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Objective: To explore whether the optimal objective
function weightings change when using a digital human model
(DHM) to predict origin and destination lifting postures under
unfatigued and fatigued states.

Background: The ability to predict human postures can
depend on state-based influences (e.g., fatigue). Altering ob-
jective function weightings within a predictive DHM could
improve the ability to predict tasks specific lifting postures
under unique fatigue states.

Method: A multi-objective optimization-based DHM was
used to predict origin and destination lifting postures for ten an-
thropometrically scaled avatars by using different objective func-
tions weighting combinations. Predicted and measured postures
were compared to determine the root mean squared error. A
response surface methodology was used to identify the optimal
objective function weightings, which was found by generating the
posture that minimized error between measured and predicted
lifting postures. The resultant weightings were compared to de-
termine if the optimal objective function weightings changed for
different lifting postures or fatigue states.

Results: Discomfort and total joint torque weightings were
affected by posture (origin/destination) and fatigue state (unfatigued/
fatigued); however, post-hoc differences between fatigue states and
lifting postures were not sufficiently large to be detected. Weighting
the discomfort objective function alone tended to predict postures
that generalized well to both postures and fatigue states.

Conclusion: Lift postures were optimal predicted using
the minimization of discomfort objective function regardless of
fatigue state.

Application: Weighting the discomfort objective can
predict unfatigued postures, but more research is needed to
understand the optimal objective function weightings to predict
postures during a fatigued state.
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INTRODUCTION

Design of workspaces, equipment and
clothing, including physical prototyping, is
expensive, and particularly so within the mili-
tary sector. Using the military sector as an ex-
ample, millions of dollars are spent each year on
projects related to the design and evaluation of
physical prototypes in the United States alone
(Department of Defense, 2017). Additionally,
costs rise considerably as the number of physical
prototype variations evaluated is increased, es-
pecially when only one option will ultimately be
selected for production (Ahmed et al., 2019;
Dufty, 2012; Hofbauer et al., 2011; Jun et al.,
2019). Computer aided engineering (CAE), or
the use of computer software to simulate per-
formance in order to improve design, also re-
ferred to as virtual prototyping, can substantially
reduce costs. By increasing the use of CAE,
equipment, workspaces and clothing design,
iterations can be developed and evaluated vir-
tually, reducing the need for more extensive,
costly physical prototyping (Bordegoni & Rizzi,
2011). However, the ability to evaluate human
interactions with new workspace designs or
equipment is often poorly considered within
CAE, and is often only considered during more
costly physical prototype design stages (Chaffin,
2009). Digital human modelling (DHM) soft-
ware can be used to identify and evaluate
human-systems integration concerns within
CAE. This allows designers to identify and
correct possible human factors and ergonomics
concern before physical prototypes are built,
saving time and money. Such issues would
otherwise go unnoticed until the later physical
prototype stage of development. Though DHM
software is readily available to evaluate human-
systems integration within CAE, use and uptake
remain limited, partially due to limited guidance
on how to predict postures for individuals under
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unique physiological states such as fatigue
(Davidson et al., 2021).

One method that DHMs use to predict and
simulate human postures is by leveraging
optimization-based models. Optimization-based
DHMs assume that humans inherently choose
postures that minimize or maximize physio-
logically relevant performance criteria, an as-
sumption well supported by current theories
motor control (Abdel-Malek & Arora, 2013;
Cashaback & Cluff, 2015; Scott, 2004; Todorov
& Jordan, 2002; Yang, 2009). The mathematical
formulations of the physiologically relevant
performance criteria being optimized are con-
sidered objective functions. In emerging
DHM’s, multiple objective functions are avail-
able for users to include within their predictions.
Yet, little evidence is available to guide end-
users in deciding which objective functions best
predict realistic postures, particularly when
considering individual state factors such as
fatigue.

Selecting physiologically relevant objective
functions that represent plausible goals of the
sensorimotor system is a challenge. Multiple
physiologically relevant performance criteria
may compete and/or cooperate and their relative
priority may alter with changes in task demands
or an individual’s state (Berret et al., 2019;
Cashaback & Cluff, 2015; Jin et al., 2019;
Sparrow & Newell, 1998; Yang, 2009). Human
gait is an example where associated objective
functions are relatively well-defined during
steady state walking, where commonly used
performance criteria include minimizing muscle
activations and maximizing gait stability and
smoothness (Miller et al., 2012; Nguyen,
Johnson, Sup, & Umberger, 2019). However,
objective functions that best predict postures
specific to the completion of occupational tasks,
such as lifting, overhead reaching, pushing, and
pulling remain poorly defined. A relatively
unstudied consideration is how individual states,
such as fatigue, may alter the relative weightings
of objective functions (Davidson et al., 2021;
Ma et al., 2009). Identifying optimal objective
function weightings and understanding pro-
spective differences in underlying objective
functions and weightings will improve the
ability to utilize DHMs to support virtual

prototyping for a wider range of design
characteristics.

