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Abstract Cardiovascular disease is the leading cause of death worldwide. Its prevalence is rising due to ageing populations and the increasing 
incidence of diseases such as chronic kidney disease, obesity, and diabetes that are associated with elevated cardiovascular risk. 
Despite currently available treatments, there remains a huge burden of cardiovascular disease-associated morbidity for patients 
and healthcare systems, and newer treatments are needed. The apelin system, comprising the apelin receptor and its two endogenous 
ligands apelin and elabela, is a broad regulator of physiology that opposes the actions of the renin-angiotensin and vasopressin systems. 
Activation of the apelin receptor promotes endothelium-dependent vasodilatation and inotropy, lowers blood pressure, and pro-
motes angiogenesis. The apelin system appears to protect against arrhythmias, inhibits thrombosis, and has broad anti-inflammatory 
and anti-fibrotic actions. It also promotes aqueous diuresis through direct and indirect (central) effects in the kidney. Thus, the apelin 
system offers therapeutic promise for a range of cardiovascular, kidney, and metabolic diseases. This review will discuss current 
cardiovascular disease targets of the apelin system and future clinical utility of apelin receptor agonism.
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1. Introduction
The global prevalence of cardiovascular disease has nearly doubled in the 
last 30 years, and mortality is rising. In 2019, 18.6 million deaths were at-
tributed to cardiovascular causes, equating to around one-third of all global 
deaths.1 Much of this mortality is due to population growth and ageing, and 
the associated accumulation of risk factors, although the increase in 
age-standardized rates of cardiovascular disease in some regions suggests 
that other factors also contribute. Hypertension remains the leading risk 
factor for cardiovascular disease, affecting over one-quarter of the world’s 
population.2 Additionally, the prevalence of chronic kidney disease, type 2 
diabetes mellitus, and obesity is increasing and each independently contri-
butes to cardiovascular disease risk.1

Endothelial dysfunction is central to the development of cardiovascular dis-
ease, promoting inflammation, thrombosis, and the development of arterial 
stiffness.3 Current management of cardiovascular disease focuses on the 
use of antihypertensive medications, antiplatelet agents, and cholesterol- 
lowering therapies. Several of these agents improve endothelial function.3,4

However, despite these therapies, cardiovascular disease is associated with 
an unacceptable burden of morbidity and mortality, and there is increasing ur-
gency to find newer treatments. An agent that could provide cardiovascular 
protection and benefit associated conditions would be particularly attractive.

The apelin system is a broad regulator of physiology. It consists of the 
apelin receptor (encoded by the APLNR gene previously known as APJ) 

and its two endogenous ligands, apelin and elabela (also known as 
Toddler).5 The system is a particularly appealing target for cardiovascular 
disease as it promotes endothelium-dependent vasodilatation, inotropy, 
lowers blood pressure, and increases aqueous diuresis. Activating the ape-
lin system also has metabolic and renal benefits. This review will provide an 
overview of the role of apelin signalling in the (patho)physiology of cardio-
vascular disease and the potential benefits of apelin treatment. The follow-
ing should be consulted for a more detailed discussion of apelin agonism in 
disorders of water balance,6 diabetes mellitus,7 obesity8,9 and metabolic 
disorders,10,11 and apelin analogues and therapeutic agents.6,12,13

2. The apelin system
2.1 Apelin
Apelin, encoded by the APLN gene on the long arm of the X-chromosome, 
was the first ligand identified for the apelin receptor in 1998.14 Apelin pep-
tides are formed by cleavage of the 77-amino acid precursor, pre-proapelin 
(Figure 1 and Table 1). Pyroglutamated apelin-13 ([Pyr1] apelin-13) is the pre-
dominant isoform in the human cardiovascular system and plasma,15,16 with 
other biologically active isoforms including apelin-36, apelin-17, and apelin-13 
also detectable.5 The half-life of these peptides is short (a few minutes) and 
may be even shorter in vivo than ex vivo, a major limitation for clinical appli-
cation.17 Apelin peptides are cleaved by plasma kallikrein, neprilysin, and 
angiotensin-converting enzyme 2 (ACE2).18–22 Interestingly, only neprilysin 
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has been demonstrated to inactivate apelin peptides fully, which may be of 
significance when considering the benefits of neprilysin inhibition in heart fail-
ure.19 In humans, apelin mRNA is expressed throughout the vasculature, the 
central nervous system and in many organs including the heart, lungs, and kid-
ney.5 Apelin protein is predominantly found within endocardial and vascular 
endothelial cells, suggesting that circulating apelin may originate from these 
tissues.23 Centrally derived apelin (e.g. from magnocellular neurons) may 
also contribute to circulating apelin.24 However, plasma apelin concentra-
tions are low so it does not appear to be a major circulating hormone and 
it may function in an autocrine/paracrine manner.

2.2 Elabela
Elabela, the second ligand for the apelin receptor from the APELA gene, is a 
54-amino acid peptide that was originally identified in the human genome 
as a potentially secreted peptide in 2013 and provided an elegant explan-
ation for the difference between the phenotypes of apelin and apelin re-
ceptor knockout mice.25,26 Whilst animals lacking apelin develop 
normally,27 those lacking the apelin receptor show significant cardiovascu-
lar developmental defects and many do not survive to birth.27,28 Similarly, 
mice lacking elabela show cardiovascular defects and embryologic lethality. 
However, there are some differences between the phenotypes early in 
embryogenesis with ∼10% of elabela mutants showing abnormal yolk 
sac vasculature with variable cardiac malformations in contrast to only 
∼2% of apelin receptor mutants.29 Embryos lacking the apelin receptor 
also show abnormal tail bending. Therefore, it is possible that elabela 
may also signal through currently unidentified alternative pathways. 

