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In order to screen for new polyomaviruses in samples derived from various animal species, degenerated PCR
primer pairs were constructed. By using a nested PCR protocol, the sensitive detection of nine different
polyomavirus genomes was demonstrated. The screening of field samples revealed the presence of a new
polyomavirus, tentatively designated chimpanzee polyomavirus (ChPyV), in the feces of a juvenile chimpanzee
(Pan troglodytes). Analysis of the region encoding the major capsid protein VP1 revealed a unique insertion in
the EF loop of the protein and showed that ChPyV is a distinct virus related to the monkey polyomavirus
B-lymphotropic polyomavirus and the human polyomavirus JC polyomavirus.

Members of the family Polyomaviridae are nonenveloped
icosahedral viruses with a circular double-stranded DNA ge-
nome approximately 5,000 bp in size (6). Early genes encode
two or three regulatory proteins, designated tumor antigens
(T-Ag), and late genes encode the structural proteins VP1,
VP2, and VP3 (7). With the exception of avian polyomavirus
(APV) (14), polyomaviruses are highly species specific (6).
Until now, 13 polyomaviruses infecting humans, monkeys, cat-
tle, rabbits, rats, mice, hamsters, geese, and various bird spe-
cies have been identified (6, 15). Most mammalian polyoma-
viruses cause subclinical infections with lifelong persistence in
their natural nonimmunocompromised hosts (20), whereas
polyomaviruses of birds are causative agents of acute disease
with high mortality rates (22, 23, 26). The inoculation of mam-
malian polyomaviruses into newborn laboratory rodents in-
duces multiple-tumor growth (7, 16, 35). It is still a matter of
debate whether polyomaviruses of animals can be transmitted
to humans and thereafter cause disease (5, 11, 29, 37).

The monkey polyomaviruses simian virus 40 (SV40), B-lym-
photropic polyomavirus (LPyV), simian agent 12 (8), and ba-
boon polyomavirus 2 (12) and bovine polyomavirus were orig-
inally identified as contaminants of tissue cultures (7). An
unrecognized contamination of rhesus monkey kidney cell cul-
tures used for the production of the Salk poliovirus vaccine
from 1955 to 1963 lead to the exposure of an estimated 100
million people to SV40 (11). To avoid further risk of infection
with unidentified polyomaviruses and to investigate their in-
volvements in disease, broad-spectrum PCRs for the detection
of thus far unknown polyomaviruses were established in this
study.

For the identification of conserved regions, the genome se-
quences of 10 polyomaviruses (9, 10, 15, 17, 21, 24, 25, 27, 28,
32) were aligned and 12 primers (Table 1) with binding sites
within short regions with high similarity were constructed.
Three different nested broad-spectrum PCRs were performed

with a PTC-200 Peltier thermal cycler (MJ Research; contrib-
uted by Bio-Rad, Munich, Germany) using 100 pmol of prim-
ers and 2.5 U of Taq DNA polymerase with buffer Y (PeqLab,
Erlangen, Germany) in 50-�l reaction mixtures. The optimized
cycling protocol included 5 min of incubation at 95°C, followed
by 45 cycles each of 94°C for 30 s, 46°C for 1 min and 72°C for
1 min, and 72°C for 5 min. For nested PCR, 4 �l of the first
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TABLE 1. Oligonucleotides used in polyomavirus
broad-spectrum PCRs

PCR Primer
designation Sequencea (5�-3�)

Product
length
(bp)

VP1 specific
1st PCR VP1-lf CCAGACCCAACTARRAATGA

RAA
829–1137

VP1-1r AACAAGAGACACAAATNTTT
CCNCC

Nested PCR VP1-2f ATGAAAATGGGGTTGGCCCN
CTNTGYAARG

249–273

VP1-2r CCCTCATAAACCCGAACYTC
YTCHACYTG

VP3-VP1 specific
1st PCR VP3-1f CTCCAGGAGGTGCAMABC

AAMG
562–631

VP3-1r TGCAATTCCAGAGGTTCNCC
NCCNAC

Nested PCR VP3-2f ACTGGATGCTGCCTYTAMTT
YTAGG

394–459

VP3-2r TCAGTTTTTACAGTTACWGC
YTCCCACAT

T-Ag specific
1st PCR T-1f GATGTTTCCTTTCTARRTT

NAC
536–551

T-1r GCAAAGATCAAAAAAGCATH
TGYCA

Nested PCR T-2f AAATGATCTCTCAAGTTATC
NARRTT

208–235

T-2r AAAGGTCCAGTTAATAGTGG
NAARAC

a B,C�G�T; H,A�C�T; M,A�C; N,A�C�G�T; R,A�G; W,A�T;
Y,C�T.
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PCR product was used as the template in a similar reaction at
95°C for 5 min, 45 cycles of 94°C for 30 s, 56°C for 30 s and
72°C for 30 s, and 72°C for 5 min. PCR products were visual-
ized by ethidium bromide-stained 2% agarose gel electrophoresis.