Santos Pro (SantosHuman Inc., Coralville,
Iowa) is a current and widely used DHM so-
lution that allows user to predict postures by
using a multi-objective optimization approach.
Users can select and weight up to 7 different
objective functions, depending on what ob-
jectives might be most relevant to a situation.
These objective functions include the minimi-
zation of 1) discomfort, 2) maximum joint tor-
que, 3) total joint torque, 4) change in potential
energy, 5) effort, 6) joint displacement and 7) the
maximization of vision. These objectives were
selected as the mathematical representations of
objectives that past research has identified as
most likely to inform human movement sol-
utions (see Abdel-Malek & Arora, 2013 for
a more complete review). However, objectives
including the minimization of discomfort,
maximum joint torque, and total joint torque
may have the most support when considering
both the DHM-based optimization literature and
the broader motor control literature. Discomfort
is a well-established objective function within
the literature (Marler, Rahmatalla, et al., 2005;
Rochambeau et al., 2008). While discomfort is
usually measured as a subjective phenomenon,
the perception of discomfort seems to be linked
to three underlying phenomena, the tendency to
prefer more neutral postures, the tendency to
require joint angles near end range and the
tendency to move distal segments more readily
than proximal segments (Marler, Rahmatalla,
et al.,, 2005). Additionally, an extensive body
of literature supports objective functions that
have similar aims to the minimization of max-
imum joint torques (squared joint torque nor-
malized to max torque producing capacity) and
total joint torques (squared joint torques)
(Crowninshield & Brand, 1981; Dul et al.,
1984). Joint torque related objectives are par-
ticularly interesting when considering fatigue, or
the reduction in torque generating capacity over
time during a task. Where discomfort might
serve as a good objective function to predict
postures under unfatigued states, we speculate
that under fatigued states it is possible that joint
torque related objective functions may better
predict postures. Understanding which objective
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functions are best suited to predict postures
under specific states (like unfatigued or fatigued)
remain an open question.

The purpose of this study was to identify the
objective function weightings that best predict
origin and destination postures in unfatigued and
fatigued states during a floor-to-shoulder height
box lifting. Additionally, we investigated if
optimal objective function weightings were
different when predicted origin relative to des-
tination lifting postures, or when predicting
postures in unfatigued or fatigued states. We
hypothesized that the fatigued state postures
would be better predicted with higher weight-
ings towards the torque-based objective func-
tions compared to the unfatigued states in both
the origin and destination lifting postures.

METHODOLOGY

We used a combination of in silico and in vivo
data to address our research question which we
briefly summarize here before describing de-
tailed methodology below. First, we used
a commercially available software (Santos Pro)
to predict postures at the origin and destination
of a floor-to-shoulder lifting task (in silico data).
We varied the settings in the software to sys-
tematically change the weighting factors for
three objective functions, where each iteration
generated a unique lifting posture for the pre-
scribed lift origin and destination characteristics.
Not knowing which iteration, or weighting
factor combination generated the best pre-
diction, we then compared each predicted pos-
ture (defined as a vector of joint angles) to
postures measured experimentally (in vivo data)
(also defined as a vector of joint angles). These
postures were compared for participants lifting
from an origin to a destination with the same
characteristics used to constrain the predicted
origin and destination postures. By plotting the
resultant differences between predicted and
measured postures (where measured postures
were participant specific), we identified the
weighting combinations corresponding to the
predicted postures that were most similar (least
deviation in joint angles) to each participant’s
measured data, which we term optimal
weightings. We then used the optimal

weightings as our dependent measure to un-
derstand how the optimal weightings differed
when predicting: i) origin versus destination
postures, and ii) posture in unfatigued or fa-
tigued states.

Generating in silico Data

Santos Pro software was used to predict
postures at the origin and destination of a floor to
shoulder height lift. Santos Pro is a physics-
based human simulation software that uses
a multi-objective optimization algorithm to
predict joint angles (design variable) subject to
internal (e.g., joint range of motion limits) and
external (e.g., feet must remain on floor, hands
must be on box handles) constraints. Users are
able to select from and/or alter the weighting of
several unique objective functions, termed
performance measures in the software, based on
the needs of the analysis. However, limited
evidence is available to help users determine the
objective function settings that best predicts
realistic human postures. To address this con-
cern during lifting, we used Santos Pro to predict
origin and destination floor-to-shoulder height
lifting postures for ten unique avatars. Each
avatar was anthropometrically scaled (height
and weight) to create a digital twin for each
participant that had completed a 60-minute re-
petitive floor-to-shoulder height lifting protocol
(Oomen et al., 2022). Origin and destination
postures were predicted for each avatar 1,331
times, where the objective function settings were
varied on each iteration to change the weighting
allocated to each of three objective functions.

We focussed on manipulating the weightings
of three objective functions available in the
Santos Pro software including the minimization
of: Discomfort, Maximum Joint Torque and
Total Joint Torque. The word discomfort is often
referred to in the literature but is typically poorly
defined given its subjective nature (Abdel-
Malek & Arora, 2013). However, for the pur-
pose of being consistent with the setting labels in
the Santos Pro software, we maintain the use of
the discomfort term throughout. More specifi-
cally, the discomfort objective function included
three factors (Equation (1)): the tendency to
maintain a comfortable neutral position
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(standing with arms at the side); the tendency to
move body segments sequentially (limbs, then
spine and then sterno-clavicular); and the ten-
dency to avoid joint end ranges of motion.

Equation 1. Shows the discomfort objective
function. Firstly, optimizing for the tendency to
settle towards a neutral position where q rep-
resents a posture, Aq;""™ is the normalized (to
range of motion) change in joint angle for
a degree of freedom from the neutral position
where the avatars are modelled with a total of
215 degrees of freedom. Secondly, variable v; is
a weight used to prioritize the movement of
specific joints over others (Marler, Yang, et al.,
2005). G is a coefficient equal to 10°. Lastly, QU
and QL are penalty terms associates with values
approaching the joint upper and lower range of
motion limits, respectively.