There are several predicted mature isoforms of elabela peptides, 
elabela-32, elabela-21, and elabela-11 (Table 1).25,26 At present, elabela 
has only been detected in the vascular endothelium and the kidney in adult 
humans.30,31 Of note, the half-life of elabela-32 in human plasma ex vivo is 
10 times longer than that of apelin.32 Intriguingly apelin and elabela interact 
with different amino acids in the orthosteric binding site of the apelin re-
ceptor, although impact on signalling remains to be explored.33–35

2.3 The apelin receptor
The apelin receptor was first identified in 1993.36 It is a G-protein coupled 
receptor that shares ∼50% homology with the angiotensin II-type 1 recep-
tor (AT1) but is not activated by angiotensin II. In fact, the actions of the ape-
lin system broadly oppose those of the renin-angiotensin system.37–43 The 
apelin receptor couples to pertussis toxin-sensitive Gi proteins, and binding 
of either apelin or elabela results in inhibition of adenylyl cyclase and a re-
duction in intracellular cyclic adenosine monophosphate.44 Downstream 
signalling then occurs via extracellular regulated kinases (ERKs) and phos-
phoinositide 3-kinase (PI3K)-AKT pathways.5,44 The resulting physiological 
action is dependent on the cell type activated. Proposed apelin and elabela 
signalling pathways are shown in Figure 2A.45–47

Following receptor activation, β-arrestins are recruited and the receptor 
is internalized before being recycled to the cell surface.5,30,33,48 Receptor 
internalization and recycling appear to be dependent on the activating lig-
and.48,49 β-Arrestins are also implicated in ligand-independent signalling at 
the apelin receptor (Figure 2B). Cardiomyocytes develop markers of hyper-
trophy in response to stretch, and this is dependent on the presence of the 

Figure 1 (A) Apelin peptides are cleaved from the precursor pre-proapelin. Several circulating isoforms have been identified including apelin-36, apelin-17, 
and pyroglutamated apelin-13 ([Pyr1]apelin-13), the commonest isoform in human plasma. Apelin peptides are subsequently cleaved into less active peptides by 
plasma kallikrein, angiotensin-converting enzyme 2 (ACE2), and neprilysin. (B) Elabela (ELA) is a 54-amino acid peptide with 3 predicted mature isoforms, 
ELA-32, ELA-21, and ELA-11. Predicted cleavage sites are highlighted by arrows. The half-life of ELA-32 is 10 times that of apelin peptides. Figure created using 
BioRender.com.
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apelin receptor. Knockdown of β-arrestins or administration of apelin pro-
tects against this.50 Thus, when not bound by ligand, the inactivated apelin 
receptor may act as a mechanosensor that promotes hypertrophy through 
β-arrestin signalling.

Apelin receptor message is expressed in many tissues including the adipose 
tissue, heart, lung, kidney, placenta, and skeletal muscle, and also throughout 
the central nervous system.5 Apelin receptor protein is expressed in the brain, 
heart, kidney, and lung and spinal cord and within the cardiovascular system, it 
is present throughout the vascular endothelium, in vascular smooth muscle 
cells of conduit arteries and veins, and in cardiomyocytes.5 Similarities in the 
expression patterns of apelin and the apelin receptor suggest a predominantly 
autocrine or paracrine mechanism of action.

3. The apelin system and the 
renin-angiotensin system
Overactivation of the renin-angiotensin system is central to the develop-
ment of cardiovascular disease. Angiotensin II promotes salt retention, 
hypertension, and end-organ inflammation and fibrosis. Therefore, 

angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor 
blockers are key therapeutic tools in the management of cardiovascular 
disease. The apelin and AT1 receptors are co-expressed throughout the 
cardiovascular system, and the apelin system opposes the actions of the 
renin-angiotensin system (Figure 3).10,37,51 The systems may also recipro-
cally regulate each other.52 In an animal model of heart failure, down- 
regulation of cardiac apelin and apelin receptor mRNA is restored by 
AT1 blockade. Similarly, angiotensin II infusion down-regulates cardiac ape-
lin mRNA that is restored by an AT1 blocker.38 Loss of apelin potentiates 
angiotensin II-induced myocardial injury and abdominal aortic aneurysm 
development, and apelin treatment reverses these changes.18,42,43,53

Angiotensin-converting enzyme 2 (ACE2) is a major negative regulator 
of angiotensin II, converting it to angiotensin 1–7 that promotes vasodila-
tation.54,55 ACE2 also cleaves apelin peptides to generally less active com-
pounds, and its production is enhanced by them.10,22,56 Elabela does not 
affect ACE2 but down-regulates ACE expression.41 If apelin analogues 
could act synergistically with renin-angiotensin system blockers to offer 
broad cardiovascular benefits, this would be a particularly useful therapeut-
ic development.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Apelin receptor endogenous peptides, and synthetic peptide and small molecule agonists and antagonists