The primer combinations were tested with genomic DNA of
SV40, BK polyomavirus (BKPyV), JC polyomavirus (JCPyV),
LPyV, murine polyomavirus (MPyV), mouse pneumotropic
polyomavirus (MPtV), hamster polyomavirus (HaPyV), goose
hemorrhagic polyomavirus, and APV that was rescued from
plasmids and circularized by using 3 U of T4 DNA ligase
(Promega, Madison, Wis.) in an overnight reaction at 16°C. A
total of 1 ng of DNA was used as the template for the PCR. In
all cases, secondary PCR products of the expected lengths were
amplified with each of the three protocols (data not shown).
The highest intensity of specific bands, however, was obtained
with the VP1-specific protocol (Fig. 1A).

When this protocol was applied to 17 samples derived from
different animal species with various clinical problems (data
not shown), a specific PCR product was detected only in the
case of sample 12 (Fig. 2A). This sample was derived from the
feces of a juvenile chimpanzee (Pan troglodytes) that had severe
diarrhea, previously tested positive for rotaviruses and Salmo-
nella spp., and was kept in captivity with two other chimpan-
zees The amount of polyomavirus DNA in the sample was
small, as a specific band was detected only after nested PCR

but not after the first or the second PCR alone (Fig. 2B). After
the cloning and sequencing of the PCR product, a similarity
search with BLAST 2.1.3 (1) revealed a relationship with but
no identity to VP1-encoding sequences of polyomaviruses. The
suspected new virus was designated chimpanzee polyomavirus
(ChPyV).

FIG. 1. Testing the VP1-specific nested broad-spectrum PCR
(A) and the ChPyV-specific PCR (B) with different polyomavirus ge-
nomes. Genomic DNA of SV40, BKPyV, JCPyV, LPyV, MPyV,
MPtV, HaPyV, goose hemorrhagic polyomavirus (GHPV), and APV
was excised from plasmids and circularized by use of T4 DNA ligase.
For the ChPyV plasmid, DNA carrying the cloned secondary PCR
product of sample 12 was used. A total of 1 ng of DNA was used as the
template for each PCR. PCR products were separated on ethidium
bromide-stained 2% agarose gels. (�) Ctrl, negative control; M, DNA
ladder mix (Fermentas, Vilnius, Lithuania).

FIG. 2. Detection of DNA sequences of a new polyomavirus in
clinical sample 12 derived from a chimpanzee. (A) PCR products of
seven field samples (#11 to #17), SV40-infected Vero cells (SV-40),
and the negative control [(�) Ctrl] were separated on ethidium bro-
mide-stained 2% agarose gels. (B) Analysis of products amplified with
primers VP1-1f and VP1-1r (1st PCR) and primers VP1-2f and VP1-2r
(2nd PCR) with single PCR protocols or with the first PCR followed by
the second PCR in a nested PCR protocol by ethidium bromide-
stained 2% agarose gel electrophoresis. The template DNA was
derived from sample 12, SV40-infected Vero cells (SV-40), or the
negative control [(�)-Ctrl]. M, DNA ladder mix (Fermentas). (C) Phy-
logenetic relationships of the new polyomavirus (ChPyV) with 10 other
polyomaviruses, based on the nucleotide sequences of the whole VP1-
encoding region, aligned by the ClustalW method.
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Based on this sequence, a PCR amplifying a 195-bp frag-
ment of the ChPyV VP1 gene was developed by using primers
ChPyV-s (5�-TTTCAGCTGCTGATATCTGTGGT-3�) and
ChPyV-as (5�-TCTGGGCCTGTCATAGGTTGTC-3�). The
cycling profile was 95°C for 5 min, 40 cycles each of 95°C for
30 s, 60°C for 30 s, and 72°C for 30 s, and finally 72°C for 5 min.

Only the cloned ChPyV sequence, and no DNA of nine other
polyomaviruses (Fig. 1B), was amplified by this PCR. Testing
fecal samples from the group of chimpanzees mentioned
above, derived at different time points, showed that this PCR
reacted positively with only one chimpanzee during the period
of diarrhea (data not shown).