DoF

1
fi@)=5 > _[n(ag™) + G QU+ G*OL]
i=1
(1)

The minimization of total joint torque aimed
to minimize effort defined as the square of all
joint torques (Equation (2)) and the minimi-
zation of maximum joint torque minimized the
squared torque normalized to the torque limit
of the respective degree of freedom adapted
from Marler, Knake, and Johnson (2011)
(Equation (3)).

Equation 2. Shows the objective function for
minimizing total joint torque (dynamic effort)
adapted from Xiang et al., (2012) where vari-
able t; represents the torque for a given degree
of freedom, variable (q) is the resultant posture.

DoF

hla)= > 7 @)

Equation 3. Shows the minimization of maxi-
mum joint torque objective function equation
where t; represents the torque for a given degree
of freedom, (q) is the posture and t,,,, represents
the maximum torque limit of a degree of
freedom.

fs(q)=§(ri ) 3)

i—1 Timax

Within the software, priority can be given to
different objective functions by selecting
a weighting percentage between 0% and 100%.
Different objective function weightings can alter
the relative prioritization of the specified ob-
jective and therefore alter the predicted posture
(defined by joint angles). The combinations of
the various objective functions within the Santos
Pro software are not required to add to 100%, but
rather work more like manipulating hot and cold
taps to output water of a preferred temperature.
Where each tap can be manipulated between
0 and 100%, each objective can contribute 0—
100% of its possible effect on the predicted
posture. For this analysis, objective function
combinations were iteratively simulated at 10%
weighting increments from 0 to 100% for each
of the three objective functions. Each combi-
nation (n = 1331) yielded a unique predicted
posture.

The participant specific avatars were subject
to internal and external constraints. Internal
constraint included the joint range of motion and
joint torque limit data defaults within Santos Pro
which are based on previous research (Cahalan
et al., 1989; Gill et al., 2002; Kaminski et al.,
1999; Kumar, 1996). Predictions were also
constrained to remain in balance using the zero-
moment point stability constraint in the soft-
ware. This constraint requires that a predicted
posture be subject to the avatar maintaining the
centre of pressure at the feet within their base of
support. Previous research highlights the im-
portance of considering this internal constraint
when predicting postures for lifting tasks (Xiang
et al., 2008).

To contextualize the predictions to the ex-
perimental data (Oomen et al., 2022), we used
three external constraints. First, we used end
effector and marker target pairings within the
software to enforce the hand position (defined
using end effectors on the second and fifth
metacarpals of each hand) of each digital twin to
be in a position within the virtual environment
software that was equivalent to the actual hand
position of the participant within the lab
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coordinate system. Second, we enforced a sim-
ilar external constraint on the feet (defined using
end effectors on the first and fifth metatarsals of
each foot) to ensure that the feet of the digital
twin avatar were in the same relative location as
their companion live participant. Third, point
loads were added to the third metacarpal-
phalangeal joint of each digital twin, equiva-
lent to the loads handled by their live human
counterpart. Loads were applied bilaterally as-
suming an equal distribution of mass between
the hands. Postures (joint angles for all degrees
of freedom between the fixed hands and feet)
were then predicted for all 1,331 objective
function weighting configurations.

Description of in vivo Data

Previously measured motion capture data
were obtained from ten participants (six female
and four male) recruited from a university
population who were completing a 60-minute
repetitive lifting protocol for the purpose of
evaluating movement variability and fatigue
(Oomen et al., 2022). Complete details of the
study protocol are reported by Oomen et al.,
(2022). Here, we only summarize salient details
specific to our modelling efforts. Participant
demographics data are described in Table 1. The
experimental study protocol complied with the
American Psychological Association and was
approved by the University of Waterloo Office
of Research Ethics Committee (ORE# 41674).
Informed consent was obtained from each
participant.

In brief, participants were instrumented with
a whole-body, passive reflective, motion capture
marker set (Figure 1) to define the kinematic
skeleton (anatomical markers) and to track
lifting kinematics (marker clusters). A static
calibration trial (Vicon, Centennial, Co, USA)
was collected with the full marker set. Following
calibration, the marker clusters remained on the
participants for the duration of the lifting task
and the anatomical landmarks were removed
with the exception of the head, hand, radial
styloid, ulnar styloid, trunk markers (C7, T7,
Xyphoid and suprasternal notch) and foot
markers. Consistent with best practice for lim-
iting skin motion artefact when measuring

TABLE 1: Demographics Information for the Par-
ticipants Who Completed the Fatigued Lifting

Protocol and Who Were Included in the
Simulations

Demographic Male (N = 4) Female (N = 6)
Age (years) 26.8 £ 3.9 222+ 40
Height (cm) 176.3 = 11.5 162.2 = 4.0
Weight (kg) 64.5 + 11.0 61.9 +10.2

human movement (Leardini et al, 2005), marker
clusters were used to track segment motions and
to reconstruct the anatomical landmarks based
on the relationships quantified from static cali-
bration trial. Box motion was also tracked using
passive reflective markers placed on the four
corners of the box. The passive reflective marker
trajectories were captured using a 12-camera
Vicon motion capture system (Vicon, Centen-
nial, Co, USA) sampled at 100 Hz.