Action Value Parameter

Human endogenous peptides

apelin-13 Full agonist 8.8, 9.2 pIC50

[Pyr1]apelin-13 Full agonist 8.9 pIC50

apelin-17 Agonist 9.0 pIC50

apelin-36 Full agonist 8.6 pIC50

Elabela/Toddler-11 Agonist 7.2 pIC50

Elabela/Toddler-21 Agonist 8.7 pIC50

Elabela/Toddler-32 Agonist 8.7 pIC50

Radiolabelled apelin peptide analogues

[3H](Pyr1)[Met(0)11]-apelin-13 Full agonist 8.6 pKd

[125I]apelin-13 Full agonist 9.2 pKd

[125I](Pyr1)apelin-13 Full agonist 9.5 pKd

[125I][Glp65Nle75,Tyr77]apelin-13 Full agonist 10.7 pKd

Agonists: peptide analogues

cyclo apelin-12 (1–12) Full agonist 6.3 pEC50

cyclourea apelin-12 (1–7) Full agonist 6.8 pEC50

cyclo apelin-12 (7–12) Full agonist 7.1 pEC50

Palmitate-VTLPLWATYTYR (compound 1 [PMID: 25241924]) Full agonist 7.5 pEC50

LIT01–196 Agonist 9.1 pKi

H2N-c[X-R-L-S-X]-K-G-P-(D-2Nal) (compound 40 [PMID: 34982553]) Agonist 8.2 pKi

H2N-c[X-R-L-S-X]-K-G-P-(D-1Nal) (compound 39 [PMID: 34982553]) Agonist 9.2 pKi

MM07 Biased agonist 9.5 pEC50

Agonists: small molecules

ML233 Full agonist 5.4 pEC50

E339-3D6 Agonist 6.4 pKi

BMS-986224 Agonist 9.5 pKd

Azelaprag (AMG 986; BGE-105) Agonist 9.5 pEC50

Compound 15a [PMID:31724863] Agonist 10.0 pEC50

Compound 21 [PMID: 34855405] Agonist 10.2 pEC50

Compound 14a [PMID: 34795866] Agonist 10.6 pEC50

CMF-019 Biased agonist 10.0 pEC50

Antagonists

MM54 peptide Antagonist 8.2 pKi

ALX40-4C peptide Antagonist 5.5 pIC50

ML221 small molecule Antagonist 5.8 pIC50
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4. Clinical targeting of the apelin 
system
Although several clinical studies have examined the actions of the apelin sys-
tem in health and disease, all have focused on apelin peptides given the rela-
tively recent discovery of elabela. Overall, the apelin system offers exciting 
therapeutic potential for a range of cardiovascular diseases (Figure 4).

4.1 Hypertension
Hypertension, recently re-defined by the American Heart Association as a 
systolic blood pressure ≥ 130 mmHg or diastolic blood pressure ≥  
80 mmHg, is a leading cause of cardiovascular disease and affects almost 
50% of adults in the USA.57 Many adults require a combination of antihy-
pertensive agents, but despite this, only ∼45% adults achieve blood pres-
sure control.58

The apelin system regulates vascular tone in vitro, ex vivo, and in vivo. 
Activation of the apelin receptor on vascular endothelial cells by apelin 
peptides promotes nitric oxide production and leads to vasodilatation, 

with ß-arrestin recruitment also implicated.10,37 This occurs in healthy 
and diseased vessels although vasodilatation may occur via prostanoids ra-
ther than nitric oxide in diseased states.59,60 In contrast, several studies do 
report a vasoconstrictor action of both central and peripherally adminis-
tered apelin in vitro and in vivo however these involve different animal spe-
cies and different vascular beds.61 Elabela causes dose-dependent 
vasodilatation, both in the presence and absence of endothelium, but is 
not dependent on nitric oxide.31,45 In vivo studies find that elabela attenu-
ates angiotensin II-induced increases in blood pressure.30,41

In hypertensive rats, apelin receptor message and protein are reduced in 
the aorta, heart, and kidney, and elabela mRNA is reduced in the renal me-
dulla.62–64 The development of hypertension is accelerated by elabela de-
ficiency, and both apelin and elabela are protective against it.37,64

Overexpression of elabela also reduced kidney injury and fibrosis through 
inhibition of the Nod-like receptor protein 3 inflammasome, and, intri-
guingly, in this study, elabela appeared to be acting independently of the 
apelin receptor.64 Similarly, in the Dahl salt-sensitive rat, overexpression 
of elabela in the heart delayed the onset of hypertension and was protect-
ive against kidney damage.65 Of interest, fractional excretion of sodium and 

Figure 2 (A) Endothelial cell. The apelin receptor couples to pertussis toxin-sensitive inhibitory G proteins (Gi) and ligand binding inhibits adenylyl cyclase 
and cyclic AMP production and promotes activation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) pathways. Within the vasculature, apelin and 
elabela promote vasorelaxation through different mechanisms. Apelin promotes nitric oxide (NO) production via ERK1/2, phosphatidylinositol 3-kinase/pro-
tein kinase B (PI3K-AKT), and AMP-activated protein kinase (AMPK) pathways. However, when acting on vascular smooth muscle cells, apelin promotes vaso-
constriction. Elabela activates ERK1/2 pathways however nitric oxide production is not required for vasorelaxation to occur. Additionally, elabela causes direct 
vasorelaxation of vascular smooth muscle cells.
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chloride was reduced both before and after the initiation of a high-salt diet 
in these animals, despite no obvious change in expression of elabela within 
the kidney. Unexpectedly, cardiac function also deteriorated that the 
authors hypothesized may be due to sodium resorption.65 In the hyperten-
sive DOCA-salt rat, the long-acting apelin analogue LIT01-196 significantly 
reduced blood pressure with once-daily dosing, without inducing any un-
desirable change in kidney function or sodium concentration.66

Clinical studies in healthy volunteers confirm apelin-induced vasodilata-
tion to be dependent on nitric oxide.17 Systemic infusion of [Pyr1]apelin-13 
leads to a ∼5% reduction in blood pressure and a fall in peripheral vascular 
resistance in health and heart failure.39,67 Importantly, apelin promotes 
vasodilatation even in the setting of renin-angiotensin system activation,39

and circulating concentrations of apelin are lower in patients with hyper-
tension.68–70 There is no clinical evidence of apelin-induced vasoconstric-
tion in health or disease.17,39,67,71,72

Overall, the apelin system is altered in hypertension and is a potential thera-
peutic target. Apelin and elabela promote vasodilatation by different mechan-
isms and could have varying roles in maintaining vascular health. Further 

pre-clinical and clinical studies are required to further define these mechan-
isms and determine the actions of elabela on the vasculature in humans.