FIG. 3. Alignment of the deduced amino acid sequences of the VP1 of 11 polyomaviruses. Letters in the consensus sequence (in italics) indicate
amino acids that are identical in all sequences; periods indicate positions where amino acids are not identical. Regions of VP1 forming outer loops
as determined from the crystal structure of SV40 are boxed and designated BC, DE, EF, and HI loops according to reference 19.
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One hundred microliters of a dilution (1:10 in phosphate-
buffered saline) of sample 12 was inoculated onto subconfluent
monolayer cell cultures of human (293T and HeLa), monkey
(MA104, MARC-145, and Vero), and canine (MDCK) origins,
respectively. After 1 h at 37°C, the mixture was removed and
the respective medium was added. After 6 days at 37°C and
three cycles of freezing and thawing, cellular debris was re-
moved by centrifugation and fresh cultures were infected with
the supernatant. After five passages and an observation period
of 6 weeks, however, no cytopathic changes were observed. A
ChPyV-specific PCR with DNA isolated from cells from the
fifth passage remained negative (data not shown).

Virus was concentrated from the supernatant of a suspen-
sion of sample 12 by ultracentrifugation. DNA extracted from
the resulting pellet was analyzed by the VP3-VP1-specific and
T-Ag-specific nested broad-spectrum PCRs, respectively. A
polyomavirus-specific product was amplified with the VP3-
VP1-specific PCR, whereas the T-Ag-specific protocol re-
vealed only unspecific products. Primers 5�-GTTAAATGGC
GCCTCCCAGGAAAAG-3� (delineated from the VP3-VP1-
specific product) and ChPyV-as amplified the 5�-region of the
VP1 gene. Primers ChPyV-s and 5�-GTTTCCCAGTAGGTC
TCNAATAAA-3� (containing the putative polyadenylation sig-
nal for the early mRNA, which is italicized here) amplified the
3� region of the VP1 gene. These PCRs were performed using
the FastStart high-fidelity PCR kit (Roche, Mannheim, Ger-
many). Although many other primers were tested in different
combinations, no more polyomavirus-specific PCR products
could be amplified from the sample.

Analysis of the assembled complete VP1-encoding nucleo-
tide sequence (GenBank accession no. AY691168) was per-
formed using MegAlign (DNASTAR, Madison, Wis.) with the
ClustalW method (34). The lowest percentage of identity
(55.8%) was found in comparisons to MPtV and MPyV,
whereas LPyV and JCPyV showed the highest percentages of
identity (60.5 and 61%, respectively). Phylogenetic trees estab-
lished using the ClustalW (Fig. 2C), ClustalV, or Jotun Hein
method consistently showed that ChPyV branches between
LPyV and a group formed by SV40, BKPyV, and JCPyV.

On the deduced amino acid (aa) level (Fig. 3), the highest
sequence variability is found within the BC, DE, EF, and HI
loops forming the outer surface of the viral particle (19) and in
the N- and C-terminal parts of VP1. The outer loops are
involved in receptor binding (31) and carry antigenic epitopes
together with the C-terminal part of VP1 (3, 13, 30). Phyloge-
netic analysis shows that these regions of ChPyV VP1 are
distinct from corresponding regions of all other polyomavi-
ruses, whereas the remaining part of ChPyV VP1 is closely
related to that of LPyV (data not shown). With 395 aa resi-
dues, VP1 of ChPyV is the largest among those of the poly-
omaviruses, mainly due to an insertion of about 10 aa within
the EF loop. This loop is located mainly at the vertices of VP1
pentamers and contributes to capsid stability by the binding of
calcium ions but also extends to the outer surface of the viral
capsid. A putative nuclear localization signal (RKR, aa 5 to 7)
and a putative calcium binding domain (E172, D175, and
D372) can be deduced from the ChPyV VP1 sequence.

Broad-spectrum PCRs were successfully utilized for the de-
tection of new viruses, e.g., herpesviruses (36) and papilloma-
viruses (2). A broad-spectrum PCR was also developed for the

detection of polyomaviruses (39); however, by testing 32 hu-
man tumor samples and 14 cell lines, no polyomavirus-specific
sequences were amplified (38). In our investigation, nested
PCR protocols developed to increase sensitivity proved to be
essential, as none of the single PCRs alone was capable of
detecting ChPyV DNA in sample 12. In further studies, this
PCR should be applied to the screening of animal and human
samples or tissue culture-derived products for polyomaviruses.

Using this approach, DNA of a novel polyomavirus was
detected. Attempts to isolate virus from this sample failed,
most probably due to the small amounts of virus, the poor
quality of the sample, or a nonpermissive tissue culture system.
ChPyV DNA could also be present in the feces of the chim-
panzee due to nonproductively infected inflammatory cells
which invaded the gastrointestinal tissue; hence, no infectious
virus could be isolated. It remains unclear whether ChPyV
infection may cause disease in chimpanzees. A distinct clinical
picture could not be linked to infection with LPyV (4, 18, 33),
which turned out to be most closely related to ChPyV. Further
investigations should record the prevalence of ChPyV infec-
tions in chimpanzees with and without disease. With regard to
the close relationship between chimpanzees and humans, the
screening of human samples for ChPyV would be of special
interest.
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