Participants completed two-handed, floor-to-
shoulder height lifting at a self-selected pace and
technique for a duration of 60 minutes or until
volitional fatigue (Figure 2). Each participant’s
required lifting load corresponded to 30% of
their maximum lifting capacity as determined
using the EPIC Lifting Capacity test (Matheson
et al., 1995). Every 15 lifts, participants were
asked to provide their rating of perceived ex-
ertion (RPE) based on the Borg 6-20 scale
(Borg, 1982). For this study, lift data were ex-
tracted from the first completed lift (unfatigued)
and the last completed lift prior to volitional
fatigue, or at the end of the 60-minute duration
(fatigued).

Marker trajectories for the first (unfatigued)
and last (fatigued) lifts were labelled and gap
filled within Vicon Nexus software (Vicon,
Centennial, CO, USA). After the marker tra-
jectories were visually assessed for quality, the
marker trajectory data were imported into Vis-
ual3D (v.6.01.03, C-Motion, Germantown, MD,
USA). Visual3D was used to create subject
specific kinematic models that enabled us to
reconstruct the required anatomical landmark
data including, medial and lateral malleoli,
medial and lateral femoral condyles, left and
right anterior superior iliac spines, left and right
acromion, medial and lateral epicondyles (upper
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Anterior View Posterior View

Figure 1. Locations of the passive reflective motion capture
anatomical markers and marker clusters (Davidson et al.,
2022).

s

Figure 2. A participant performing the floor-to-shoulder
height box lift while in the lift origin posture.



516

February 2024 - Human Factors

arms). Marker trajectories were filtered with
a zero-lag, second order, low pass Butterworth
filter with an effective cut-off frequency of 6 Hz
(Winter, 2009).

Our focus was on the posture at the origin and
destination of lift, so we extracted the marker
trajectory data from those two frames. The or-
igin and destination of the lift were defined using
the bottom left box marker position and velocity
data, respectively. Lift origin was defined when
the box marker was displaced by 5 cm in the
global Z-position (using the standard engi-
neering convention) from its resting position on
the bottom shelf height. The lift destination was
defined as the time point after origin when the
velocity (norm of the x, y and z trajectory ve-
locities) of the box marker reached zero.

As noted above, Santos Pro can be used to
predict a posture in the absence of motion data
by using multi-objective optimization, where the
posture is defined as a vector of angles for each
degree of freedom, or joints within the model. In
addition to predicting postures, Santos can also
be used as an inverse kinematic model when
motion capture data is available. We used our
motion capture data as an input into the Santos
Pro inverse kinematic model to calculate the
joint angles that corresponded to the measured
motion capture data. In this way, the joint angle
definitions for the predicted postures and for the
postures calculated using measured data were
consistent and could not be a source of error.

To use Santos Pro as a kinematic model, we
needed map subject specific measured landmark
data to each digital avatar. Virtual markers (re-
ferred to as anatomical hardpoints within Santos
Pro) were added to each digital twin avatar over
the same anatomical locations where anatomical
markers were placed on the live participants.
Measured anatomical marker trajectories were
paired with their respective anatomical hard-
points to posture the avatar. Two anatomical
markers were mapped per segment with the
exception of one anatomical marker for the left
and right clavicle and shoulder blade segment.
All chosen anatomical landmarks can be seen in
Figure 3. Joint angles (Table 2) that corre-
sponded to the motion capture driven posture
were extracted as the in vivo dataset. Joint angle
data derived from the motion capture driven

postures were compared against predicted joint
angles from in silico simulation.

Response Surface Methodology

We had joint angle data defining origin and
destination lifting postures in unfatigued and
fatigued states for ten participants. Using digital
twin avatars, we predicted 1331 unique postures
for each origin and destination posture, by sys-
tematically varying the weighting of three ob-
jective functions available in the Santos Pro
software. We used a response surface method-
ology (RSM), consistent with our previously
description of the method (Davidson et al., 2021).
The RSM was used to identify which origin and
destination predicted postures and corresponding
weighting factor combination, produced joint
angles that were the closest to the joint angles
observed by participants in the in vivo study
during an unfatigued and fatigued state. The aim
of the RSM approach was to define a surface that
mapped the error between predicted postures and
motion capture driven postures across different
combinations and permutations of the discom-
fort, maximum joint torque, and total joint torque
objective functions. The resultant error response
surface (specific to each participant at each po-
sition in each fatigue state) was fit with a re-
gression function, where the resultant functions
were minimized to identify the optimal objective
function weighting combination that minimized
the error between predicted and motion capture
driven postures (Figure 4).