4.2 Atherosclerosis
Atheromatous cardiovascular disease is the leading cause of mortality world-
wide. The role apelin plays in the pathogenesis of atherosclerosis has not been 
fully defined. It promotes vascular smooth muscle cell proliferation,73 and loss 
of the apelin receptor protects against the development of atherosclerosis in 
the apolipoprotein E knockout mouse.74 However, loss of apelin promotes 
atherosclerosis in this model and apelin treatment reduces angiotensin 
II-induced atherosclerosis43 and enhances atherosclerotic plaque stability.75

The reasons for these discrepancies are unclear, and to date, there is no evi-
dence for ligand-independent signalling at the apelin receptor in this setting.

In humans, apelin expression is up-regulated within atherosclerotic cor-
onary artery, and both apelin and the apelin receptor are found in athero-
sclerotic plaques, co-localizing with macrophages and smooth muscle 
cells.76 It is unclear whether this is protective—perhaps through 

Figure 2  Continued (B) Cardiomyocyte signalling. Signalling at the apelin receptor in cardiomyocytes promotes inotropy and an increase in cardiac output 
through several mechanisms. Gi-protein signalling and inhibition of adenylyl cyclase and the protein kinase A (PKA) pathway, with subsequent inhibition of phos-
phorylation of troponin and enhanced calcium sensitivity. Apelin also signals via Gi to promote ERK1/2 signalling. Gq-mediated signalling promotes the phospho-
lipase C (PLC)/protein kinase Cɛ (PKC) pathway, stimulating the Na+-H+ exchanger that ultimately leads to increased intracellular pH. The subsequent increase in 
intracellular Na+ promotes activation of the Na+-Ca2+ exchanger, increasing intracellular calcium concentration. PKCɛ also stimulates activation of myosin light 
chain kinase, promoting phosphorylation of myosin and again increasing calcium sensitivity. The unoccupied apelin receptor signals via β-arrestin to promote myo-
cardial hypertrophy, which is inhibited by ligand binding. When the receptor is activated, β-arrestin promotes internalization of the receptor with subsequent 
recycling to the cell membrane. Elabela has been shown to promote inotropy through ERK1/2 signalling pathways but not PKC pathways.
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opposition of angiotensin II signalling—or pathological. Patients with cor-
onary artery disease have lower circulating apelin concentrations, and 
these are lowest in those with symptomatic coronary artery disease.77

The relationship between statin use and apelin is intriguing. Statins lower 
low-density lipoprotein cholesterol but also have pleiotropic effects that 
contribute to their beneficial cardiovascular effects.78 Statins induce 
kruppel-like factor 2, an important regulator of endothelial cell homeosta-
sis, and subsequently production of endothelial nitric oxide synthase and 
thrombomodulin.79 This promotes vasorelaxation alongside anti- 
inflammatory and antithrombotic effects, and is dependent on an intact 
apelin signalling pathway.80 Statins also reduce monocyte adhesion to 
endothelial cells, and this is impaired by loss of apelin. Additionally, statins 
promote endothelial expression of the apelin receptor at the mRNA and 
protein level,80 and increase circulating apelin peptide concentrations.81

There is, therefore, potential for synergistic vascular benefit from com-
bined statin and apelin therapy in patients with atherosclerotic disease. 
However, this is yet to be conformed in clinical studies.

4.3 Myocardial infarction
Atherosclerotic plaque rupture is the first step in the cascade of events that 
leads to thrombotic coronary artery occlusion and myocardial infarction. 

Both apelin and the apelin receptor are expressed on human platelets, 
and apelin can inhibit platelet aggregation through the nitric oxide-cyclic 
guanosine monophosphate pathway.82 Apelin-deficient mice have reduced 
tail bleeding time and enhanced platelet aggregation and are prothrombo-
tic, whereas apelin-13 prolongs tail bleeding in wild-type animals.82 Apelin 
can also influence thrombosis by regulating plasminogen activator 
inhibitor-1 (PAI-1) that inactivates the endothelium-derived fibrinolytic fac-
tor, tissue plasminogen activator. PAI-1 expression is induced by angioten-
sin II83 but inhibited by apelin.40 No clinical studies have explored whether 
apelin has antithrombotic actions in humans. Current medical management 
of myocardial infarction involves treatment with dual antiplatelet agents. 
The potential for apelin to offer additional antiplatelet activity and broad 
anticoagulant effect is an attractive prospect that deserves further 
examination.

Following thrombotic occlusion of the coronary artery, tissue ischaemia 
and myocardial cell death occur, and ultimately an area of scar tissue forms 
that can lead to left ventricular impairment. The apelin system promotes 
new vessel formation and can minimize ischaemic injury.31,84,85 Hypoxia in-
duces apelin expression in vitro, ex vivo, and in vivo, and this is driven by hyp-
oxia inducible factor 1α.86–88 Ischaemia-reperfusion injury is a widely used 
model of myocardial infarction, and in this model, animals lacking apelin 
show enhanced susceptibility to injury with larger infarct sizes, more 
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Angiotensinogen
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Angiotensin II

Ang 1-9

Ang 1-7
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• Vasoconstriction +   BP
• Salt + water retention
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•
•
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• Vasorelaxation +   BP
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Figure 3 There is crosstalk between the apelin system and the renin-angiotensin system. Angiotensin I is converted to angiotensin II (angiotensin II) by 
angiotensin-converting enzyme (ACE) and then acts on the angiotensin II-type 1 receptor (AT1) to promote an increase in blood pressure (BP), left ventricular 
remodelling, inflammation, and fibrosis. Activation of the apelin receptor by apelin or elabela opposes the actions of angiotensin II. The apelin system also 
influences production of angiotensin II. Elabela reduces expression of ACE, indirectly limiting production of angiotensin II, and apelin promotes production 
of angiotensin-converting enzyme 2 (ACE2), enhancing breakdown of both angiotensin I and II and promoting the production of angiotensin 1–7 (angiotensin 
1–7) that causes vasodilatation.
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significant left ventricular impairment and an increase in mortality.89

