreting CTHPC1, POSTN and TNC-integrins ligand-
receptor pairs. Thus, our result suggested that targeting
POSTN CAFs combined with TKI therapy may enhance the
efficacy of TKI treatment through reducing synthesis of
abnormal matrix secreted proteins.

Discussion

Targeted therapies against oncogene-driven cancers are
frequently employed, which target the corresponding
oncoproteins. However, these treatments often result in
incomplete tumor response, followed by regrowth due to the
acquisition of drug resistance. The mechanisms underlying
resistance to targeted therapy remain poorly understood. In
our study, we utilized single-cell sequencing data from
patients with advanced-stage NSCLC before and after

targeted therapy. Our analysis identified ACKR1 ECs and
POSTN CAFs as enriched in the PD stage. We discovered
that ACKR1 ECs interact with macrophages and suppress
their function through the CD39 pathway. Additionally,
POSTN derived TNC produced by CAFs may facilitate
tumor EMT and enhanced invasion, both of which contribute
to TKI treatment resistance. Through our analysis at various
treatment time points, we revealed substantial muti-omics
diversity within stromal cells and observed dynamic changes
in cell phenotypes and cell-cell interaction during treatment.
These findings present novel insights for enhancing the
efficacy of targeted therapy in advanced NSCLC.

The concurrent use of vascular endothelial growth factor
(VEGF) inhibitors and EGFR-TKI has emerged as a promising
therapeutic strategy in advanced-stage NSCLC (42, 43),
significantly extending progression-free survival and delaying
TKI resistance, as evidenced in multiple clinical trials (44, 45).
However, the exact mechanism by which antiangiogenic therapy
impedes the development of resistance to targeted treatments
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Figure 5. POSTN CAFs enriched in PD phase and FGFR4 CAFs, PLA2G2A CAFs enriched in PR. (A) Umap visualization of fibroblast subtypes
derived from TN, PR, and PD patients. (B) Heatmap showing the expression of marker genes in each subtype of CAFs. (C) Fraction of cells
belonging to each treatment stage for each CAFs cluster. CAFs: Cancer-associated fibroblasts; PR: partial response; PD: progressive disease.
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Figure 6. Different CAFs clusters present distinct functions and metabolisms. (A-B) GO and KEGG enrichment result for the top 100 markers of
each CAFs cluster. In parentheses is the number of genes matched to the pathways. (C) Bubble chart of the estimated regulon activity of transcription
factors in each CAFs cluster (D) Bubble chart showing the metabolism pathways enrichment calculated by scMetabolism. CAFs: Cancer-associated
fibroblasts; PR: partial response; PD: progressive disease.



CANCER GENOMICS & PROTEOMICS 21: 65-78 (2024)

74

Figure 7. CellChat analysis reveals TENASCIN related epi-CAFs interactions enriched in PD. (A) Heatmap showing the cell-cell communication
strength between CAFs clusters and other cell types. (B) Heatmap of differential epi-CAFs cell interaction between PR and PD. The elevated
interaction (red block) and down-regulation (blue block) interaction in PD is shown. (C) Histogram showing the up-regulated epi- POSTN CAFs
interaction pathway in PD. The score of informative flow was calculated by summing all the interaction probability in PD and PR. The pathway
significantly enriched in PD is indicated with red letters, while the pathway significantly enriched in PR is indicated with blue letters, p<0.01. (D)
Violin plot illustrating the expression of TCN of CAFs in different treatment time points. (E) Violin plot showing the expression of ITGAV of epithelial
cells in different treatment time points. CAFs: Cancer-associated fibroblasts; PR: partial response; PD: progressive disease.



remains elusive. Here, we found ACKR1 ECs enriched in the
PD phase of TKI therapy, characterized by an upregulated
ECM–receptor interaction, enhanced focal adhesion, and active
immune cell engagement, akin to previously observed activated
ECs in prostate, colorectal and ovary cancers (23). Conversely,
OIT3 ECs, predominating in the PR phase and exhibiting FN2
over-expression, can inhibit metastasis and EMT in HCC (46),
indicating their potential role in augmenting TKI efficacy via the
TGFβ/FN2/EMT pathway. Further exploration of their
phenotype revealed a robust interaction with macrophages via
the CD39 pathway in PD. CD39, a leukocyte and endothelial
cell plasmalemma enzyme, mitigates platelet activation and
leukocyte infiltration by hydrolyzing ATP/ADP (47). ACKR1
ECs may prompt macrophages to adopt an immunosuppressive
phenotype through high expression of CD39, thereby fostering
TKI treatment resistance. Conversely, anti-CD39 could bolster
human T-cell proliferation, attenuate macrophage activity, and
curb tumor growth, particularly when combined with anti-PD1
therapy (32). These insights underscore CD39’s potential as a
therapeutic target to enhance TKI responses by revitalizing the
immune response in PD.

CAFs present a tempting and promising therapeutic target
for cancer intervention, however, the effectiveness of CAFs
targeting in enhancing targeted therapy remains incompletely
understood (48). Here, we identified POSTN CAFs enriches
in PD, which secrete extensive amounts of extracellular matrix
proteins and promotes tumor EMT, similar to previously
described CAFs in gastric (49) and lung cancers (16). This
suggests that POSTN CAFs may contribute to TKI resistance
via the EMT pathway, making their depletion a potential
strategy to improve the efficacy of TKI treatment. In addition,
we discovered PLA2G2A CAFs and FGFR4 CAFs enriched
in PR. Notably, FGFR4 CAFs, which overexpress LIMCH1,
suppress the growth of lung cancer by interacting with
HUWE1 (50), hinting they could promote the efficacy of TKI
treatment. Furthermore, we demonstrated that POSTN CAFs
intensively interact with epithelial cells through secreting
Tenascin-C, which binds to various receptors, including
integrin, receptor protein-tyrosine phosphatase-ζ/β and EGF
receptor (41). This interaction promotes EMT via FAK
phosphorylation, as observed in breast cancer (51). Therefore,
targeting Tenascin-C represents a promising approach to
hinder tumor progression and extend the efficiency of TKI
treatments, which have shown survival benefits when
combined with chemoradiotherapy in malignant gliomas (52).

Conclusion

Our study, based on single-cell sequencing, uncovered the
association of POSTN CAFs and ACKR1 ECs with
resistance to TKI treatment. This revelation provides new
insights into potential directions for targeting stomal cells to
enhance the durability of TKI response in advanced NSCLC.
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