Based on our previous analysis of different
methods for estimating the difference in joint
angles from measured and predicted postures
(Davidson et al., 2021), we calculated a singular,
representative root mean squared error term, for
each comparison. To generate a singular term, for
unique degrees of freedom at each joint (Table 2)
we subtracted the joint angles defining the pre-
dicted posture from joint angles defining the
motion capture driven posture. We then divided
each difference by the total range of motion for
each specific degree of freedom to normalize the
joint angle differences relative to the joint range
of motion and squared the quotient (Equations
(4)—(6)). Degree of freedom specific error terms
were averaged across all the different degrees of
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Figure 3. Shows the anatomical hardpoints placed on the

avatar in the same positions as the anatomical markers of the
experimental participants. The following anatomical mark-
ers were mapped to their associated anatomical hardpoints
for each body segment: first and fifth metatarsal (feet),
medial and lateral malleoli (shanks), medial and lateral
femoral condyles (thighs), left and right anterior superior
iliac spines (pelvis), C7 and centre of manubrium (trunk), left
and right acromion (clavicles and shoulder blades), medial
and lateral epicondyles (upper arms), ulnar and radial styloid
processes (lower arms), second and fifth metacarpals

(hands), left and right forehead (head).

freedom within a joint to produce an average
squared joint error term. In total, six joints were
included to produce a total joint error similar to
methods described by Xiang et al., (2010). To
create the root mean squared error (RMSE), the
average of the normalized squared error differ-
ences for each joint were calculated, the square
root was taken, and the resultant values were
expressed as a percentage.

Equation 4. Shows the calculation for nor-
malized difference between the predicted and
motion capture driven joint angles (q). This
calculation was completed for all degrees of

freedom (DoF) with each of their respective
ranges of motion (RoM). All normalized dif-
ferences were squared.

Normalized Joint DoF Squared Error
B (Predicted DoF q — Simulated DoF q) :

DoF RoM
4)

Equation 5. Shows the calculation of the av-
erage normalized joint error (€) across all
degrees of freedom within a joint.
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TABLE 2: Joints and Associated Degrees of Freedom for Each Joint Included Within the Analysis

Joint Number of Degrees of Freedom Degrees of Freedom
Ankle 2 Plantarflexion/Dorsiflexion
Inversion/Eversion
Knee 1 Flexion/Extension
Hip 3 Abduction/Adduction
Flexion/Extension
Internal/External Rotation
Trunk 3 Lateral Bending
Flexion/Extension
Rotation
Shoulder 3 Abduction/Adduction
Flexion/Extension
Internal/External Rotation
Elbow 1 Flexion/Extension

Average Joint Squared Error( € )
> _Normalized Joint DoF Difference )
B nDoF

Equation 6. Shows the root mean squared error
(RMSE) for the combination of six joints of
interest. Where the mean of the six average joint
squared errors were calculated and the square
root of that value was found and expressed as
a percentage.

* 100

(©)

RMSE = \/(eA"W + Eknee + Emp + imnk + Eshoutder + Estpow)

Consistent with Davidson et al., (2021), nor-
malized RMSE response surfaces were fit with
multivariate regression functions. R” values were
output for linear, quadratic, cubic and quartic
powers to determine the best fit. A predicted R
was calculated using a leave one out (LOO) cross
validation approach as a metric of model over-
fitting. Two criteria were used to determine which
regression model’s equation would be used to
determine the best objective function weighting
coefficients. Firstly, the highest R* was chosen
assuming it was an improvement over the lower
power by an R? of at least 0.05. Secondly, the
highest R* was only chosen if the difference
between the R? and the predicted R* was 0.05 or
less. Once the best regression model was chosen,
the associated regression equation was optimized,

using fmincon in MATLAB, to find the objective
function coefficients with the least error (Math-
works, R2020, Natrick, MA). The objective
function configuration with the least error as
determined by the optimized regression equations
were retained as the dependent variables for
statistical analysis.

Statistical Methods

To determine if systematic changes in the
optimal objective function weightings were
observed between fatigue states for both the
origin and destination postures, Friedman’s
analysis of variance tests were applied to each
objective function weighting using IBM SPSS
Statistics (Version 27.0, IBM Corporations,
Armonk, NY). The dependent variables were the
participant specific optimal objective function
weighting coefficients (discomfort, maximum
joint torque and total joint torque) and the two
independent variables were the position (origin
and destination) and state (unfatigued and fa-
tigued). An alpha value of less than 0.05 de-
termined if significant differences were detected
between an objective function’s weighting co-
efficients across location or fatigue state con-
ditions. Post-hoc ~ Wilcoxon  pairwise
comparisons were conducted with a Holm—
Bonferroni correction to determine signifi-
cance between conditions within an objective
function.
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Figure 4. RSM approach for determining the optimal objective function weightings to allow
simulation predicted postures to match empirical motion capture data (Davidson et al., 2022).
Adapted from Davidson et al., (2021), motion capture data was mapped onto an avatar via an-
atomical hardpoints. The global position of the avatar’s hands and feet were then used as constraints
for the predicted postures. Objective functions weightings were iteratively simulated at a set
resolution and each predicted posture was compared to the origin motion capture driven posture to
determine an error. All errors for a given posture and prediction set produced a surface which was fit
with a regression function and then optimized to find the best objective function weighting.

RESULTS

Five participants met volitional fatigue
throughout the fatigue lifting protocol and 5
completed a total of 60-minutes of lifting;

however, all participants reported an RPE value
greater than 14 by the end of the lifting protocol,
where RPE values greater than 14 have been
associated with muscle fatigue (Jakobsen et al.,
2014; Sundelin & Hagberg, 1992). Lift protocol
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TABLE 3: Participant’s Protocol Completion Time, Number of Lifts Completed and Final RPE Score

Participant Completion Time (min) Total Lifts Final RPE
1 38 333 19
2 35 285 20
3 60 510 16
4 59 615 19
5 60 540 17
6 60 495 17
7 27 255 20
8 60 510 18
9 60 495 18
10 57 345 20

completion time, total number of lifts and peak
final RPE values can be seen in Table 3.