Following injury, apelin and apelin receptor mRNA and protein are up- 
regulated initially, then down-regulated as early as 24 h on. Apelin and ela-
bela both protect against ischaemia-reperfusion injury in models, including 
when given at the time of reperfusion mimicking potential clinical util-
ity.86,89,90 Their beneficial effects are likely due to the promotion of angio-
genesis, activation of the PI3K-AKT and p44/42 mitogen-activated protein 
kinase components of the reperfusion injury salvage kinase pathway and, 
with respect to apelin, nitric oxide production.89–93

Following myocardial infarction, the renin-angiotensin system is acti-
vated, and this propagates myocardial injury. Thus, renin-angiotensin sys-
tem inhibition is part of current standard of care treatment. Pre-clinical 
studies show that pre-treatment with a combination of apelin and the 
AT1 blocker, losartan, results in synergistic benefit following 
ischaemia-reperfusion injury, reducing infarct size by ∼50% and improving 
left ventricular function.94

No clinical studies have examined the apelin system around the time of 
myocardial infarction. The available pre-clinical data suggest that apelin re-
ceptor agonism could limit myocardial injury and left ventricular impair-
ment and offer broad anticoagulant effects, with additive benefits to 

current standard of care. Clinical trials of apelin or elabela treatment post- 
myocardial infarction are needed but are currently impractical due to the 
lack of oral preparations.

4.4 Heart failure
Heart failure is common, with a prevalence of ∼2% in many parts of the 
Western World.95 It is characterized by the progressive loss of cardiac sys-
tolic and diastolic function, often with acute exacerbations requiring hos-
pitalization, and is associated with severe morbidity and mortality.95 The 
apelin system has an important role in maintaining cardiac function in 
health, and is altered in heart failure and may therefore have potential as 
a beneficial treatment in this setting.

Apelin is the most potent inotrope in isolated human heart tissue discov-
ered to date.59 Mice lacking apelin or the apelin receptor show impaired 
myocardial contractility at baseline, and apelin-deficient animals are more 
sensitive to the negative effects of ageing and pressure overload.27,96

Traditional inotropes increase intracellular calcium concentrations and 
subsequently myocardial oxygen demand, promote hypertrophy and ar-
rhythmias, and are associated with increased mortality.97 The mechanisms 

Figure 4 The apelin system is a broad regulator of physiology.
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of apelin-induced inotropy are not fully understood. There is evidence both 
for and against apelin increasing intracellular calcium transients,98–100

although apelin’s inotropic effect may be mediated by enhanced calcium 
sensitivity rather than a change in total intracellular calcium. This would 
suggest that apelin may not be associated with the same adverse effect 
profile as other inotropes.

Apelin improves contractility via phospholipase C, protein kinase C, and 
ERK1/2 pathways.46,47 It promotes downstream activation of myosin light 
chain kinase and inhibits protein kinase A-induced phosphorylation of 
troponin I, both of which enhance myofilament calcium sensitivity 
(Figure 2B).47,100 Elabela also promotes dose-dependent inotropy in iso-
lated perfused rat hearts, and this is partly via ERK1/2 pathways.34,45

In vivo, chronic apelin infusion increased cardiac output without causing 
myocardial hypertrophy.101 Similarly, clinical studies show that intracoron-
ary apelin-36 increased left ventricular contractility, and both short and 
prolonged systemic infusions of [Pyr1]apelin-13 increased cardiac index 
whilst lowering blood pressure and peripheral vascular resistance.39,67

The apelin system is implicated in the pathogenesis of heart failure, with 
expression of apelin and its receptor up-regulated early in the disease and 
down-regulated as it progresses.102–104 Apelin protein has been detected 
in myocardial cells from patients with severe heart failure, yet is not found 
in these cells in health.103 Importantly, in patients with heart failure, APLNR 
was the most up-regulated gene in the left ventricle following placement of 
a left ventricular assist device and was associated with up-regulated tissue 
levels of apelin protein.103 Plasma apelin concentration increases in early 
heart failure, falls with disease progression, and is restored by cardiac re-
synchronization therapy.102,105 Overall, it may be that early on in disease, 
the apelin system is attempting to support the failing heart but is less able to 
do so as cardiac function deteriorates.

Pre-clinical studies find that apelin and elabela are protective in models 
of heart failure, improving cardiac contractility, preventing hypertrophy, 
and reducing mortality.41,89,106,107 Their actions may be mediated 
through regulation of the renin-angiotensin system. Apelin acts to inhibit 
the detrimental actions of angiotensin II in vitro and in vivo.53 Additionally, 
treatment with ACE inhibitors restores cardiac function in the apelin 
knockout mouse,53 and in a rodent model of chronic heart failure treat-
ment with an AT1 blocker restored cardiac apelin and apelin receptor 
expression.38 Elabela also prevents the pressure overload-induced in-
crease in ACE mRNA and protein, restoring the balance of ACE and 
ACE2.41

Both brief and prolonged infusions of [Pyr1]apelin-13 lead to a sustained 
∼10% increase in cardiac index, with increased ejection fraction seen on 
echocardiography, and a reduction in systemic vascular resistance and 
blood pressure in patients with chronic heart failure.39,67 Currently stand-
ard of care treatment for heart failure includes combination therapy with a 
renin-angiotensin system inhibitor, beta blocker, and mineralocorticoid re-
ceptor antagonist. Recently, a combination of an angiotensin receptor an-
tagonist and neprilysin inhibitor was shown to improve patient outcomes 
in patients with reduced ejection fraction and these agents are now recom-
mended for patients who remain symptomatic despite ACE inhibitor ther-
apy.108 As neprilysin fully inactivates apelin peptides, the success of these 
agents might be partly due to an increase in apelin peptide levels and this 
warrants further investigation in clinical studies.

In end-stage heart failure, patients may undergo heart transplantation. 
The longevity of the transplant is limited by the development of immune- 
mediated vascular injury in the graft, and apelin may act to mitigate this. 
Apelin receptor agonism protects against immune-mediated vascular injury 
both in vitro and in a mouse model of heart transplantation, and apelin is 
up-regulated in myocardial microvasculature and arteries within human 
failing heart grafts.109 Overall, this may be an attempt to reduce vascular 
injury and apelin treatment may offer therapeutic promise in the transplant 
setting.

Overall, a combination of inotropy and vasodilatation has been shown to 
improve haemodynamics in acute heart failure,110 and targeting the apelin 
system in heart failure could therefore offer benefit over and above that 
from currently available treatments. Clinical trials of apelin receptor agon-
ism are now needed in both acute and chronic heart failure.

4.5 Atrial fibrillation
Atrial fibrillation is the commonest sustained arrhythmia in the general 
population, and is associated with other cardiovascular diseases and mor-
bidity.111 Apelin is involved in regulation of cardiomyocyte electrophysi-
ology, acting on several ion channels to shorten the action potential and 
increase conduction velocity.99,112 Slowed myocardial conduction velocity 
is associated with an increased risk of arrhythmia,113 and apelin knockout 
mice have reduced atrial conduction velocities.114

Apelin protects against the development of atrial fibrillation in pre- 
clinical studies by prolonging the atrial refractory period and inhibiting 
the actions of angiotensin II.114,115 The apelin system may also contribute 
to thrombotic risk. In patients with atrial fibrillation and thrombosis, ex-
pression of apelin and the apelin receptor was reduced and expression 
of AT1 receptors and PAI-1 was increased in the left atrial appendage com-
pared to those in sinus rhythm or atrial fibrillation without thrombosis.116

Both atrial and plasma apelin and plasma elabela concentrations are re-
duced in patients with atrial fibrillation, even in the presence of other car-
diovascular comorbidities.114,117–119 Plasma apelin also independently 
predicts the risk of atrial fibrillation and its recurrence following successful 
cardioversion or pulmonary vein isolation.119–121

Taken together, the apelin system protects against the development of 
atrial fibrillation by influencing electrical conduction and there is further 
evidence of its potential antithrombotic actions. Increasing circulating ape-
lin in patients with atrial fibrillation could be a future therapeutic strategy, 
and apelin may be useful biomarker for atrial fibrillation.

4.6 Pulmonary arterial hypertension
Pulmonary arterial hypertension is a rare, chronic, and progressive dis-
order characterized by pulmonary vascular remodelling with smooth mus-
cle cell hypertrophy, increasing vascular resistance and ultimately right 
ventricular failure.122 It has an estimated incidence of 15–50 cases per mil-
lion and predominantly affects women.122 Pulmonary arterial hypertension 
may be idiopathic, genetic, or secondary to a variety of causes including 
drugs (e.g. the appetite suppressant aminorex), infection (e.g. schistosom-
iasis), or multi-system disease (e.g. connective tissue diseases).122 Survival 
has increased dramatically in the last two decades from a 5-year survival 
of 34% due to newer therapies becoming available. However, there is still 
substantial associated morbidity and mortality, and prognosis is dependent 
on many factors including aetiology and the severity of disease.122 Despite 
current treatments, patients have an overall 3-year survival of only 83%.123

Apelin, elabela, and the apelin receptor are expressed throughout the 
pulmonary vasculature.5 A small interfering RNA approach to induce apelin 
deficiency in pulmonary artery endothelial cells impaired cell survival and 
promoted pulmonary artery smooth muscle cell hypertrophy. 
Conversely, apelin treatment of pulmonary artery endothelial cells pro-
tected against cell death and promoted pulmonary artery smooth muscle 
cell apoptosis.124 Expression of the system is altered in models of pulmon-
ary arterial hypertension, with reduced apelin, elabela, and apelin receptor 
expression in the right ventricle, and this may contribute to its pathogen-
esis.30,125 Mice lacking the apelin gene develop worse pulmonary arterial 
hypertension in response to hypoxia than wild-type animals, with reduced 
endothelial nitric oxide synthase and more pronounced vascular remodel-
ling.126 Importantly, animal models of pulmonary arterial hypertension 
show that treatment with apelin, the G-protein-biased apelin receptor 
agonist MM07, or elabela can improve pulmonary haemodynamics and 
even reverse pulmonary arterial hypertension.30,124,125,127

Patients with pulmonary arterial hypertension have dysfunctional pul-
monary artery endothelial cells, and these exhibit reduced apelin and ela-
bela expression.30,124,128 Plasma apelin concentrations are reduced in 
patients with pulmonary arterial hypertension,126 and short infusions of 
[Pyr1]apelin-13 led to additional favourable changes in pulmonary haemo-
dynamics, with a fall in pulmonary vascular resistance and a rise in cardiac 
output.72 Interestingly, although this study was not designed to explore this 
effect, patients on phosphodiesterase-5 inhibitors with more severe dis-
ease showed a greater improvement in pulmonary vascular resistance, 
stroke volume, and cardiac output than those patients not on this 
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treatment.72 Phosphodiesterase-5 inhibitors act on the nitric oxide path-
way, preventing the degradation of cyclic guanosine monophosphate and 
thereby promoting vasodilatation. Apelin may therefore offer synergistic 
benefit in this setting by promoting upstream nitric oxide production.