RMSE was plotted as a function of objective
function weightings for each participant, spe-
cific to each location (origin and destination) and
fatigue state (unfatigued and fatigued). Figure 5
demonstrates an exemplar RMSE plot for Par-
ticipant 3. Based on the exemplar plots optimal
objective function weighting configurations
(dark blue data points) tended to prioritize the
minimization of discomfort objective function
with minimal contributions of the minimization
of maximum and total joint torque objective
functions.

Response surfaces were fit with multivariate
regression models. The type of model was
specific to each RMSE surface where four
RMSE surfaces were best fit using a linear
model, eight using a quadratic model, 17 using
a cubic model, and 11 using quartic a model
(Table 4). The mean R-squared model fit across
all models was 0.46 £+ 0.20. Mean predicted R-
squared, using the LOO-CV approach across all
models was 0.44 + 0.20. Mean residual RMSE
across all models was as 3.35% + 1.29% nor-
malized RMSE. Model fits varied between
participant, lifting posture and fatigue state.

Resultant  optimal  objective  function
weighting coefficients were not normally dis-
tributed, so the median and interquartile range of
the regression predicted lowest normalized
RMSE for each posture and fatigue state was
calculated. Friedman’s tests were conducted to
compare weightings for each objective function

between location (origin and destination) and
fatigue states (unfatigued and fatigued) detected
significant differences for discomfort (Fried-
man’s Q (3) = 8.152, p = .043) and total joint
torque (Friedman’s Q (3) = 8.143, p = .043).
Maximum joint torque showed no differences
between postures and fatigue states (Friedman’s
Q (3) = 2.426, p = .489). However, post-hoc
Wilcoxon pairwise comparisons revealed no
statistically significant differences in objective
function weightings between postures or fatigue
states. The pairwise comparison closest to sig-
nificance was found within the discomfort ob-
jective function between fatigued origin and
unfatigued destination (Z = 1.4, p = .092).
Optimal objective function weighting co-
efficients for each participant within each lift
posture and fatigue state are shown in Table 5.

DISCUSSION

Weighting minimization of discomfort, not
maximum or total joint torque, best predicted lift
origin and destination postures in an unfatigued
state. Counter to our hypothesis, weighting
minimization of discomfort, in the absence of
maximum or total joint torque, also best pre-
dicted lift origin and destination postures in
a fatigued state suggesting that no statistically
significant systematic shift in objective function
weightings was present with fatigue. These re-
sults, however, may be more nuanced. The
median optimal weighting for discomfort did
seemingly, although not statistically
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Figure 5. Normalized RMSE response for participant 3. Each axis represents a respective objective
function weighting within the multi-objective optimization model. The colour bar corresponds to the
normalized RMSE calculated at each objective function weighting where dark blue represents the
lowest error and dark red represents the highest error.

significantly, decrease (group level change) to
best predict fatigued lifting postures relative to
when predicting unfatigued lifting postures.
However, the optimal weighting for maximum
joint torque only increased for a selection of the
participant sample (individual level change).

This may suggest considerable inter-participant
variability in sensorimotor control responses to
fatigue, or inter-participant variability in the
accumulation of fatigue, and in turn, the need to
adapt sensorimotor control strategies. It remains
important to  consider inter-participant
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TABLE 4: Multivariate Model Statistics for Each Participant Under Each Condition

Un-Fatigued Origin

Fatigued Origin

Participant Number Power R? PR? RMSE Power R? PR? RMSE
1 4 0.46 0.43 2.93 4 0.55 0.52 2.85
2 4 0.55 0.52 3.26 3 0.37 0.35 5.02
3 3 0.60 0.58 2.24 4 0.67 0.64 2.84
4 2 0.73 0.73 4.48 3 0.44 0.42 3.66
5 2 0.42 0.41 2.09 2 0.14 0.12 3.52
6 1 0.04 0.03 2.70 1 0.02 0.02 8.19
7 3 0.16 0.13 2.94 2 0.18 0.16 3.68
8 4 0.74 0.72 3.10 1 0.23 0.22 5.32
9 4 0.79 0.77 2.27 3 0.46 0.44 3.06
10 3 0.62 0.61 3.27 4 0.49 0.44 3.37
1 3 0.47 0.45 3.08 2 0.37 0.36 3.98
2 2 0.41 0.40 3.54 3 0.61 0.60 3.66
3 3 0.72 0.71 1.78 3 0.62 0.60 2.12
4 1 0.26 0.26 4.84 2 0.26 0.25 5.27
5 3 0.44 0.42 2.94 3 0.35 0.33 5.18
6 4 0.69 0.67 1.80 3 0.47 0.45 2.66
7 2 0.25 0.23 4.56 4 0.62 0.59 1.75
8 3 0.30 0.27 4.12 3 0.68 0.66 1.74
9 3 0.36 0.34 3.03 3 0.35 0.33 2.95
10 4 0.62 0.59 2.38 4 0.73 0.70 1.83

Note: PR? is the predicted R? value calculated with a leave one out cross validation. RMSE (degrees normalized to total
range of motion) is the root mean squared error of the residuals between the actual input values and the model

predicted values.

variability in sensorimotor control strategies for
lifting and inter-participant variability in fatigue
accumulation when attempting to use DHMs to
predict fatigued lifting actions in a manner that is
representative of a population.