Mutations in the bone morphogenic protein receptor type 2 (BMPR2) 
gene and alterations in BMPR2 signalling can predispose to pulmonary vas-
cular remodelling and the development of pulmonary arterial hyperten-
sion.129 This may be partly due to regulation of the apelin system. A 
mouse model of hypoxia-induced pulmonary arterial hypertension found 
that loss of bone morphogenic protein 9 (BMP9, a ligand of the Activin 
Receptor-like Kinase 1 receptor that heterocomplexes with BMPR2) in-
creased apelin expression and reduced susceptibility to pulmonary arterial 
hypertension.130 Similarly, application of BMP9 to pulmonary artery endo-
thelial cells from patients with pulmonary arterial hypertension and healthy 
controls led to reduced apelin expression.130 Notably, a pre-clinical model 
has recently shown that oestradiol is protective against right ventricular 
failure by up-regulating apelin via oestrogen receptor alpha/BMPR2 
signalling.131

Taken together, these data suggest that loss of apelin may contribute to 
the pathogenesis of pulmonary arterial hypertension and apelin treatment 
may provide additional benefits on top of standard of care. Clinical studies 
with prolonged apelin treatment and apelin analogues with longer half-lives 
are needed.

4.7 Pre-eclampsia
Pre-eclampsia is a multi-system disorder that affects ∼5% of pregnan-
cies.132 It is characterized by the development of gestational hypertension 
with additional evidence of end-organ dysfunction, such as proteinuria.133

It can occur early (<34 weeks’ gestation) or late in pregnancy, and ranges in 
severity. Once established, there is no curative treatment other than deliv-
ery of the foetus, and it remains a major cause of maternal and infant mor-
bidity and mortality.133 The pathogenesis of pre-eclampsia is not fully 
understood, but poor development of the placental vascular network is 
key, resulting in placental ischaemia.133

Apelin and elabela contribute to placental development and embryogenesis, 
and are implicated in the pathogenesis of pre-eclampsia.134 Apelin promotes 
small vessel angiogenesis and elabela is essential for endoderm differentiation 
and heart development, and also increases trophoblast invasion into the ma-
ternal uterine wall seemingly independent of the apelin receptor.26,135 Apelin 
and pre-proapelin are abundantly expressed in the healthy human placenta,136

with [Pyr1]apelin-13 the commonest isoform.137 Changes in the placental ex-
pression of the apelin system in humans with pre-eclampsia are not fully de-
fined. Apelin mRNA and protein and apelin receptor protein are 
down-regulated in severe disease, but it is unclear whether changes occur earl-
ier.138,139 The relationship with the renin-angiotensin system is again impli-
cated. In pre-eclampsia, there is up-regulation of angiotensin II and the AT1 

receptor.140 Angiotensin II reduces apelin release from healthy human chori-
onic villus explants, but this is prevented and apelin release is in fact enhanced 
by the AT1 receptor blocker, losartan.137 Elabela expression has only been ex-
plored in the early stages of pre-eclampsia, and no changes are seen.139

Interestingly, elabela-deficient, but not apelin-deficient, mice develop a pre- 
eclampsia phenotype with small, poorly vascularized placentas, hypertension, 
proteinuria and glomerular endotheliosis (a hallmark feature of pre- 
eclampsia), and treatment with elabela prevented these changes.141

However, apelin treatment does lower blood pressure and proteinuria in 
models of pre-eclampsia.142–144

Published data describing plasma concentrations of apelin and elabela in 
pre-eclampsia are conflicting and derive from studies with heterogeneous 
designs and populations that are difficult to compare. On balance, plasma 
apelin appears to increase in early-onset and severe pre-eclampsia, but 
whether this is the case in late-onset or mild disease is unclear.138,139,145

However, the placenta may not be the source of circulating apelin, so 
any rise in plasma concentrations may reflect a compensatory increase in 
production from other tissues due to hypertension. Data on plasma elabela 
in pre-eclampsia are inconsistent, with both increased and decreased con-
centrations found.146–148 Overall, further studies are required to develop 

understanding of the apelin system in pre-eclampsia and establish whether 
it could be a therapeutic target for this disease.

4.8 Metabolic disease
The apelin system has a role in glucose and lipid metabolism and may be a 
therapeutic target for obesity and type 2 diabetes mellitus. A full review of 
apelin’s metabolic effects has been described recently (see tan-Laurell 
et al.149). Briefly, apelin and the apelin receptor are present on adipocytes 
and pancreatic islet cells.5,150 Expression of apelin by these cells is regulated 
by both insulin and glucocorticoids.150,151 Apelin also has a biphasic effect 
on insulin, with lower concentrations inhibiting and higher concentrations 
stimulating insulin secretion.150,152 Animals lacking apelin are hyperinsuli-
naemic and show reduced insulin sensitivity.153

In healthy mice, apelin infusion lowers plasma glucose by promoting glu-
cose uptake in skeletal muscle and adipose tissue via endothelial nitric oxide 
synthase, AMPK, and Akt-dependent pathways. This glucose-lowering ef-
fect is also seen in obese and insulin-resistant mice,154 and is maintained 
with chronic apelin treatment where these animals showed reduced fat 
mass, triglycerides, and lower insulin levels than controls.155,156 Chronic 
apelin treatment also inhibits hepatic steatosis.157 Apelin analogues also 
promote glucose uptake and inhibit food intake in healthy and obese 
mice.158 Chronic treatment with apelin-13 analogues improved glycaemia, 
increased plasma insulin, and improved response to glucose tolerance tests 
as effectively as the established incretin therapies liraglutide and exendin-4. 
Interestingly, the apelin analogue (pGlu)apelin-13 amide was more effective 
at lowering triglyceride levels than the incretin mimetics.159 Clinical studies 
in healthy overweight men also find that apelin enhances insulin sensitiv-
ity.160 Studies exploring the ability of apelin to influence glycaemia and vas-
cular health in subjects with increased weight and type 2 diabetes mellitus 
are in progress (see clinicaltrials.gov: NCT03449251).161