The inherent multi-objective nature of the
discomfort weighting, the overlapping goals of
the discomfort and joint torque objectives, and
inter-participant variability may all explain why
we observed that the singular use of discomfort
best predicted lift origin and destination pos-
tures. Previous research investigating multi-
objective optimization to predict lifting pos-
tures when using a DHM have observed that
approaches which integrate more than one ob-
jective function reduce prediction errors when
compared to single-objective (i.e., minimizing
jerk, joint torque or stability) optimization (Song
etal., 2016; Xiang et al., 2010). However, it may
not be surprising that discomfort played

a dominate role in our study because discomfort
was inherently formulated as a multi-objective
function combining the tendency to maintain
a comfortable neutral position (standing with
arms at the side); the tendency to move body
segments sequentially (limbs, then spine and
then sterno-clavicular joint); and the tendency to
avoid joint end ranges of motion. As a result, our
data support that lifting postures are likely best
predicted by using multi-objective optimization,
or alternatively when optimizing singular
functions which are inherently multi-objective,
like the mathematical formulation of discomfort
in our study.

We may not have observed a more compel-
ling shift from discomfort to maximum joint
torque with the onset of fatigue due to the
overlapping goals of these two objectives. As
observed by Fischer et al., (2015) lifters indeed
tend to lean forward at the destination when
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TABLE 5: Shows the Model Predicted Objective Function Weighting Coefficients to Minimize Normalized
RMSE. Optimal Objective Function Weighting Medians and Interquartile Ranges (IQR) are Also Shown

Participant Number Discomfort Maximum Joint Torque Total Joint Torque
3 S 3

< 2 5 o« 205 o« 28

k) i © k) i © i) % ©

S 5 4 £ 8 5 & &5 548 ¢

3 5 3 & 3 5 3 & 3 5 3 &

u 2 L 2 u- 2 U 2 U 2 v D2

s £ 5 £ 5 & 5 £ 5 & 5 °F

1 82 32 46 57 0 0 18 40 0 0 0 0
2 31 36 100 50 0 55 0 13 0 0 0 0
3 53 30 100 100 0 0 0 0 0 0 0 0
4 42 48 100 62 22 25 100 49 0 0 0 0
5 71 100 100 43 100 0 0 26 0 0 0 0
6 100 0 45 100 0 100 0 0 0 0 0 0
7 53 64 74 50 0 71 42 15 100 51 0 0
8 26 100 100 100 0 100 0 0 11 0 0 0
9 22 48 100 100 0 0 0 0 0 0 0 0
10 57 27 100 38 23 9 0 0 26 0 0 0
Median 53 42 100 60 0 17 0 7 0 0 0 0
IOR 33 19 30 50 17 67 13 23 8 0 0 0

fatigued, in part to reduce the moment arm at the
shoulder, consistent with maintaining the
shoulder closer to the neutral posture (i.e.
avoiding end range). One aim of the minimi-
zation of discomfort objective function tested in
our study is to avoid joint end ranges of motion
which may predict postures that reduce the
moment arms thereby decreasing the resultant
torque. If minimizing the tendency to use joint
end ranges of motion indirectly minimizes the
torques, this may explain why previous research
has found minimization of total and maximum
joint torques to be good predictors of lifting
postures (Ayoub, 1998; Song et al., 2016; Xiang
et al., 2012, 2010). Having aspects of torque-
based objectives within discomfort may also
explain why it tended to predict the lowest
normalized RMSE between motion seeded and
optimization predicted postures.
Inter-participant variability may also explain
why there was an observed a trend towards the
singular use of discomfort to best predict lifting

postures. Previous work (Marler et al., 2009;
Marler, Yang, et al., 2005) has suggested that
prediction accuracy can be improved when
combining another objective functions with the
discomfort objective function; however that
work only used one participant and therefore did
not capture between participant variability. At
the individual participant level, it was clear that
some participants (e.g., participant 1) followed
the findings reported by Marler et al., (2009) and
Marler, Yang, et al. (2005), where others did not
(e.g., participant 3). Therefore, multiple ob-
jectives may be best for predicting an in-
dividual’s behaviour; however, when taking the
mean across a group of participant responses,
discomfort appears to consistently predict well
while the other objectives vary more in their
performance.

As further explanation of the role of inter-
participant variability, it is possible that in-
dividuals within the sample varied in how they
accumulated fatigue, or how they adapted their
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sensorimotor control strategies with the onset of
fatigue. A varied response to fatigue during
lifting has been seen in the literature where
Bonato et al. (2003) and Fischer et al. (2015),
found that individuals moved from stoop style
(larger trunk segment angle) lifting postures to
more squat style (smaller trunk segment angle)
lifting postures. In contrast, Fogleman and
Smith (1995), Sparto et al., (1997), and Van
Dieén et al., (1998), found increased lumbar
flexion and less knee joint angle changes with
prolonged lifting bouts as fatigue progressed.
Variation across studies is likely explained by
variation in the underlying samples in terms of
control strategies and the accumulation of
fatigue. With these contrasting results present
in the literature it is likely that participants
within this study experienced similar differ-
ences in their fatigue progression leading to
the high wvariability in optimal objective
function weightings to predict their lifting
postures.