4.9 Kidney disease
Chronic kidney disease is increasing common worldwide and is independ-
ently associated with cardiovascular disease.162 Indeed, cardiovascular dis-
ease is the commonest complication of chronic kidney disease.162 The 
apelin system is a promising therapeutic target in a range of kidney dis-
eases.6,163 Apelin regulates glomerular haemodynamics, opposing the ac-
tions of angiotensin II at the afferent and efferent glomerular arterioles 
through nitric oxide production.52 The apelin system also contributes to 
the regulation of fluid balance, acting in opposition to the vasopressin sys-
tem.52,164–166 Within the central nervous system, apelin and the apelin re-
ceptor colocalize with vasopressin and the vasopressin 1 receptor within 
the magnocellular neurons of the hypothalamus.6 Apelin promotes aquar-
esis both by central actions and by directly inhibiting vasopressin-induced 
insertion of aquaporin 2 channels in the principal cells of the collecting 
duct.165,167,168 Changes in plasma osmolality cause opposing effects on 
the regulation of vasopressin and apelin release,16 and the apelin system 
may therefore represent a target in disorders of water balance such as syn-
drome of inappropriate antidiuretic hormone. In a model of 
vasopressin-induced hyponatraemia, a peptide agonist with a longer half- 
life than apelin (LIT01-196) blocks the antidiuretic effect of vasopressin 
and the vasopressin-induced increase in urinary osmolality.168 Elabela has 
also been shown to have an aquaretic effect.34,164

Both apelin and elabela are protective in models of acute kidney injury, 
with anti-inflammatory, anti-apoptotic, and anti-fibrotic effects,169–171 that 
may be synergistic.171 At present, there are no published data on the renal 
actions of the apelin system in humans, but studies are underway (see clni-
caltrials.gov: NCT03956576).172 A detailed review of the apelin system in 
kidney disease may be found at Chapman et al.163

5. Therapeutic targeting of the apelin 
system
Whilst the apelin system offers exciting therapeutic potential for many car-
diovascular diseases, future clinical studies are limited by the lack of orally 
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available long-acting compounds. As such, development of apelin analogues 
resistant to peptidases and small molecule apelin receptor agonists has 
been a priority over the last decade, with variable success. Apelin peptide 
modification has been performed by PEGylation, cyclization, the addition 
of unnatural amino acids and conjugation to domain antibodies that then 
bind to albumin in vivo. The benefits and limitations of currently available 
agents have been discussed.10,11 Some analogues have prolonged half-lives 
and preserved activity in vivo.66,158,168,173–176 Several have shown beneficial 
effects in disease models. One apelin analogue was protective against myo-
cardial injury.89 Others promote insulin-dependent glucose lowering in 
diet-induced-obese mice.158,177 As discussed, long-term treatment of dia-
betic db/db mice with two the apelin analogues ((pGlu)apelin-13 amide or 
pGlu(Lys8GluPAL)apelin-13 amide) was in some respects more effective 
than established incretin therapies at improving metabolic dysfunction.177

Given the current understanding of apelin receptor signalling, the ideal 
agent would be a biased agonist that promotes signalling through 
G-protein pathways and limits β-arrestin signalling. MM07, a cyclic apelin 
analogue, is one such biased agonist with a half-life ex vivo that is ∼seven- 
fold greater than [Pyr1]apelin-13. Studies in humans have demonstrated 
it to be a more potent vasodilator than [Pyr1]apelin-13 with no evidence 
of desensitization, and it improved haemodynamics and vascular remodel-
ling in a pre-clinical model of pulmonary arterial hypertension.71,127 The 
small molecule compound CMF-019 also offers biased agonism at the ape-
lin receptor, which is preserved in vivo.178 Encouragingly, pre-clinical studies 
not only confirm similar vasodilator and inotropic actions to [Pyr1] 
apelin-13 but it also has potential as a disease-modifying agent in pulmonary 
arterial hypertension.178

Significant effort has been devoted to developing alternative oral small 
molecule apelin agonists. Two such long-acting agents that have shown 
promise in pre-clinical studies have undergone phase I trials.179–181

Whilst data are as yet unpublished regarding BMS-986224, AMG 986 
was shown to be safe and well tolerated in healthy humans and those 
with heart failure, although data were inconsistent regarding its clinical ef-
ficacy.179,182 So far, neither agent has progressed to further studies. The 
search for other small molecule agonists continues, and recently a small 
molecule known as compound 47 has been shown to be a potent and se-
lective apelin receptor agonist.183

6. Conclusions
The apelin system is a promising therapeutic target for a range of cardio-
vascular diseases. There is strong evidence for benefit of apelin receptor 
agonists in pulmonary arterial hypertension and chronic kidney disease 
with further potential in heart failure as apelin promotes inotropy and 
has anti-fibrotic and antiplatelet actions. The precise role of elabela in re-
lation to the apelin signalling pathway in cardiovascular disease remains 
to be elucidated, particularly whether elabela has distinct physiological, 
pathophysiological, and pharmacological actions from apelin. Elabela has 
a longer half-life than apelin and may activate different downstream path-
ways. Small molecule apelin compounds, including biased agonists such as 
CMF-019,178 are being developed that will enable meaningful clinical stud-
ies in this space in the future.
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