Median objective function weightings for the
minimization of discomfort trend towards higher
values for the destination lift postures than origin
lift. Although there were no significant differ-
ences found between the two posture conditions,
the trend showing potential for unique objective
function weightings for an origin and destination
posture within a single movement or task is an
important  consideration. However, when
choosing objective function weighting config-
urations to best predict full movement profiles or
the postures of a number of different movements’
movement, end-users may find it cumbersome to
be frequently changing their objective function
weighting configurations. Further analysis is
needed to investigate the extent to which optimal
objective function weightings change within
movements or tasks.

Ultimately, our goal is to aid end-users in
making decisions about which objective functions
to select and how they should be weighted when
predicting lifting postures. Variability in our data
highlights that the median values may or may not
be appropriate depending on the intended design
goals. When predicting group behaviour for lifting
tasks, prioritizing the minimization of discomfort
will be helpful to predict realistic postures. This is
because median values for discomfort ranged

between 42% and 100%, and only one participant’s
optimal objective function weighting combination
included a 0% weighting for discomfort. The use of
maximum and total joint torque objective functions
was not as clear and appears to depend on the
individual and fatigue state. Trying to predict fa-
tigue responses and individual specific postures
may not be feasible given the current data due to the
high variability in the postural adaptations that each
individual may have to fatigue.

Limitations

A sample of ten total participants may have
limited our resolution to observe differences in the
optimal weighting coefficients between an un-
fatigued to a fatigued state when considering
pairwise comparisons. This is the first study
aimed at identifying optimal objective functions
weightings to predict lifting postures. Un-
fortunately, we did not know a priori, that the
optimal objective function weightings would vary
as much as we observed based on this sample. We
hope our data can inform more targeted sample
size calculations in future work. Additionally,
participants may have varied in the amount of
fatigue that accumulated during the 60-minute
protocol, which may help explain the between
participant variability. Although RPE values
greater than 14 have previously been associated
with muscle fatigue (Jakobsen et al., 2014;
Sundelin & Hagberg, 1992); RPE is a perception
based measure, and other factors such as boredom
or changes in a participant’s attention could have
influenced the perceived exertion. Given the
observed between participant variability, it may
be necessary that future work aiming to identify
optimal objective function weightings considers
a large sample size to get sufficient statistical
power. Additionally, the participants were all
recruited within the university and therefore were
all university aged. While a wider range of ages
may further increase between participant vari-
ability, age as a trait factor, may play an important
role objective function weightings (Song et al.,
2016). Only one lifting range (floor-to-shoulder
height) was used for the purposes of this analysis
and other lifting ranges may have yielded di-
vergent results thereby potentially limiting the
generalizability of these results.
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The anthropometry of the digital human model
avatar was scaled to the height of the participants
based on the ISO-3411 anthropometric survey.
Unlike the Visual3D model development, the
subject link lengths were only scaled based on
participant height rather than segment lengths as
determined by anatomical landmark markers.
This difference in segment length estimation
may have led to postural differences between
the experimentally collected data and the av-
atar seeded motion data. It is not known the
specific segment length errors that were
present between the participants and their
unique avatars; however, segment length
measures or estimates may be useful in the
future to scale the avatar segments of interest
for improved validity in seeding avatar motion
with motion capture. The hand loads were also
assumed to be evenly distributed between left
and right hands of the avatars. Since a specific
lifting technique was not prescribed, this may
not be the case for our participants. If par-
ticipants chose to use lift the box in a way that
did not evenly distribute the load between their
hands, this may have explained some potential
differences between the experimental postures
and the predicted postures. In the future, hand
load estimations for non-constrained lifting
tasks that allow for asymmetric movement
may help improve the accuracy of the pre-
dicted postures, due to the improved load
modelling accuracy.

CONCLUSION

Origin and destination lifting postures were
best predicted when weighting the minimization
of discomfort objective function, without
weighting towards joint torque-based objective
functions. As researchers continue to uncover
and mathematically model constructs that hu-
mans tend to optimize for when performing
occupational tasks, in the near term, this evi-
dence supports that a discomfort based objective
function (inclusive of tendency to maintain
a neutral position, to move body segments se-
quentially, and to avoid joint end ranges of
motion) may optimally predict lifting pos-
tures. Additionally, these data suggest that
lifters may begin to prioritize different

objectives as they fatigue, where some par-
ticipant’s fatigued postures were better pre-
dicted by reducing the weighting towards
discomfort and increasing the weighting to-
wards minimizing maximum joint torque.
However, between participant variability may
play an important role in how a lifter may
experience fatigue, and subsequently alter
their postures with fatigue. This may limit the
ability to robustly predict fatigued lifting
motions at a group level in the near term.
Continued research is important to ensure that
DHMs can adequately consider the physio-
logical states (fatigue) and environmental
effects on human-system interactions that
designers are interested in (Davidson et al.,
2021) to improve the utility of DHMs to
support virtual prototype assessments for
both military and industry sectors alike.
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KEY POINTS

Multi-objective optimization-based digital human
model require end-users to input weighting pref-
erences for objective functions to predict postures
How state factors (e.g., fatigue) influence postures
and subsequently objective function weightings
when predicting postures is an important consid-
eration for designers

A novel response surface methodology approach
was used to identify the optimal objective func-
tion weighting configurations to predict lifting
postures

The minimization of discomfort objective function
alone tended to predict the postures that minimize
error between predicted and empirical motion
capture joint angles

Fatigue state may influence the weighting between
discomfort and maximum joint torque objective
function weightings
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